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1 Background on Counterfactuals

We provide a brief background on counterfactuals. Further details can be found in [1].
Definition 1 (Structural Causal Model (SCM)). A structural causal modelM over variables X =
{X1, . . . , Xn} consists of a set of independent (exogenous) random variables U = {u1, . . . ,un}
with prior distributions P (ui) and a set of functions f1, . . . , fn such that Xi = fi(PAi,ui), where
PAi ⊂ X are parents of Xi. Therefore, the distribution of the SCM, which is denoted PM, is
determined by the functions and the prior distributions of exogenous variables.

Inferring the exogenous random variables based on the observations, we can intervene in the
observations and inspect the consequences.

Definition 2 (Interventions in SCM). An intervention I = do
(
Xi := f̃i(P̃Ai,ui)

)
is defined as

replacing some functions fi(PAi,ui) with f̃i(P̃Ai,ui). The intervened SCM is indicated asMI ,
and, consequently, its distribution is denoted PM;I .

The counterfactual inference with which we can answer the “what if” questions will be obtained in
the following process:

1. Infer the posterior distribution of exogenous variable P (Ui|X = x), where x is a set of
observations.

2. Replace the prior distribution P (ui) with the posterior distribution P (ui|X = x) in the
SCM. We denote the resulted SCM asMx and its distribution as PMx

3. Perform an intervention I onMx to reach PMx;I .

4. Return the output of PMx;I as the counterfactual inference.
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(b) VLN SCM with interventions

Figure 1: Structural Causal Model (SCM) of the vision-and-language navigation (VLN). We
incorporate an exogenous variable in the SCM that is learned and utilised for reasoning about
interventions in the observation.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



1.1 Counterfactual Vision and Language Navigation

We concentrate on the interventions on the visual observations to improve the generalisation of the
model to the unseen environments. Our intuition is that the visual feature extractor functions in
VLN usually focus on spurious features in the scene. To that end, by constructing the SCM for VLN
and introducing interventions in the training environments, we train models that better generalise to
unseen environments.

Fig. 1 shows the SCM for VLN at a time-step. The SCM consists of an exogenous variable u (for
observations) and a set of functions that transmit the observation ot, language instruction c and
previous state st−1 to the next state st and, subsequently, to the next action at. We intervene in
observations by replacing their embedding function fo with f̃o. Specifically, after learning exogenous
variable u, we replace the latent representation of the observations zt, to z̃ut .

In Eq. (5) in the paper, we effectively remove the effect of the intervention leading to an agent that is
less biased towards spurious features. For computing the expectation, we could take samples from
the posterior p(u | τ, c) and average using multiple counterfactual trajectories (an MCMC approach).
Instead, in the interest of efficiency in Sec 3.3, we take only one instance from the mode of the
posterior that alters the navigation policy’s output.

2 Implementation Details

2.1 R2R Navigation

Our navigation policy is a attention encoder-decoder network that encodes the navigation history
conditioned on the instruction and decodes the next direction that the agent should follow. To have a
fair comparison and show the effectiveness of our approach, we closely follow the implementation
proposed by [2] and evolved in [3]. Our encoder is a recurrent neural network:

he
i = fe(fw(wi),h

e
i−1), (1)

where fw represents an embedding layer, fe is a bidirectional LSTM and he
i is the latent

representation vector for word i in the instruction (he
i ∈ R512), which is obtained from the

concatenation of forward and backward layers of the LSTM.

We calculate the attention over a collection of V values (vi) with respect to a key vector (k) as:

α, att = Attention(k, {vi}Vi=1), (2)

with αi = Softmax(vᵀ
i Wki), att =

V∑
i=1

αivi,

where W are the parameters to be learned, αi is the weight of i-th value item and att is the attentive
feature vector.

Our decoder is an attentive RNN:
_, ẑt = Attentionv(hd

t−1, {zti}36i=1), (3)

hd
t = fd

(
[fa(at−1); ẑt],h

d
t−1
)
, (4)

_, ĥd
t = Attentionl(hd

t , {he
i}Li=1), (5)

{pj}Nj=1, _ = Attentiond(ĥd
t , {ztj}Nj=1), (6)

where zti is the concatenation of 2048-dimensional visual feature vector (extracted from a pretrained
ResNet[4]) and a 128-dimensional angle embedding vector, fa is an embedding layer to embed the
previous action into a 64-dimensional vector, fd is another LSTM, and ĥd

t ∈ R512 represents the
language-grounded state of the navigation. The action is chosen greedily or by sampling (in IL or RL
setting respectively) among the N possible movable directions based on their corresponding weight
pj . It worth mentioning that we apply a Dropout of 0.5 between all layers of the network.

2.2 EQA Navigation

To attend the visual features of the egocentric RGB image in House3D environments, we utilise the
pre-trained CNN proposed in [5]. The network consist of 4 convolutional blocks in which a 5× 5
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convolution layer is followed by BatchNorm, ReLU and 2 × 2 MaxPool layers. The network is
trained in a multi-task learning setting where the outputs of the last convolutional block are fed into
three separate decoder heads for RGB image reconstruction, pixel-wise semantic segmentation and
semantic classification. In our experiments, we extract the outputs of the last convolutional block
(R3200) and downsize its dimension to 128 using a fully-connected layer to reach latent observation
representations z.

Our navigation policy is a recurrent encoder-decoder model. We encode the question using a 2-
layer LSTM. The last hidden state of the encoder is used as the embedding of the whole question
(he ∈ R64). The decoder is an RNN followed by MLP and LogSoftmax layers:

hd
t = fd

(
[fa(at−1);h

e; zt],h
d
t−1
)
, (7)

pt = LogSoftmax
(
f ′d(hd

t )
)
, (8)

where fa is the action embedding of dimension 32, fd is a 2-layer GRU with a hidden state of size
1, 024, f ′d is a fully-connected layer mapping the outputs to the action space, and pt (pt ∈ R4)
declares the probability of each action at step t.

2.3 Counterfactual Learning

The learning process of exogenous variables u for two samples picked from the dataset
({(τ, c), (τ ′, c′)} ∼ D) is as follows:

1. Repeat the last observation of τ ′ to be the same length as τ .
2. Sample u from the prior distribution Beta(0.75, 0.75).
3. Generate counterfactual visual features using u and based on Eq. 9 (in the main text).
4. Feed the counterfactual trajectory into Speaker and Navigator.
5. Update u based on Eq. 11 (in the main text) with learning rate of 0.1.
6. Repeat steps 3 to 5 for N iterations (N = 5 in the experiments).

2.4 Reinforcement Learning Reward

The reward function we use is measured based on both agent’s progress toward the target location
and its final success/failure. To that end, at each step we calculate the distance to the target location
(dt) and, based on that, we measure the progress reward (dt − dt−1). Additionally, at the end of each
episode (either by reaching the maximum number of steps or after choosing the stop action), if dt
is lower than 3 meters, we provide the agent with a big reward of size +2. Otherwise, we punish the
agent with a negative signal of −2. Note that we set the discount factor to 0.9 in all experiments.
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Instruction: Walk forward up the set of three stairs. Enter the room at the end of the hallway. Walk o the 

massage table, and stop.

STOP

STOP
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Success

Failure

Figure 2: Trajectory Sample. The baseline agent (left trajectory) follows the language instruction until step 4,
where instead of moving towards the massage table, it goes into the next hallway. We argue that since there are
limited massage tables in the training set, the baseline method does not consider this one as a variant of table and
continues searching to stop at the end of the next hallway (6 meters away from the target position). On the other
hand, our agent (at the right side), succeeds in identifying the massage table and ends up at the target location
without any navigation error.
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Instruction: Walk through double doors into the house. Continue around the dining table and through the entry 

way to the next room. Walk up to the couch and armchairs surrounding a coffee table. 
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Figure 3: Trajectory Sample. Both agents follow the same path until step 3, where they need to identify and
reach the coffee table that is surrounded by the couch and armchairs. In contrast to the baseline model that looks
for typical tables in the environment and overlooks the couch from the back view, our model, recognises them
and attends the target position successfully.
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Instruction: 'Exit the room then go straight and turn left. Go straight until you pass an eye chart picture frame

on the left wall then wait there. 

STOP

STOP
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Figure 4: Trajectory Sample. The baseline model neglects a part of the instruction, and it seems that it has
presumed the picture frame in step 2 as the one mentioned in the guidance improperly. Biased by the great
number of trajectories in the training set, it decides to go into the door at the opposite side, which costs the agent
to end up unsuccessfully (7 meters away from the target). On the contrary, our approach executes the instruction
precisely, finds the eye chart picture frame correctly, and stops at the vicinity of the goal location (1 meter error).

6



Instruction: Walk straight past the bar through the doorway. Turn right at the picture and enter the bedroom. 

Stop and wait by the closet. 

STOP STOP
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Figure 5: Trajectory Sample. From the pictures it is evident that the baseline approach cannot find the right
path, that is identifiable with the picture clue in the instruction, and, consequently, ends up about 13 meters away
from the target. On the other hand, our approach succeeds in correlating the language instruction to the correct
path and reaching the target location (less than 1 meter error).
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