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Abstract

Neural networks have been shown to perform incredibly well in classification tasks
over structured high-dimensional datasets. However, the learning dynamics of such
networks is still poorly understood. In this paper we study in detail the training
dynamics of a simple type of neural network: a single hidden layer trained to
perform a classification task. We show that in a suitable mean-field limit this case
maps to a single-node learning problem with a time-dependent dataset determined
self-consistently from the average nodes population. We specialize our theory to
the prototypical case of a linearly separable data and a linear hinge loss, for which
the dynamics can be explicitly solved in the infinite dataset limit. This allows us to
address in a simple setting several phenomena appearing in modern networks such
as slowing down of training dynamics, crossover between rich and lazy learning,
and overfitting. Finally, we assess the limitations of mean-field theory by studying
the case of large but finite number of nodes and of training samples.

1 Introduction

Despite their proven ability to tackle a large class of complex problems [!], neural networks are
still poorly understood from a theoretical point of view. While general theorems prove them to be
universal approximators [2], their ability to obtain generalizing solutions given a finite set of examples
remains largely unexplained. This behavior has been observed in multiple settings. The huge number
of parameters and the optimization algorithms employed to optimize them (gradient descent and its
variations) are thought to play key roles in it [3—5].

In consequence, a large research effort has been devoted in recent years to understanding the training
dynamics of neural networks with a very large number of nodes [6—8]. Much theoretical insight has
been gained in the training dynamics of linear [9, 10] and nonlinear networks for regression problems,
often with quadratic loss and in a teacher-student setting [11—14], highlighting the evolution of
correlations between data and network outputs. More generally, the input-output correlation and its
effect on the landscape has been used to show the effectiveness of gradient descent [15, 16]. Other
approaches have focused on infinitely wide networks to perform a mean-field analysis of the weights
dynamics [17-22], or study its neural tangent kernel (NTK, or “lazy”) limit [23-26].
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In this work, we investigate the learning dynamics for binary classification problems, by considering
one of the most common cost functions employed in this setting: the linear hinge loss. The idea
behind the hinge loss is that examples should contribute to the cost function if misclassified, but also
if classified with a certainty lower than a given threshold. In our case this cost is linear in the distance
from the threshold, and zero for examples classified above threshold, that we shall call satisfied
henceforth. This specific choice leads to an interesting consequence: the instantaneous gradient for
each node due to unsatisfied examples depends on the activation of the other nodes only through their
population, while that due to satisfied examples is just zero. Describing the learning dynamics in
the mean-field limit amounts to computing the effective example distribution for a given distribution
of parameters: each node then evolves “independently”” with a time-dependent dataset determined
self-consistently from the average nodes population.

Contribution. We provide an analytical theory for the dynamics of a single hidden layer neural
network trained for binary classification with linear hinge loss. In Sec. 2 we obtain the mean-field
theory equations for the training dynamics. Those equations are a generalizations of the ones obtained
for mean-square loss in [17-22]. In Sec. 3 we focus on linearly separable data with spherical
symmetry and present an explicit analytical solution of the dynamics of the nodes parameters. In
this setting we provide a detailed study of the cross-over between the lazy [23] and rich [27] learning
regimes (Sec. 3.2). Finally, we assess the limitations of mean-field theory by studying the case of
large but finite number of nodes and finite number of training samples (Sec. 3.3). The most important
new effect is overfitting, which we are able to describe by analyzing corrections to mean-field theory.
In Sec. 3.4 we show that introducing a small fraction of mislabeled examples induces a slowing down
of the dynamics and hastens the onset of the overfitting phase. Finally in Sec. 4 we present numerical
experiments on a realistic case, and show that the associated nodes dynamics in the first stage of
training is in good agreement with our results.

The merit of the model we focused on is that, thanks to its simplicity, several effects happening in
real networks can be studied analytically. Our analytical theory is derived using reasoning common
in theoretical physics, which we expect can be made rigorous following the lines of [17-22]. All our
results are tested throughout the paper by numerical simulations which confirm their validity.

Related works. The study of neural network dynamics with one (or few) nodes started in statistical
physics [ 1], but was mainly focused on the online setting. More recent works on separable data [28,

] observed the main trend of logarithmic alignment with the max margin vector under rather general
settings. Mean-field analysis of the training dynamics of very wide neural networks have mainly
focused on regression problems with mean-square losses [ | 7-23], whereas fewer works [30, 3 1] have
tackled the dynamics for classification tasks.! The task and architecture we focus on bears strong
similarities to the one proposed in des Combes et al. [30], but with fewer assumptions on the dataset
and initialization. With respect to [30], we show the relation with mean-field treatments [17-22] and
provide a full analysis of the dynamics, in particular the cross-over between rich and lazy learning.
Moreover, we discuss the limitations of mean-field theory, the source of overfitting and the change in
the dynamics due to mislabeling.

2 Mean-Field equation for the density of parameters

We consider a binary classification task for N points in d dimensions {x,, } C R with corresponding
labels y,, = £1. We focus on a hidden layer neural network consisting of M nodes with activation o.
The output of the network is therefore

f(x;8) = i%am (Wi'x), ()
M= vd

where 6; = {a;, w;} represents all the trainable parameters of the model: {w;}, the d-dimensional
weight vectors between input and each hidden node, and {a;}, the contributions of each node to
the output. All components are initialized before training from a Gaussian distribution with zero
mean and unit standard deviation. The 1/M in front of the sum leads to the so-called mean-field
normalization [|7]. In the large-M limit, this allows to do what is called a hydrodynamic treatment
in physics, a procedure that have been put on a rigorous basis in this context in [17-23] (here the 8;s
play the role of particle positions). One of the main assumptions of this procedure is that in the large

'In the NTK (or “lazy”) limit [23-25] general losses have been considered.



M -limit one can rewrite the output function in terms of the averaged nodes population (or density)

p(6):
f(x:0) = / d6p(6)ac (Vifdx> )

To optimize the parameters we minimize the loss function

1 N
L= N;Ayn,f(xn;e)) 3)

by gradient flow @ = —3*9L/86 ({(x,y) will be specified later). The dynamical equations for the
parameters {a;, w; } read:

— g My, f(x:0)) [wW;-x
Wi = -Bifwyﬂa»(w)
? anl af % \/E \/a7

where we have defined the effective learning rate 8 = 8* /M. These equations show that the coupling
between the different nodes has a mean-field form: it is through the function f, i.e. only through the
density p(0,t). Following standard techniques one can obtain a closed hydrodynamic-like equation
on p(,t) in the large M limit:

5L[p(0, 1)]

0u0(6.0) = 550 (p(6.0)7 "0

) ol0.0 = x0.) ®
where we have made explicit that the £ is a functional of the density p since it depends on f(x; ),
see eqs. (2, 3). The convergence of the dynamical process to the hydrodynamic limit is usually

assumed in the physics literature, proofs (that we expect can be generalized to our case) have been
worked out in [32, 33]. (see SM for details)

To be more concrete, in the following we consider the case of linear hinge loss, £(y, f) = R(h — yf)
(h being the size of the hinge, often taken as 1), and rectified linear unit (ReLU) activation function:
o(z) = R(x) = max(0, z). With this choice
0L[p(0,1)]
6p(6,1)

- u(x,y;t>e(w-x>yw'x> , ®)
< \/E X,y

¢ being the Heaviside step function. The notation u(x, y;t) = I;,_, r(x;6(¢))>0 denotes the indicator
function of the unsatisfied examples, i.e. those (x,y) for which the loss is positive, and (-), , denotes
the average over examples and classes (y = =£1 for binary classification). The dynamical equations
on the node parameters simplify too:

. B
ai(t) = —=wi(u(x,y:1)0 (w; - x)yx),
Vi (7

wi(t) = \%ai (u(x,y; 1)0 (Wi - x) yx), -

Remarkably, the equation on the w; is very similar to the one induced by the Hebb rule in biological
neural networks.

3 Analysis of a linearly separable case

We now focus on a linearly separable model, where the dynamics can be solved explicitly. We
consider a reference unit vector w* in input space and examples distributed according to a spherical
probability distribution P(x). We label each example based on the sign of its scalar product with w*,
leading to a distribution for y = +1: P(x,y) = P(x)0(y(Ww* - x)).



In order to be able to explore different training regimes, we adopt a rescaled loss function, similar to
the one proposed in Chizat et al. [23]:

£0) = i R = ayn (£(x:0) = f(x,:60) ) |. ®)

where « is the rescaling parameter and 0 are the parameters at the beginning of training. Subtracting
the initial output of the network ensures that no bias is introduced by the specific finite choice of
parameters at initialization, while having no influence in the hydrodynamic limit since the output is 0
by construction.

3.1 Explicit solution for an infinite training set

We first consider the limit of infinite number of examples, and later discuss the effects induced by a
finite training set.
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Figure 1: Training of a network with M = 400, N = 10°, d = 100, o = 1.0, h = 1, 8* = 103,
for tmax = 2 - 10 timesteps (until all examples are classified) with final generalization error ~ 0.01
evaluated on 10° examples. Data and initial parameters are taken from a normal distribution of zero

mean and width 1 per dimension. a, b: Evolution of ten of the a;(¢)s in (a) and of the wy (t)s in (b)
during training (circles) compared to our theoretical prediction (lines) for the same initial values. ¢:
Evolution of y(t) obtained through numerical integration of eq. 13 for the parameters of this example.
The dashed lines represent the linear approximation near ¢ = 0 and the logarithmic slope log(t) /4 for
large ~y (shifted with a fitted constant). d: Projection of examples on the vector w* as a function of
the time ¢s,¢ when they are first satisfied. The red line is the estimate of our theory, the dashed lines

represent our estimate for a standard deviation due to the finite number of nodes M (see Sec. 3.3).

The explicit solution of the training dynamics is obtained making use of the cylindrical symmetry
around w*, which implies that the average in the equations of motion (7) does not depend on w, i.e.

(u(x,4:6)0 (w - x) yx), , = I(H)w". ©)

where I(t) = (u(x,y;t)0 (w-x)yx - v“v*)x’y. By plugging the identity (9) into eqgs. (6, 7) one finds
that the hydrodynamic equation (5) can be solved by the method of the characteristic, where p(0,t)
is obtained by transporting the initial condition through the equations (7). By decomposing the vector



w in its parallel and perpendicular components with respect to w*, i.e. w = wllWw* 4+ w , and using
the solution p(8,t), one finds that the parameters 0 at time ¢ are distributed in law as:

at) L a(0) cosh((t)) + wl (0) sinh(+(1) s g
wll(t) Ll (0) cosh(v(t)) + a(0) sinh(y(t)) V() = v /0 I(t)dt.  (10)
w (1) L w1 (0)

where a(0), w!l(0), w (0) are given by the initial condition distributions: since all initial components

of w were taken as i.i.d. Gaussian, so is w/l (0) and every component of w | (0) for any choice of basis.
Using the distribution of @ at time ¢, one can then compute (u(x,y;t)0 (w-x)yx-w*)  and

hence obtain a self-consistent equation on I(¢), which completes the mean-field solution. Similarly,
one can obtain explicitly the output function and the indicator function which acquire a simple form:

sinh(27(t)) W x

oy A (11)
2h\/d -
u(x,y;t) =0 (ozsmh(Qv(t)) —yw 'x> (12)

where we have used that f(x;0) = 0 at¢ = 0. As expected, both functions have cylindrical symmetry
around w*. The analytical derivation of these results and the following ones is presented in the SM.
Since by definition I(¢) > 0 the function ~(¢) is monotonously increasing and starts from zero at
t = 0. To be more specific, we consider two cases: normally distributed data with unit variance in each
dimension, and uniform data on the d-dimensional unit sphere. The corresponding self-consistent
equations on () read respectively:

o BIN(0) ~exn | — 2h%d

0= (o |- i) “
o _ BI5(0) 250 2 o 12 =
A(t) = ovd (1 — max (0,1 — 4h*d/(a” sinh” (27(t)))) ) , (14)

where IV (0) = 1/v/2r and I5(0) = T (4£2) /(T (42) dy/7). Both equations imply that y(t) ~ ¢
for small ¢ and v(t) ~ Int for large ¢.

We have now gained a full analytical description of the training dynamics: the node parameters evolve
in time following eqgs. (10). Note that their trajectory is independent of the training parameters and
the initial distribution, which only affect the time dependence, i.e. the “clock” v(t). The change of
the output function is given by eq. (11), where one sees that only the amplitude of f(x, ) varies with
time and is governed by 7(¢). The amplitude increases monotonically so that more examples can be
classified above the margin h at later times; the more examples are classified the slower becomes the
increase of ~y(¢) and hence the dynamics.

Our theoretical prediction can be directly compared with a simple numerical experiment. Fig. |

shows the training of a network with M = 400 on Gaussian input data. The top panels (a and b)

compare the analytical evolution of the network parameters a; and wy obtained from eqs. (10) to

the numerical one. In ¢ we plot v(¢) (computed numerically) showing that it grows linearly in the
beginning and logarithmically at longer times, as expected from theory. In d we show a scatter
plot illustrating that the time when an example is satisfied is proportional to its projection on the
reference vector, following on average our estimate based on eq. (12). Overall, the agreement with
the analytical solution is very good. The spread around the analytical solution in panel d is a finite- M
effect, that we will analyze in Sec. 3.3. The departure from the analytical result (10) happens at large
time when the finiteness of the training set starts to matter (the larger is the training set the larger is
this time). In fact, for any finite number of examples the empirical average over unsatisfied examples
deviates from its population average and the dynamics is modified eventually, and ultimately stops
when the whole training set is classified beyond margin. We study this regime in Sec. 3.3.

3.2 Lazy learning and rich learning regimes

The presence of the factor « in the loss function (8) allows us to explore explicitly the crossover
between different learning regimes, in particular the “lazy learning” regime corresponding to
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Figure 2: Evolution of a; and wy for a network with M = 400, N = 104, d = 100, h = 1 in two
different regimes. Data and initial parameters are taken from a normal distribution of zero mean
and width 1 per dimension. a: First and last step of a case with o = 10% (learning rate 5* = 10%,
training set is fitted by ¢ = 3000, final generalization error ~ 0.04). The arrows indicate the analytical
derivative at ¢ = 0, showing that the evolution is approximately linear. b: Initial steps (time indicated
in legend) of a case with o = 1072 (learning rate 3* = 1, training set is fitted by t = 300, final
generalization error ~ 0.02). The gray lines follow the evolution of each node.

a — 00 [23]. The dynamical equations can be studied in this limit by introducing 7(t) = avy(¢).
For concreteness, let us focus on the case of normally distributed data. Taking the o« — oo limit of
eq. (13) one finds the equation for 7(t):

Lo BIN(O) 2h*d
’y(t) — \/g 1 exp 47(15)2 s (15)
As for the evolution of the parameters and the output function, we obtain:
aw®) a0 = w0 o () .
-8 L afee) = TZwx (16)
wl(t) = wl(0) = a(0) > +0()

The equations above provide an explicit solution of lazy learning dynamics and illustrate its main
features: the 8; evolves very little and along a fixed direction, in this case given by (wl| (0),a;(0),0).
Despite the small changes in the nodes parameters, of the order of 1/, the network does learn since
classification is performed through « f (x; @) which has an order one change even for & — co. In this
regime, the correlation between a and w!l only increases slightly, but this is enough for classification,
since an infinite amount of displacements in the right direction is sufficient to solve the problem.
On the contrary, when « is of order one or smaller, the dynamics is in the so-called “rich learning”
regime [27]. At the beginning of learning, the initial evolution of the 0;s follows the same linear
trajectories of the lazy-learning regime. However, at later stages, the trajectories are no more linear
and the norm of the weights increases exponentially in ~y(t), stopping only at very large values of v
when all nodes are almost aligned with w* (for small ). Note that, as observed in Geiger et al. [34],
with the standard normalization 1/ v/M it would be the parameter v/ M governing the crossover
between the two regimes.

We compare the two dynamical evolutions in Fig. 2. The left panel (a) shows the displacement
of parameters between initialization and full classification (zero training loss) for a network with
a = 103. As expected, the displacement is small and linear. A very different evolution takes place for
a = 1073 in the right (b) panel. The trajectories are non-linear, and all nodes approach large values
close to the a = w!l line at the end of the training. Correspondingly, the initially isotropic Gaussian



distribution evolves towards one with covariance matrix cosh(2+) on the diagonal and sinh(2+) off
diagonal.

Note that for all values of «, even very large ones, the trajectories of the ;s are identical and given
by egs. (10). What differs is the “clock” ~y(¢), in particular for large « the system remains for a much
longer time in the lazy regime. This is true as long as the number of training samples is infinite.
Instead, if the number of data is finite, the dynamics stops once the whole training set is fitted: for
large « this happens before the system is able to leave the lazy regime, whereas for small « a full
non-linear (rich) evolution takes place. Hence, the finiteness of the training set leads to very distinct
dynamics and profoundly different “trained” models (having both fitted the training dataset) with
possibly different generalization properties [25, 34, 35].

3.3 Beyond mean-field theory

The solution we presented in the previous sections holds in the limit of an infinite number of nodes
and of training data. Here we study the corrections to this asymptotic limit, and discuss the new
phenomena that they bring about.
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Figure 3: a: Training (blue) and generalization (orange) error (fraction of misclassified examples),
during training with same parameters as Fig. 1. b: Components of (u(x,y; )0 (w - x) yx), , along
w* (parallel) and perpendicular to it, during training. The dots are numerical results for the same
training show in a. The lines represent our analytical predictions I(¢) and .J(t)/v/N for the same
parameters.

Finite number of nodes. In the large M limit the a; and w; are Gaussian i.i.d. variables. By the
central limit theorem, the function (2) concentrates around its average, and has negligible fluctuations
of the order of 1/+/M when M — co. If M is large but finite (keeping an infinite training set), these
fluctuations of f(x, @) are responsible for the leading corrections to mean-field theory. In the SM we
compute explicitly the variance of the output function, lim;_, o, M Var[f(z,0)] = 0]20 (t), with

J}%(t) = ((5cosh?(27(t)) — 2cosh(2y(t)) — 3)(W* - x)? + 2cosh(2y(1)) |x|*)/(4d)  (17)

The main effect of this correction is to induce a spread in the dynamics, e.g. of the data with same
satisfaction time. This phenomenon is shown in Fig. 1(d) for M = 400, where we compare the
numerical spread to an estimate of the values of w* - x such that the hinge is equal to the average
plus or minus one standard deviation (details on this estimate in the SM).

Finite number of data. We now consider a finite but large number of examples N (keep-
ing infinite the number of nodes). In the large N limit the empirical average over the data in
(u(x,y;t)0 (W - x) yx), , converges to its mean /(¢)w*. The main effect of considering a finite N
is that the empirical average fluctuates around this value. Using the central limit theorem we show in
the SM that the leading correction to the asymptotic result reads:

(u(x,y; )0 (W - x)yx), , = I(H)W" + M(SWL +O(1/N) (18)

VN

where dw | is a unitary random vector perpendicular to w* and J(t) = \/(d — 1) fU(¢)/2. The term
FU@) = (u(x,y;t)), ,» the fraction of unsatisfied examples at time ¢, controls the strength of the



correction, as expected since only unsatisfied data contribute to the empirical average (-)x . The
vector on the RHS of (18) is the one towards which all the w; align, see egs. (10). Therefore, the main
effect of the correction (18) is for the nodes parameters to align along a direction which is slightly
different from w* and dependent on the training set. This naturally induces different accuracies
between the training and the test sets, i.e. it leads to overfitting.” Note that the strength of the signal,
I(t), is roughly of the order of the fraction of unsatisfied data fU (t), whereas the noise due to the
finite training set is proportional to the square root of it. The larger the time, the smaller fY () is,
hence the stronger are the fluctuations with respect to the signal. In Fig. 3(b) we compute numerically
the components of (u(x, y;t)0 (w - x) yx), , parallel and perpendicular to W*, and compare them

to I(t) and J(t)/v/N. Remarkably, we find a very good agreement even for times when J(t) /v/N is
no longer a small correction. This suggest that an estimate of the time ¢, when overfitting takes place
is given by I(t,) = J(t,)/v/N. We test this conjecture in panel (a): indeed the two contributions are
of the same order of magnitude for ¢, ~ 50, which is around the time when training and validation
errors diverge.

3.4 Mislabeling

We now briefly address the effects due to noise in the labels, see the SM for detailed results and
numerical experiments. Mislabeling is introduced by flipping the label of a small fraction § of the
examples. The main effect is to decrease the strength of the signal, I(t), since the mislabeled data
lead to an opposite contribution in (9) with respect to the correctly labeled ones. In the asymptotic
limit of infinite NV and M, the reduction of the signal slows down the dynamics, which stops when
the number of unsatisfied correct examples equals the one of mislabeled ones. For large but finite
N, the noise .J(t)/v/N is enhanced with respect to the signal because its strength is related to the
fraction of all unsatisfied examples, and not just the correctly labeled ones. Hence, overfitting is
stronger and takes place earlier with respect to the case analyzed before.

4 Discussion and Experiment
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Figure 4: a: Training (blue) and generalization (orange) error for a network with M = 400, trained
on N = 10* MNIST data (d = 784), with parity labels. Inputs are only rescaled by a factor 1/255,
no further processing is done. The training is performed with * = 1000, & = 1, h = 1 and the

validation error on 10* examples is ~ 0.03 after 2000 evolution steps. The shaded area represents the
I

)

area where our theory applies. b: Evolution of a; and w
(see color bar) represents the step of evolution.

in the first 30 steps of training. The color

We have provided an analytical theory for the dynamics of a single hidden layer neural network
trained for binary classification with linear hinge loss. We have found two dynamical regimes: a first
one, correctly accounted for by mean-field theory, in which every node has its own dynamics with
a time-dependent dataset determined self-consistently from the average nodes population. During
this evolution the nodes parameters align with the direction of the reference classification vector.
In the second regime, which is not accounted for by mean-field theory, the noise due to the finite

The two accuracies instead coincide for N — oo, since all possible data are seen during the training and no
overfitting is present in the asymptotic limit.



training set becomes important and overfitting takes place. The merit of the model we focused on
is that, thanks to its simplicity, several effects happening in real networks can be studied in detail
analytically. Several works have shown distinct dynamical regimes in the training dynamics: first
the network learns coarse grained properties, later on it captures the finer structure, and eventually
it overfits [8, 13, 36, 37]. Given the simplicity of the dataset considered, we expect our model to
describe the first regime but not the second one, which would need a more complex model of data.

In particular, the effective one-dimensional nature of the w evolution is due to the cylindrical
symmetry of the data, resulting in a direction-independent expression for the integral in eq.(9). In a
more general setting, we can still expect to recover a similar behavior at the beginning of training,
where the difference between the two classes averages dominates most of the dynamics. After that,
the integral will depend more and more on the direction of w, leading to specialization and a departure
from our simple model. To test this conjecture, we train our network to classify the parity of MNIST
handwritten digits [38]. To establish a relationship with our case, we define w* as the direction of the

difference between the averages of the two parity sets. We can now define wll for each node, and

study the dynamics of a;, wy. We report in Fig. 4 the evolution of these parameters in the early steps

of training, in which the training loss decreases of 65% of its initial value (Fig. 4a). The evolution of
the parameters (Fig. 4b) bears a strong resemblance with our findings, see the remarkable similarity
with Fig. 2(b). A similar experiment for even richer datasets (CIFAR10 and ImageNet) is presented
in the SM.

Broader Impact

Given the purely theoretical scope of this paper, it does not seem to present any foreseeable societal
consequence.
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