
A Proof of Lemma 4.2

The regularization is:

N∑
i=1

N∑
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(CT
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= 2N
N∑
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CT
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N∑
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N∑
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CT
i Cj

= 2N

N∑
i=1

CT
i (Ci − 1

N

N∑
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Cj) = 2N

N∑
i=1

CT
i (Ci − C̄)

(∗)
= 2N

N∑
i=1

‖Ci − C̄‖22,

(21)

where (∗) derives from the equality
∑N

i=1 C̄
T (Ci − C̄) = 0. Hence, the regularization is used to maximize

the sample variance. Assume that only samples are accessible to the target distribution Dir(β), we consider the

variance instead (i.e., ECi∼Dir(β)[
∑N

i=1 ‖Ci − C̄‖22]). To simplify the notation (i.e., ignore the constant),

Ex∼Dir(β)[(x− E[x])T (x− E[x])] =

K∑
k=1

Var(xk) =

K∑
k=1

βk(β0 − βk)

β2
0(β0 + 1)

. (22)

Here, we have β0 =
∑K

k=1 βk. We want to investigate the effect of adding this regularization w.r.t. to parameter
β. Alternatively, we consider the optimization problem as below,

max
β

K∑
k=1

βk(β0 − βk)

β2
0(β0 + 1)

s.t. βk ≥ 0, ∀k ∈ [K].

(23)

Then, we have t∗ =
∑K

k=1 β
∗
k where β∗ is the optimal point. We take a step towards the following convex

problem,

min
β
−

K∑
k=1

βk(t
∗ − βk)

s.t.

K∑
k=1

βk = t∗,

βk ≥ 0, ∀k ∈ [K].

(24)

As the slater condition holds, KKT condition is necessary and sufficient. The so-called augmented Lagrangian
function is

L(β, ν, π) = −
K∑

k=1

βk(t
∗ − βk) + ν(

K∑
k=1

βk − t∗)−
K∑

k=1

πkβk.

The KKT condition is ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− t∗ + 2βk + ν − πk = 0, ∀k ∈ [K]

K∑
k=1

βk − t∗ = 0,

πkβk = 0, βk ≥ 0, πk ≥ 0 ∀k ∈ [K]

(25)

Consider the case πk = 0, βk > 0, we have β∗
k = t∗

K
, ν∗ = K−2

K
t∗. We come back to the original problem,

K∑
k=1

βk(β0 − βk)

β2
0(β0 + 1)

=
K − 1

Kt∗
.

Overall, maximizing this component enforces t∗ → 0 and all equal parameters for the Dirichlet distributions.

B Proof of Proposition 5.1

The distance between an arbitrary spectral filter g(λ) and the ideal low pass filter gid(λ) in Eq. 4 is defined as,

Distance(g, gid) =
∫ λK

0
(1− g(λ))2dλ+

∫ 2

λK
(0− g(λ))2dλ. (26)
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Intuitively, this definition computes the squared Euclidean distance between g(·) and gid(·). Thus, the distance
between GCN gc(·) and the ideal low pass gid(·) is:

Distance(gc, gid) =
∫ λK

0
(1− (1− λ))2dλ+

∫ 2

λK
(0− (1− λ))2dλ

= λ2
K − λK + 2

3

(27)

The distance between Heatts gs(·) and the ideal low pass gid(·):

Distance(gs, gid) =
∫ λK

0
(−sλ+ 1

2
s2λ2 − 1

6
s3λ3)2dλ+

∫ 2

λK
(1− sλ+ 1

2
s2λ2 − 1

6
s3λ3)2dλ (28)

Our purpose is to derive value range of s such that Distance(gs, gid) is always smaller than Distance(gc, gid).

Distance(gs, gid)− Distance(gc, gid) ≥ 0 (29)

The solution is 0.672 ≤ s ≤ 1.321

As shown in Figure 4, Heatts is always closer to the ideal low pass gid(·) when s ∈ [0.672, 1.321].

Table 3: Statistics of data sets used in graph clustering

Data Nodes Edges Classes features
Pubmed 19,717 44,338 3 500
Citeseer 3,327 4,732 6 3,703

Wiki 2,405 17,981 17 4,973

Figure 4: The distance between spectral filters and the ideal low pass
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