
A Omitted proofs

A.1 Adversarial robustness as quadratic specification

Consider certifying robustness: For input x0 PRd with true label i, the network does not misclassify
any adversarial example within `8 distance of ✏ from x0. This property holds if the score of any
incorrect class j is always lower than that of i for all perturbations. Thus �pxq “ cJxL with cj “ 1
and ci “´1. The input constraints are also linear: ´✏ § xi´x0i § ✏, for i“1,2,...d.

A.2 Linear and quadratic constraints for ReLU networks

ReLU as quadratic constraints: For the case of ReLU networks, we can do this exactly, as described
in [52]. Consider a single activation xpost “ maxpxpre, 0q. This can be equivalently written as
xpost •0,xpost •xpre, stating that xpost is greater than 0 and xpre. Additionally, the quadratic constraint
xpostpxpost ´xpreq “ 0, enforces that xpost is atleast one of the two. This can be extended to all units
in the network allowing us to replace ReLU constraints with quadratic constraints.

A.3 Formulation of bound constrained dual problem

Proposition 1. The optimal value opt of the quadratic verification problem (1) is bounded above by

optrelax “: min
�•0,•0

cp�q` 1

2
1J

”
´�´

minpdiagpq´Mp�qq1
ı`

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
fp�,q

, Mp�q“
ˆ

0 gp�qJ

gp�q Hp�q

˙
, (8)

and �´
minpZq is the negative portion of the smallest eigen value of Z, i.e. r�minpZqs´ and PR1`N .

Proof. We start with the Lagrangian in (4) with rescaled activations such that `“´1 and u“1, where
` and u are lower and upper bounds on the activations x P Rn respectively. This normalization is
achieved by using pre-computed bounds via bound propagation, which are used to write the quadratic
constraints, as in [52].

opt§min
�©0

max
´1®x®1

´
cp�q`gp�qJx` 1

2
xJHp�qx

¯
. (9)

Define

X̃ “
ˆ
1 xJ

x xxJ.

˙

In terms of the above matrix, the above Lagrangian relaxation (9) can be equivalently written as:

opt§“:min
�©0

max
diagpX̃q§1

cp�q` 1

2
xMp�q,X̃y, where (10)

Mp�q“
ˆ

0 gp�qJ

gp�q Hp�q

˙
(11)

Note that X̃ is always a PSD matrix with diagonal entries bounded above by 1. This yields the
following relaxation of (9)

opt§optsdp “:min
�©0

max
diagpXq®1,X©0

cp�q` 1

2
xMp�q,Xy. (12)

We introduce a Lagrange multiplier 1
2 P Rn`1 for the constraint diagpXq ® 13. Since optsdp is

convex, by strong duality, we have

optsdp “ min
�,©0

max
X©0

cp�q` 1

2

´
xMp�q,Xy`J1´xdiagpq,Xy

¯
, (13)

“ min
�,©0

cp�q` 1

2
J1 s.t. diagpq´Mp�q©0, (14)

3The factor of 1
2 is introduced for convenience

15

where the last equality follows from the facts that (i) when diagpq ´ Mp�q is not PSD,
xMp�q´diagpq,Xy would be unbounded when maximizing over PSD matrices X and (ii) when
diagpq´Mp�q©0, the maximum value of inner maximization over PSD matrices X is 0.

Projecting onto the PSD constraint diagpq´Mp�q ©0 directly is still expensive. Instead, we take
the following approach. For any non-negative p,�q, we generate a feasible p̂,�̂q as follows.

̂“
”
´�´

min

“
diagpq´Mp�q

‰
1

ı`
, �̂“� (15)

In other words, � remains unchanged with �̂ “ �. To obtain ̂, we first compute the minimum
eigenvalue �min of the matrix diagpq´Mp�q. If this is positive, p,�q are feasible, and ̂“,�̂“�.
However, if this is negative, we then add the negative portion of �´

min “r�mins´ to the diagonal matrix
to make diagp̂q©Mp�q, and subsequently project onto the non-negativity constraint. The subsequent
projection never decreases the value of ̂ and hence diagp̂q´Mp�q©0.

Plugging ̂,�̂ in the objective above, and removing the PSD constraint gives us the following final
formulation.

optsdp “optrelax “: min
�,©0

cp�q` 1

2

”
´�´

minpdiagpq´Mp�qq1
ı`J

1. (16)

Note that feasible ,� remain unchanged and hence the equality.

A.4 Relaxation comparison to Raghunathan et al. [52]

Our solver (Algorithm 1) uses the formulation described in (5), replicated above in (16). In this section,
we show that the above formulation is equivalent to the SDP formulation in [52] when we use quadratic
constraints to replace the ReLU constraints, as done in [52] and presented above in Appendix A.2. We
show this by showing equivalence with an intermediate SDP formulation below. From Appendix A.3,
the solution to this intermediate fomulation matches that of relaxation we optimize (16).

optsdp “:min
�©0

max
diagpXq§1,X©0

cp�q` 1

2
xMp�q,Xy. (17)

To mirror the block structure in Mp�q, we write X ©0 as follows.

X “
ˆ
X11 XJ

x
Xx Xxx

˙
,Xxx © 1

X11
XxX

J
x , (18)

where the last condition follows by Schur complements.

The objective then takes the form max
diagpXxxq®1,X11§1

gp�qJXx` 1
2xHp�q,Xxxy. Note that the feasible

set (overXxx,Xx) forX11 “1 contains the feasible sets for any smallerX11, by the Schur complement
condition above. Since X11 does not appear in the objective, we can set X11 “1 to obtain the following
equality.

optsdp “min
�©0

max
diagpXq®1,X11“1,X©0

cp�q`gp�qJXx` 1

2
xHp�q,Xxxy, (19)

where X11 is the first entry, and Xx,Xxx are the blocks as described in (18).

Prior SDP. Now we start with the SDP formulation in [52]. Recall that we have a QCQP that
represents the original verification problem with quadratic constraints on activations. The relaxation
in [52] involves intoducing a new matrix variable P as follows.

P “
ˆ
P r1s P rxs
P rxs P rxxs.

˙
(20)

The quadratic constraints are now written in terms of P where P rxs replaces the linear terms and
P rxxs replaces the quadratic terms. Raghunathan et al. [52] optimize this primal SDP formulation
to obtain optprior-sdp. By strong duality, optprior-sdp matches the optimum of the dual problem obtained

16

via the Lagrangian relaxation of the SDP. In terms of the quantities g,H that we defined in this work
((3) and (4)), we have

optprior-sdp “min
�©0

max
diagpP q®1,P r1s“1,P©0

Lprior-sdppP,�q (21)

“min
�©0

max
diagpP q®1,P r1s“1,P©0

cp�q`gp�qJP rxs` 1

2
xHp�q,P rxxsy. (22)

By redefining matrix P as X , from (19) and (21), we have optsdp “optprior-sdp. From (16), we have
optsdp “optrelax and hence proved that the optimal solution of our formulation matches that of prior
work [52] when using the same quadratic constraints as used in [52]. In other words, our reformulation
that allows for a subgradient based memory efficient solver does not introduce additional looseness
over the original formulation that uses a memory inefficient interior point solver.

A.5 Regularization of  via alternate dual formulation

In Section 5.3, we describe that it can be helpful to regularize 1:n towards 0. This is motivated by
the following proposition:
Proposition 3. The optimal value opt is upper-bounded by the alternate dual problem

opt§ min
�,©0

cp�q` 1

2
0loooomoooon

f̂p�,0q

s.t.
ˆ

0 ´gp�qJ

´gp�q ´Hp�q

˙
©0 (23)

Further, for any feasible solution �,0 for this dual problem, we can obtain a corresponding solution
to optrelax with �,0,1:n “0,“p0;1:nq, such that fp�,q“ f̂p�,0q.

Proof. We begin with the Lagrangian dual

opt§optlagAlt “:min
�©0

max
x

cp�q`xJgp�q` 1

2
xJHp�qx. (24)

Note that this is exactly the dual from Equation (4), without the bound constraints on x in the inner
maximization. In other words, whereas Equation (4) encodes the bound constraints into both the
Lagrangian and the inner maximization constraints, in Equation 24, the bound constraints are encoded
in the Lagrangian only.

The inner maximization can be solved in closed form, and is maximized forx“´Hp�q´1gp�q, yielding

optlagAlt “ min
�©0

cp�q´ 1

2
gp�qJHp�qgp�q. (25)

We can then reformulate using Schur complements:

optlagAlt “ min
�©0,0

cp�q` 1

2
0 s.t. 0 •´gp�qHp�q´1gp�q (26a)

“ min
�©0,0

cp�q` 1

2
0 s.t. M̂p�q©0 where (26b)

M̂p�q“
ˆ

0 ´gp�qJ

´gp�q ´Hp�q

˙
. (26c)

To see that this provides a corresponding solution to optrelax, we note that when M̂ © 0, the choice
“p0;1:nq,1:n “0 makes diagpq´Mp�q“M̂p�q, and so �´

min

“
diagpq´Mp�q

‰
“0. Thus, for

any solution �,0, we have fp�,q“ f̂p�,0q“cp�q` 1
20.

Remark. Proposition 3 indicates that regularizing 1:n towards 0 corresponds to solving the alternate
dual formulation optdualAlt, which does not use bound constraints for the inner maximization. In
this case, the role of 1:n and ̂ is slightly different: even in the case when 1:n is clamped to 0, the
bound-constrained formulation allows an efficient projection operator, which in turn provide efficient
any-time bounds.

17

A.6 Informal comparison to standard maximum eigenvalue formulation

Our derivation for Proposition 1 is similar to maximum eigenvalue formulations for dual SDPs – our
main emphasis is that when applied to neural networks, we can use autodiff and implicit matrix-vector
products to efficiently compute subgradients.

We also mention here a minor difference in derivations for convenience of readers. The common
derivation for these maximum eigenvalue formulations starts with an SDP primal under the assumption
that all feasible solutions for the matrix variable X have fixed trace. This trace assumption plays an
analogous role to our interval constraints in the QCQP (12). These interval constraints also imply
a trace constraint (since diagpXq §1 implies trpXq §N`1), but the interval constraints also allow
us to use  to smooth the optimization. Without , any positive eigenvalues of Mp�q cause large spikes
in the objective – simplifying the objective fp�,q in (5) reveals the term pN`1q�`

maxpMp�qq which
grows linearly with N . As expected, this term also appears in these other formulations [25, 42].

A.7 Proof of Proposition 2

Proposition 2. For any choice of � satisfying Hp�q“0, the optimal choice optp�q is given by

˚
0 “

nÿ

i“1

|gp�q|i ; ˚
1:n “|gp�q|

where we have divided “r0;1:ns into a leading scalar 0 and a vector 1:n.

Proof. We use the dual expression from Equation (14):

optsdp “ min
�,©0

cp�q` 1

2
J1 s.t. diagpq´Mp�q©0.

Notice that by splitting  into its leading component 0 (a scalar) and the subvector 1:n “r1,...,ns
(a vector of the same dimension as x), the constraint between ,� evaluates to

diagpq´Mp�q“
ˆ

0 gp�qJ
gp�q diagp1:nq

˙
©0

Using Schur complements, we can rewrite the PSD constraint as
´
diagpq´Mp�q

¯
©0ô0 •

ÿ

i•1

´1
i pgp�qq2i

Since the objective is monotonically increasing in 0, the optimal choice for 0 is the lower bound
above 0 •∞

i•1
´1
i pgp�qq2i . Given this choice, the objective in terms of 1:n becomes

ÿ

i•1

i`
pgp�qq2i

i

By the AM-GM inequality, the optimal choice for the remaining terms 1:n is then 1:n “|gp�q|.

B Experimental details

B.1 Verifying Adversarial Robustness: Training and Hyperparameter Details

Optimization details. We perform subgradient descent using the Adam [27] update rule for MLP
experiments, and RMSProp for CNN experiments. We use an initial learning rate of 1e´3, which
we anneal twice by 10. We use 15K optimization steps for all MLP experiments, 60K for CNN
experiments on MNIST, and 150K on CIFAR-10. All experiments run on a single P100 GPU.

18

Adaptive learning rates For MLP experiments, we use an adaptive learning rate for dual variables
associated with the constraint xi`1 d

`
xi`1 ´Lipxiq

˘
® 0, as mentioned in Section 5.3. In early

experiments for MLP-Adv, we observed very sharp curvature in the dual objective with respect to
these variables – the gradient has values on the order « 1e3 while the solution at convergence has
values on the order of «1e´2. Thus, for all MLP experiments, we decrease learning rates associated
with these variables by a 10ˆ factor. While SDP-FO produced meaningful bounds even without this
adjustment, we observed that this makes optimization significantly more stable for MLP experiments.
This adjustment was not necessary for CNN experiments.

Training Modes We conduct experiments on networks trained in three different modes. Nor
indicates the network was trained only on unperturbed examples, with the standard cross-entropy loss.
Adv networks use adversarial training [38]. Mix networks average the adversarial and normal losses,
with equal weights on each. We find that Mix training, while providing a significant improvement
in test-accuracy, renders the model less verifiable (across verification methods) than training only
with adversarial examples.

The suffix -4 in the network name (e.g. CNN-A-Mix-4) indicates networks trained with the large
perturbation radius ✏train “4.4{255. We find that using larger ✏train implicitly facilitates verification
at smaller ✏ (across verification methods), but is accompanied by a significant drop in clean accuracy.
For all other networks, we choose ✏train to match the evaluation ✏: i.e. generally ✏“ 0.1 on MNIST
and ✏“2.2{255 on CIFAR-10 (which slightly improves adversarial robustness relative to ✏“2{255
as reported in [22]).

Pre-trained networks For the networks MLP-LP, MLP-SDP, MLP-Adv, we use the trained
parameters from [52], and for the networks MLP-Nor, MLP-Adv-B we use the trained parameters
from [55].

Model Architectures Each model architecture is associated with a prefix for the network name.
Table 2 summarizes the CNN model architectures. The MLP models are taken directly from [52, 55] and
use fully-connected layers with ReLU activations. The number of neurons per layer is as follows: MLP-
Adv 784-200-100-50-10, MLP-LP/MLP-SDP 784-500-10, MLP-B/MLP-Nor 784-100-100-10.

Model CNN-A CNN-B

Architecture
CONV 16 4×4+2 CONV 32 5×5+2
CONV 32 4×4+1 CONV 128 4×4+2

FC 100 FC 250
FC 10 FC 10

Table 2: Architecture of CNN models used on MNIST and CIFAR-10. Each layer (except the last fully
connected layer) is followed by ReLU activations. CONV T W×H+S corresponds to a convolutional
layer with T filters of size W×H with stride of S in both dimensions. FC T corresponds to a fully
connected layer with T output neurons.

B.2 Verifying VAEs

Architecture Details We train a VAE on the MNIST dataset with the architecture detailed in Table 3.

Encoder Decoder
FC 512 FC 1568
FC 512 CONV-T 32 3×3+2
FC 512 CONV-T 3×3+1
FC 16

Table 3: The VAE consists of an encoder and a decoder, and the architecture details for both the encoder
and the decoder are provided here. CONV-T T W×H+S corresponds to a transpose convolutional layer
with T filters of size W×H with stride of S in both dimensions.

19

(a) Original and Perturbed Digit ‘9’ (b) Original and Perturbed Digit ‘0’

Figure 3: Two digits from the MNIST data set, and the corresponding images when perturbed with
Gaussian noise, whose squared `2-norm is equal to the threshold (⌧ “ 40.97). ⌧ corresponds to
threshold on the reconstruction error used in equation (7).

Optimization details. We perform subgradient descent using RMSProp with an initial learning
rate of 1e´3, which we anneal twice by 10. All experiments run on a single P100 GPU, and each
verification instance takes under 7 hours to run.

Computing bounds on the reconstruction loss based on interval bound propagation Interval
bound propagation lets us compute bounds on the activations of the decoder, given bounded l8
perturbations in the latent space of the VAE. Given a lower bound lb and an upper bound ub on the
output of the decoder, we can compute an upper bound on the reconstruction error ks´ ŝk2 over
all valid latent perturbations as kmaxt|ub´s|,|s´ lb|uk22, where max represents the element-wise
maximum between the two vectors. We visualize images perturbed by noise corresponding to the
threshold ⌧ on the reconstruction error in Section 6.2 in Figure 3.

C Additional results

C.1 Detailed comparison to off-the-shelf solver

Setup We isolate the impact of optimization by comparing performance to an off-the-shelf solver
with the same SDP relaxation. For this experiment, we use the MLP-Adv network from [51], selecting
quadratic constraints to attain an equivalent relaxation to [51]. We compare across 10 random
examples, using the target label with the highest loss under a PGD attack, i.e. the target label closest
to being misclassified. For each example, we measure �PGD, �SDP-IP, and �SDP-FO, where � and
� are as defined in Section 6.1. Since the interior point method used by MOSEK can solve SDPs
exactly for small-scale problems, this allows analyzing looseness incurred due to the relaxation vs.
optimization. In particular, �SDP-IP ´�PGD is the relaxation gap, plus any suboptimality for PGD,
while �SDP-IP ´�SDP-FO is the optimization gap due to inexactness in the SDP-FO dual solution.

Results We observe that SDP-FO converges to a near-optimal dual solution in all 10 examples. This
is shown in Figure 4. Quantitatively, the relaxation gap �SDP-IP ´�PGD has a mean of 0.80 (standard
deviation 0.22) over the 10 examples, while the optimization gap �SDP-IP ´�SDP-FO has a mean of
0.10 (standard deviation 0.07), roughly 8ˆ smaller. Thus, SDP-FO presents a significantly more
scalable approach, while sacrificing little in precision for this network.

Remark. While small-scale problems can be solved exactly with second-order interior point methods,
these approaches have poor asymptotic scaling factors. In particular, both the SDP primal and dual
problems involve matrix variables with number of elements quadratic in the number of network
activations N . Solving for the KKT stationarity conditions (e.g. via computing the Cholesky
decomposition) then requires memory OpN4q. At a high-level, SDP-FO uses a first-order method
to save a quadratic factor, and saves another quadratic factor through use of iterative algorithms to
avoid materializing the Mp�q matrix. SDP-FO achieves OpNkq memory usage, where k is the number
of Lanczos iterations, and in our experiments, we have found k!N suffices for Lanczos convergence.

20

�8 �4 0
�

x
(Adversarial lower bound)

�8

�4

0

�
x

(V
er

ifi
ed

up
pe

r
bo

un
d)

y = x (low
er bound

on verifi
catio

n obje
ctive

)

Verified bounds across 10 examples

SDP-FO

SDP-IP

(a) MNIST, MLP-Adv

Figure 4: Comparison to off-the-shelf solver. For 10 examples on MNIST, we plot the verified upper
bound on �x against the adversarial lower bound (using a single target label for each), comparing
SDP-FO to the optimal SDP bound found with SDP-IP (using MOSEK). In all cases, the SDP-FO
bound is very close to the SDP-IP bound, demonstrating that SDP-FO converges to a near-optimal dual
solution. Note that in many cases, the scatter points for SDP-FO and SDP-IP are directly overlapping
due to the small gap.

C.2 Investigation of relaxation tightness for MLP-Adv

Setup The discussion above in Appendix C.1 suggests that SDP-FO is a sufficiently reliable
optimizer so that the main remaining obstacle to tight verification is tight relaxations. In our main
experiments, we use simple interval arithmetic [39, 23] for bound propagation, to match the relaxation
in [51]. However, by using CROWN [70] for bound propagation, we can achieve a tighter relaxation.

Results Using CROWN bounds in place of interval arithmetic bounds improves the overall verified
accuracy from 83.0% to 91.2%. This closes most of the gap to the PGD upper bound of 93.4%. For
this model, while the SDP relaxation still yields meaningful bounds when provided very loose initial
bounds, the SDP relaxation still benefits significantly from tighter initial bounds. More broadly, this
suggests that SDP-FO provides a reliable optimizer, which combines naturally with development of
tighter SDP relaxations.

C.3 Verifying Adversarial Robustness: Additional Results

Table 4 provides additional results on verifying adversarial robustness for different perturbation radii
and training modes. Here, we consider perturbations and training-modes not included in Table 1. We
find that across settings, SDP-FO outperforms the LP-relaxation.

Training Accuracy Verified Accuracy
Dataset Epsilon Model Epsilon Nominal PGD SDP-FO (Ours) LP
MNIST ✏“0.3 CNN-A-Adv ✏train “0.3 98.6% 80.0% 43.4% 0.2%

CIFAR-10
✏“ 2

255

CNN-A-Adv ✏train “ 2.2
255 68.7% 53.8% 39.6% 5.8%

CNN-A-Adv-4 ✏train “ 4.4
255 56.4% 49.4% 40.0% 38.9%

✏“ 8
255

CNN-A-Adv ✏train “ 8.8
255 46.9% 30.6% 18.0% 3.8%

CNN-A-Mix ✏train “ 8.8
255 56.7% 26.4% 9.0% 0.1%

Table 4: Comparison of verified accuracy across various networks and perturbation radii. All SDP-FO
numbers computed on the first 100 test set examples, and numbers for LP on the first 1000 test set
examples. The perturbations and training-modes considered here differ from those in Table 1. For all
networks, SDP-FO outperforms the LP-relaxation baseline.

C.4 Comparison between Lanczos and exact eigendecomposition

All final numbers we report use the minimum eigenvalue from an exact eigendecomposition (we use
the eigh routine available in SciPy [62]). However, the exact decomposition is far too expensive to

21

use during optimization. On all networks we studied, Lanczos provides a reliable surrogate, while
using dramatically less computation. For example, for CNN-A-Mix, the average gap between the
exact and Lanczos dual bounds – the values of Equation (5) using the true �min compared to the
Lanczos approximation of �min) – is 0.14 with standard deviation 0.07. This gap is small compared
to the overall gap between the verified upper and adversarial lower bounds, which has mean 0.60 with
standard deviation 0.22. We observed similarly reliable Lanczos performance across models, for both
image classifier and VAE models in Sections 6.1 and 6.2.

At the same time, Lanczos is dramatically faster than the exact eigendecomposition: roughly 0.1
seconds (using 200 Lanczos iterations) compared to 5 minutes. For the VAE model, this gap is
even larger: roughly 0.2 seconds compared to 2 hours. For even larger models, it may be infeasible
to compute the exact eigendecomposition even once. Although unnecessary in our current work,
high-confidence approximation bounds for eigenvectors and associated eigenvalues from Lanczos
can be applied in such cases [31, 46].

22

	Introduction
	Related work
	Verification setup
	Lagrangian relaxation of QCQPs for verification
	Scalable and Efficient SDP-relaxation Solver
	Reformulation to a problem with only non-negativity constraints
	Efficient computation of subgradients
	Practical tricks for faster convergence
	Algorithm for verifying network specifications

	Experiments
	Verification of adversarial robustness
	Verifying variational auto-encoders (VAEs)

	Conclusion
	Omitted proofs
	Adversarial robustness as quadratic specification
	Linear and quadratic constraints for ReLU networks
	Formulation of bound constrained dual problem
	Relaxation comparison to raghunathan2018semidefinite
	Regularization of via alternate dual formulation
	Informal comparison to standard maximum eigenvalue formulation
	Proof of Proposition 2

	Experimental details
	Verifying Adversarial Robustness: Training and Hyperparameter Details
	Verifying VAEs

	Additional results
	Detailed comparison to off-the-shelf solver
	Investigation of relaxation tightness for MLP-Adv
	Verifying Adversarial Robustness: Additional Results
	Comparison between Lanczos and exact eigendecomposition

