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Abstract

How meaning is represented in the brain is still one of the big open questions in
neuroscience. Does a word (e.g., bird) always have the same representation, or
does the task under which the word is processed alter its representation (answering

“can you eat it?” versus “can it fly?”)? The brain activity of subjects who read
the same word while performing different semantic tasks has been shown to differ
across tasks. However, it is still not understood how the task itself contributes to
this difference. In the current work, we study Magnetoencephalography (MEG)
brain recordings of participants tasked with answering questions about concrete
nouns. We investigate the effect of the task (i.e. the question being asked) on the
processing of the concrete noun by predicting the millisecond-resolution MEG
recordings as a function of both the semantics of the noun and the task. Using
this approach, we test several hypotheses about the task-stimulus interactions by
comparing the zero-shot predictions made by these hypotheses for novel tasks
and nouns not seen during training. We find that incorporating the task semantics
significantly improves the prediction of MEG recordings, across participants. The
improvement occurs 475 − 550ms after the participants first see the word, which
corresponds to what is considered to be the ending time of semantic processing
for a word. These results suggest that only the end of semantic processing of a
word is task-dependent, and pose a challenge for future research to formulate new
hypotheses for earlier task effects as a function of the task and stimuli.

1 Introduction

One of the central goals of artificial intelligence (AI) is to build intelligent systems that understand
the meaning of concepts and use it to perform tasks in the real world. Despite the great strides in
learning representations, there are still many problems that could benefit from further improvements
in understanding and representing meaning, such as symbol grounding, common-sense reasoning, and
natural language understanding. While machines are limited in these areas, we do have one system
that is capable of representing meaning and performing these tasks well: the human brain. Thus,
looking to the brain for insights about how we represent and compose meaning may be beneficial.

Studies of meaning representation in neuroscience have revealed that the brain accesses meaning
differently depending on the demands of a task [1, 2, 3, 4, 5]. For instance, the recorded brain activity
of a participant that observes the word “cat” differs according to whether the participant is asked
to answer whether “cat” is an animal or a vegetable [6]. The difference is shown to occur between
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400 − 600ms after “cat” is presented to the participant, a period when it is believed that the brain
processes the semantics of the perceived word [7], suggesting an interaction between the task and
stimulus meaning. One hypothesis for the interaction that has received some experimental backing
is that, in order to solve the task, the brain uses attention mechanisms to emphasize task-relevant
information [8, 9, 10, 11, 12]. However, the computational principle behind this attention mechanism
is poorly understood, as it can be due to several neural properties, such as an increased response gain,
sharper tuning [13], or a tuning shift [11].

In this work, we propose the first computational model that implements precise hypotheses for the
interaction between the semantics of tasks and that of individual concepts in the brain, and tests their
ability to explain brain activity. We posit that formulating such a computational model will be a
helpful step towards specifying a full account of the task-stimulus interactions. Specifically, we study
how tasks interact with the semantics of concepts by building models that predict recorded brain
activity of people tasked with answering questions (e.g., “is it bigger than a microwave?”) about
concrete nouns (e.g., “bear”). Importantly, the proposed model is able to generalize to previously
unseen tasks and stimuli, allowing us to make zero-shot predictions of brain recordings.

Using this computational framework, we show that models that predict brain recordings as a function
of the task semantics significantly outperform ones that do not during time windows (475 − 550ms
and 600 − 650ms) which largely coincide with the end of semantic processing of a word, typically
thought to last until 600ms [7]. This result suggests that only the end of semantic processing of a
word becomes task-dependent and that this effect is related to the meaning of the task. We believe
that in addition to this result, neuroscientists will also be interested in the ability to computationally
compare different hypotheses for the task-stimuli interactions, and we hope that our general problem
formulation will benefit future research attempting to study other forms of interaction not considered
in this work. Additionally, our work may be of interest to the AI community. Further understanding
task effects on concept meaning in the brain may provide insights into building AI models that learn
how to combine representations specific to the task with task-invariant representations of concepts, as
a step towards composing meaning that is both goal-oriented and more easily adaptable to new tasks.

Our main contributions can be summarized as follows:

• We propose a means of representing the semantics of the question task that shows a significant
relationship with the elicited brain response. We believe such an approach could be useful to future
studies on question-answering in the brain.

• We provide the first methodology that can predict brain recordings as a function of both the observed
stimulus and question task. This is important because it will not only encourage neuroscientists to
formulate mechanistic computational hypotheses about the effect of a question on the processing
of a stimulus, but also enable neuroscientists to test these different hypotheses against each other
by evaluating how well they can align with brain recordings. While we have implemented and
compared several hypotheses for this effect, and have found some to be better than others, parts of
the MEG recordings remain to be explained by future hypotheses. We hope neuroscientists will
build on our method to formulate and test such future hypotheses. We make our code publicly
available to facilitate this.

• We perform all learning in a zero-shot setting, in which neither the stimulus nor the question used
to evaluate the learned models is seen during training (i.e. not just as the specific stimulus-question
pair but also in combination with any other question/stimulus). Note that this is not the case in
previous work that examines task effects, and we are the first to demonstrate how zero-shot learning
can be applied successfully to this question. This is important for scientific discovery because it
can test the generalization of the results beyond the experimental stimuli and tasks.

• We show that models that integrate task and stimulus representations have significantly higher
prediction performance than models that do not account for the task semantics, and localize the
effect of task semantics largely to time-windows in 475 − 650ms after the stimulus presentation.

2 Related work

Classical neuroimaging experiments that study meaning by contrasting different stimulus conditions
often include a task that is related to processing the meaning of the word (such as judging the
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Figure 1: Experimental paradigm recreated from
Sudre et al. [19]. Subjects shown a question, fol-
lowed by 60 concrete nouns along with their line
drawings in random order.
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Figure 2: Feature representations of questions
and stimuli obtained from Mechanical Turk.

similarity of two stimuli), however these experiments do not use predictive models that systematically
relate the stimulus properties to the brain recordings, and do not explicitly investigate the task effect.

A number of previous studies have used predictive models to examine the relationship between
brain recordings and stimulus properties, but have also not explicitly investigated the effect of a task.
In many of these studies [14, 15, 16, 17, 18], the participants performed only one task – language
comprehension – and, although this complex task can arguably be broken down into simpler tasks,
this question was not explicitly investigated by the authors. In contrast, Sudre et al. [19] explicitly
tasked participants with answering yes/no questions about objects. Even though the original paradigm
of Sudre et al. [19] results in task-dependent brain recordings, the authors average the brain recordings
for the same stimulus across tasks and learn predictive models only based on the semantics of the
objects. While averaging over repetitions of the same stimulus can boost the signal-to-noise ratio, it
likely loses the task-dependent information in the brain recordings. Here we reanalyze the original
task-dependent single-repetition data from Sudre et al. [19] to investigate the task-dependent brain
recordings using predictive models that include representations of both the object and the question.

One previous work uses a predictive model to investigate task effects [11], and is thus closest to ours.
In this work, the authors asked participants to attend to one of two object categories in natural scene
stimuli. The authors then learn two separate models, each of which is trained to predict the fMRI
recordings of participants in one of the 2 tasks as a function of the stimuli representations. They then
compare the learned weights of the 2 models to conclude that each task-specific model puts more
emphasis on those stimulus features that are related to the task. In contrast to this work, we integrate
both the task and the stimulus representations into a single zero-shot learning framework, which
allows us to predict brain recordings corresponding to novel tasks and stimuli. Additionally, we
predict MEG recordings which have a 2000-times finer temporal resolution than the fMRI recordings
used by Cukur et al. [11], which allows us to localize the task effect in time.

The work of Nastase et al. [12] also use a computational approach to investigate task effects. These
authors account for the task directly in their computational model by constructing a different represen-
tational dissimilarity space [20] for each of two tasks, and then comparing these to the representational
dissimilarity space of brain recordings. The representational spaces of the stimuli are entirely task-
dependent and do not incorporate the stimulus semantics. This is a limitation because this model
is not able to investigate the relationship between the brain recordings and a possible interaction
between the task and stimulus. Moreover, similarly to Cukur et al. [11], Nastase et al. [12] predict
fMRI recordings, limiting the investigation of the task effect in time.

3 Methodology

3.1 Brain data

We aim to study the effect of a task on the brain representation of a stimulus, when the stimulus
is shown while performing the task. To this end, investigating the magnetoencephalograpy (MEG)
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dataset presented in Sudre et al. [19], which contains 20 different question tasks, makes for an
excellent case study and was provided upon our request.

In this experiment, subjects were asked to perform a question-answering task, while their brain activity
was recorded using MEG. Figure 1 illustrates the experimental paradigm. Subjects were first presented
with a question (e.g., “Is it manmande?”), followed by 60 concrete nouns, along with their line
drawings, in a random order. Each stimulus was presented until the subject pressed a button to respond

“yes” or “no” to the initial question. Once all 60 stimuli are presented, a new question is shown for a
total of 20 questions. Thus we have a total of 60 stimuli × 20 questions = 1200 examples.

MEG samples the amplitude of the magnetic field induced by neuronal firing at 306 sensors positioned
on the scalp of a subject every millisecond. The data were preprocessed using standard MEG
preprocessing procedures (details in Appendix A). We analyze the data from the beginning of the
stimulus word presentation (i.e. 0ms) to 800ms, to avoid contributions to the brain signal from the
participant’s button-press (median response time across stimuli is 913ms, averaged across subjects).
We further downsample the recordings in time by averaging non-overlapping 25ms windows, resulting
in data of size 306 sensors × 32 time windows . We analyze data from 6 of the original 9 subjects.
Data from 3 subjects were excluded because of missing trials.

3.2 Selecting representations for questions and stimuli

To study the effect of the question on the meaning representation of a word, we first need a way to
represent both the semantics of the question and the word. We created two types of word and question
representations: one type derived from a pretrained bidirectional model of stacked transformers
(BERT) [21], which is a popular model used for question-answering tasks, and a second type derived
from Amazon Mechanical Turk (MTurk) of people answering questions about concrete nouns. We
find that the MTurk representations significantly outperform the BERT ones in the prediction tasks
outlined in the following sections, and so we focus on the MTurk representations in the main text
and provide a detailed description of the BERT features and related results in Appendix D. One
possible explanation for why representations from BERT perform worse is that BERT may lack
commonsense knowledge related to perceptual and visual properties of objects that is necessary to
answer the questions in our experiment (e.g. “Is it bigger than a car?”). In fact, prior work has
shown that BERT representations are deficient of object attributes that are related to questions similar
to ours [22] and of other physical commonsense knowledge [23].

The Mechanical Turk data was originally collected by Sudre et al. [19] and was provided at our
request. Participants on MTurk were shown a set of 1000 words (e.g., “bear”, “house”) and were
requested to answer 218 questions about them (e.g., “Is it fragile?”, “Can it be washed?”) on a
scale from 1 to 5 (“definitely not” to “definitely yes”). In this dataset, 60 out of the 1000 presented
words and 20 out the 218 questions corresponded to the stimuli and questions shown during the brain
recording experiment. A complete list of words and questions is shown in Appendix H.

Using this dataset, we define the representation of a word as a vector containing the MTurk responses
for that word to all 198 questions not in the experiment (see Figure 2). Moreover, we define the task
(i.e. question) representation as a vector containing the MTurk responses for 60 words which are not
in the experiment. Using more words did not result in improved performance on the validation set.
We purposefully excluded the questions and words in the brain experiment from these representations.
Note that [19] used the same word representations, but to the best of our knowledge, we are the first
to represent question semantics as a collection of answers.

With permission from Sudre et al. [19], we provide the MTurk representations of the stimuli and
questions in https://github.com/otiliastr/brain_task_effect. We further provide the MTurk
human-judgments for all 1000 words, and the BERT representations discussed in Appendix D.

3.3 Hypotheses

Next, we formulate several hypotheses of how the question integrates with the stimulus in order to
give rise to a task-dependent meaning representation. First, we will introduce the notation used to
define the hypotheses, as well as the concrete models described in the next section. Using the notation
in Table 1, we propose the following hypotheses, also shown in Figure 3:
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Figure 3: Proposed task-stimulus integration hypotheses.

Hypothesis 1 (no task effect): The brain activity is not affected by the task and can mostly be
explained by the stimulus. Thus, we can approximate the elicited brain activity as: b = fs(s).
Hypothesis 2 (no stimulus effect): The brain activity is not affected by the stimulus and can mostly
be explained by the task. Thus, we can approximate the elicited brain activity as: b = ft(s). While
this hypothesis may not predict the brain activity the best, it will allow us to localize the task effect.
Hypothesis 3 (additive): Both the stimulus and the task affect the brain activity, but their contribu-
tions are independent: b = fs(s) + ft(t).
Hypothesis 4 (interactive): The brain activity is well explained by the stimulus, but the task
changes the way the stimulus is perceived: b = fs(t⊗ s). We can think of this as the task focusing
attention on particular features of the stimulus that are relevant to the task (e.g., in answering the
question “Is it bigger than a car?” for the stimulus “dog”, we pay more attention to the features
of “dog” that are related to size, and ignore others such as color). This hypothesis aligns with the
conclusions of Cukur et al. [11] that a task emphasizes those semantic dimensions of the stimulus
that are relevant to the task. We use the notation⊗ to represent generically any type of augmentation,
and in Section 3.4 we describe in detail the forms of attention used in our experiments.

3.4 Predicting brain activity under different hypotheses

We next formulate models to represent the parametric functions fs and ft in the proposed hypotheses
and to learn the parameters that best predict the brain activity. Our notation is summarized in Table 1.
In the rest of this paper, we refer to the hypotheses using the abbreviations H1, H2, H3 and H4.

3.4.1 Models

The functions fs and ft can be represented using any regression models that map from a feature space
to the brain activity space. Prior work [14, 24, 25, 26] has shown that simple multivariate regression
models such as ridge regression are reliable tools for predicting brain activity from stimulus features
and are able to achieve good accuracy. For this reason, we will adopt the ridge regression setting for
modeling fs and ft. In ridge regression, we model the output of a function f as a linear combination
of the input features: ŷ = f(x) = xW , where W is a parameter matrix. W is trained to minimize the
loss function ∥Y −XW∥2

F + λ∥W∥2
F , consisting of the mean squared error of the predictions and

a regularization term on the parameters to avoid overfitting. Here X and Y represent the training
inputs and targets, respectively, stacked together, ∥.∥F denotes the Frobenius norm, and λ > 0 is
a tunable hyperparameter representing the regularization weight. In our setting, the targets of the
prediction Y consist of the MEG recording of the brain activity, Yb, described in Table 1. However,
the inputs X depend on the hypothesis being tested, as we describe further.

Hypothesis 1: Under a no task effect hypothesis, we predict the brain activity as a function of the
stimulus features only, Yb = fs(Xs) = XsWs, where Ws ∈ RFs×LT . The objective function is:

min
Ws

∥Yb −XsWs∥2
F + λ∥Ws∥2

F (1)

Hypothesis 2: Under a no stimulus effect hypothesis, we predict the brain activity as a function of
the task features only, Yb = ft(Xt) = XtWt, where Wt ∈ RFt×LT . Our objective function becomes:

min
Wt

∥Yb −XtWt∥2
F + λ∥Wt∥2

F (2)
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Table 1: Notation used in defining the proposed hypotheses and models.

Ns num. unique stimuli in experiment, 60 b̂ predicted brain activity; b̂ ∈ RLT

Nt num. unique tasks in experiment, 20 Xs stimuli representations, stacked
R total num. repetitions, over all stimuli, 1200 for all repetitions; Xs ∈ RR×Fs

L space dimension of the brain activity, 306 Xt task representations, stacked
T time dimension of the brain activity, 32 for all repetitions; Xt ∈ RR×Ft

Fs num. features in stimulus representation, Yb recorded brain activity, stacked
198 for MTurk; 768 for BERT for all repetitions; Yb ∈ RR×LT

Ft num. features in task representation, fs function mapping from s to b̂;
60 for MTurk; 768 for BERT fs ∶ R

Fs → RLT

s stimulus representation; s ∈ RFs ft function mapping from t to b̂;
t task representation; t ∈ RFt ft ∶ R

Ft → RLT

Hypothesis 3: Under an additive effect hypothesis, we predict the brain activity as the sum of the
stimulus contribution and task contribution: Yb = fs(Xs)+ ft(Xt) = XsWs+XtWt. Note that this
is equivalent to a single regression function f(Xs, Xt) = [Xs, Xt] ⋅ [Ws;Wt], where [Xs, Xt] ∈
RR×(Fs+Ft) is a concatenation of the stimulus and task features, and W = [Ws;Wt] ∈ R(Fs+Ft)×LT

is a concatenation of their corresponding weight matrices. Thus, the objective can be written as:

min
Ws,Wt

∥Yb − [Xs, Xt] ⋅ [Ws;Wt]∥2
F + λ∥[Ws;Wt]∥2

F (3)

Hypothesis 4: Under an interactive effect hypothesis, we predict the brain activity as a function of
the augmented stimulus features. The intuition is that the task augments the features that are relevant.
In this work, we consider an implementation of the augmentation using soft attention [27], in which
the task reweighs the contribution of the stimulus features. To simplify the notation in the following
formulations, we will use t and s to refer to both the identity and the representation of a task and a
stimulus in the experiment. Each task t is associated with a set of attention parameters at ∈ RFs that
rescale the original stimulus features when the stimulus s is presented under question t. Thus, the
augmented stimulus features under question t become s̄ = at ⊗ s, where ⊗ represents element-wise
multiplication. The augmented stimuli for all training examples can be stacked together in an a matrix
Xs̄, and used as input to a ridge regression model, similar to H1:

min
Ws

∥Yb −Xs̄Ws∥2
F + λ∥Ws∥2

F (4)

The attention vectors at can be precomputed or learned along the regression parameters, as follows:

H4.1. Precomputed attention: The MTurk features have interpretable dimensions for both tasks
and stimuli, which enables us to directly compute the hypothesized relevance of different stim-
uli dimensions to each task. As described in Section 3.2, each semantic dimension of a word
corresponds to one of the Fs = 198 non-experimental questions (see Figure 2). Given this
relationship, we compute the attention parameters for every stimulus presented under task t as
at = softmax([at,t̃j ]) for j ∈ {1, . . . , Fs}, where t̃ ∈ RFt is a representation of a non-experimental
question, and at,t̃ = cosine_similarity(t, t̃). We observe that this precomputed attention indeed
emphasizes semantically-relevant word features. For example, the word features with highest atten-
tion for the question “Is it made of metal?” are “Is it silver?” and “Is it mechanical?”. The top 5
word features with highest attention for each question are provided in Appendix E.

H4.2. Learned attention: We learn the attention parameters together with the regression parameters
with the objective of predicting the brain recordings as accurately as possible. A direct approach
would be to learn a different set of attention parameters at for every task t. However, since our goal
is to be able to make zero-shot predictions for tasks and stimuli never seen during training, we instead
learn how to map the features of the task to an attention vector. In our experiments we did so by
learning an attention matrix A ∈ RFt×Fs , such that at = σ(tA), where σ(.) represents the sigmoid
function, applied element-wise. Putting all pieces together, our objective function becomes:

min
Ws,A

∥Yb − σ(XtA)XsWs∥2
F + λ∥Ws∥2

F + λA∥A∥2
F (5)
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Figure 4: Performance of all hypotheses at predicting the MEG recordings in 25ms windows, averaged
over sensors. We show the mean and std. error over subjects. The task effect is mostly localized to
475 − 550ms. Hypotheses that incorporate both the stimulus and task perform similarly across time.

3.4.2 Training and evaluation

We next train and evaluate all models. Our goal is to predict brain recordings for any new task and
word (i.e. zero-shot). Thus, we train all models using leave-k-out cross-validation, in which we leave
out all training examples that correspond to task-stimuli pairs that contain either a task or a word that
will be used for testing. We choose the regularization parameters via nested cross-validation.

We evaluate the predictions from each model by using them in a classification task on the held-out
data, in the leave-k-out setting. The classification task is whether we are able to match the brain
data predictions for two heldout task-stimuli pairs to their corresponding true brain data. This task
has been previously proposed for settings with low signal-to-noise ratio [14]. The classification
is repeated for each leave-k-out fold and an average classification accuracy is obtained for each
sensor-timepoint. We refer to this accuracy as 2v2 accuracy. The theoretical chance performance
is 0.5. A more detailed explanation about this metric can be found in Appendix B. Further details
about the train/validation/test splitting, parameter optimization, hyperparameter tuning and preventing
overfitting can be found in Appendix C.

Our code with all training and evaluation details is available at https://github.com/otiliastr/
brain_task_effect.

4 Results and discussion

4.1 Effect of incorporating question task semantics

Time window results. We present the 2v2 accuracy per 25ms time window of all tested hypotheses
in Figure 4. The time points for which each accuracy significantly differs from chance are indicated
with a ⋆ symbol (one-sample t-test, 0.05 significance level, FDR controlled for multiple comparisons
[28]). We observe that the hypothesis that only considers the question task semantics (H2) performs
significantly better than chance in one early time window (50 − 75ms) and much later during
475 − 550ms. The remaining hypotheses also perform better than chance in the same 475 − 550ms
window, but we observe that during the majority of that time H3 and H4.1 perform significantly better
than H1 (paired t-test, 0.05 significance level, FDR controlled for multiple comparisons; significance
for the H3-H1 comparison and all other pairwise comparisons are shown in Supplementary Figure
10 in Appendix F). We conclude that incorporating the question task semantics can improve the
prediction of MEG recordings. Note that all discussed times are measured relative to stimulus onset.

Sensor-timepoint results. We investigate the task effect further by comparing the contribution of the
question-specific precomputed attention and the word features to the accuracy of H4.1 by computing
the 2v2 accuracy in two special cases: (1) when the two tested word-question pairs share the same
word (i.e. (q1,w1) vs (q2,w1)), higher-than-chance accuracy is attributed to the precomputed attention
features; (2) when the two tested word-question pairs share the same question (i.e. (q1, w1) vs (q1,
w2)), higher-than-chance accuracy is attributed to the word features. These results are presented per
sensor-timepoint in Figure 5, where only higher-than-chance accuracies across participants are shown
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Figure 5: Mean 2v2 accuracy across subjects of predicting sensor-timepoints in 50ms windows using
H4.1, when predicting the brain recordings for two word-question pairs that share the same word
(Left) and the same question (Right). Displayed accuracies are significantly greater than 0.5. The
main question contribution appears in the frontal and temporal lobes during 400 − 550ms, whereas
the word contribution is distributed across the occipital and temporal lobes during 200 − 650ms.

(one-sample t-test, 0.05 significance level, FDR controlled for multiple comparisons). The results are
visualized using MNE-Python [29]. The main contribution of the question-specific attention appears
between 400-550ms, localized to the frontal and the left temporal lobes. The contribution of the
stimulus features is more distributed, both in time and space. The effect of word semantics begins
at 150ms and extends until the end of the considered time, with major contributions in the occipital
lobes (200 − 600ms) and temporal lobes (400 − 550ms, 600 − 650ms). For ease of visualization,
here we present results for 50ms time windows. The results for 25ms time window align with the
presented effects and are provided in Appendix F.

Beyond MTurk representations. We experimented with substituting the Mechanical Turk word
and question representations with features extracted from BERT [21], which are used by many
state-of-the-art methods across several natural language processing problems. In summary, we find
that the BERT token-level word embeddings can be a good substitute of the MTurk embeddings, but
the question representations of pretrained BERT do not appear to align as closely to the question
semantics in the brain. These results can be found in Appendix D. We also tested replacing the
stimulus representations with random vectors, which resulted in chance performance.

4.2 Comparison of task-stimulus interaction hypotheses

We further test which of the 3 hypothesized types of task-stimulus interaction (i.e., independent in
H3, precomputed attention in H4.1, or learned attention in H4.2) best explains the observed MEG
recordings. We observe that there is no significant difference among these hypotheses when averaging
over the performance in all sensors (significance shown in Supplementary Figure 10).

Sensor-timepoint results. A group of sensors in the occipital lobes are significantly better predicted
by H3 than by H4.1 at 200−250ms (paired t-test, 0.05 significance level, FDR controlled for multiple
comparisons). This is when semantic processing of a word begins, so H3 may outperform H4.1
here because H3 has an independent contribution from the word representation. Both H3 and H4.1
perform significantly better than chance during 450 − 500ms, and there are different sensor groups
in the frontal lobe that are significantly better predicted by each hypothesis than the other. This
suggests that this time point may contain both independent and interactive contributions of the task.
We lastly observe that H4.1 outperforms H3 in the left temporal lobe during 600 − 650ms. This
localization suggests that the word and question semantics may interact in this time period, rather
than be processed independently. These results are shown in Supplementary Figure 11.

Learned attention. There are no significant differences between H4.2 and H4.1, and the learned
attention is highly similar to the precomputed one (Pearson correlation of 0.69 between the pairwise
cosine distances of the task-specific precomputed and learned attention parameters; more details in
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Appendix E). This suggests that either the precomputed attention is one optimal way to combine
the stimulus and task in predicting the recordings, or that more samples are needed to learn a better
one. To further understand the effect of the sample size, we also evaluated H3 and H4.2 with varying
amounts of training data, and found that both models perform increasingly better with more samples.
The results and discussion are included in Appendix G.

4.3 Effect size

We note that the magnitudes of the presented effects (i.e. accuracies, differences between hypotheses)
are limited due to the small amount of data and the underlying difficulty of analyzing single-trial
MEG data. The accuracies we observe are on par with other reported single-trial MEG accuracies
[16]. Other work has mitigated the low signal-to-noise ratio of single-trial MEG by averaging the
recordings corresponding to different repetitions of the same stimulus [19] or grouping 20 examples
together for a 20v20 classification task [16]. Neither is applicable here because our data does not
contain repetitions of the same question-stimulus pair, and our zero-shot setting would require us to
hold out a large portion of our training set if we were to evaluate on 20 stimulus-question pairs.

In the absence of these options, we have taken careful precautions to validate our results (by evaluating
our models on held-out data in a cross-validated fashion) and evaluated the significance of the model
performances and differences between them, and corrected for multiple comparisons. We trust that
the effects we have shown to be significant are indeed true, but we note that there may be effects that
we are not able to reveal due to limited power and hope that neuroscientists will apply our methods in
the future to larger datasets with multiple repetitions.

4.4 Discussion and relation to previous results

Taken together, our results point to a robust effect of the question task semantics on the brain activity
during 475 − 550ms. We also find an effect of the interaction between the question and stimulus
semantics during 600 − 650ms, localized to the temporal lobe. The temporal lobes are implicated
in semantic processing [1, 30, 31, 32] and specifically in maintaining relevant lexical semantic
information for the purposes of integration [33]. Since this effect occurs past the time when a word
is thought to be processed (i.e. up to 600ms), it may be related to maintaining specific semantic
dimensions that help answer the question (the median response time across participants is 913ms).
In addition to being localized to the temporal lobes, the earlier question effect is also found in the
frontal lobes, which are thought to support attention [34, 35]. A task effect that is related to attention
is consistent with findings from [11, 12]. Our results expand these previous findings by characterizing
the temporal dynamics of the task-stimulus interactions.

5 Conclusions and future work

We propose a computational framework for comparing different hypotheses about how a task affects
the meaning of an observed stimulus. The hypotheses are formulated as prediction problems, where a
model is trained to predict the brain recordings of a participant as a function of the task and stimulus
representations. We show that incorporating the semantics of a question into the predictive model
significantly improves the prediction of MEG recordings of participants answering questions about
concrete nouns. The timing of the effect coincides with the end of semantic processing for a word, as
well as times when the participant is deciding how to answer the question.

These results suggest that only the end of semantic processing of a word is task-dependent. This
finding may inspire new NLP training algorithms or architectures that keep some computation task-
independent, in contrast to current transfer learning approaches for NLP that tune all parameters of a
pretrained model when training to perform a specific task [21]. Moreover, future work can extend
our methods to incorporate representations of tasks and stimuli from powerful neural networks that
are augmented with improved commonsense knowledge [22], which would eliminate the need for
human-judgment annotations. Furthermore, only one of the tested hypotheses (H4.1) is experiment-
dependent, while all others can be applied to data from any neuroscience experiment, as long as task
and stimulus feature representations can be obtained. Our results pose a challenge for future research
to formulate new hypotheses for earlier effects on processing as a function of the task and stimuli.
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