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1 Explicit calculations

1.1 Derivation of the hydrodynamics mean-field equation

In order to simplify the derivation in the following we use a compact notation for the function f :

f(x;θ) =
1

M

M∑
i=1

σ(x;θi) (1)

where σ(x;θi) ≡ aiσ
(

wi·x√
d

)
, and for the gradient flow equations on the parameters of the network:

θ̇i = − β
N

N∑
n=1

∂`(yn, f(xn;θ))

∂f

∂σ(xn;θi)

∂θi
. (2)

The strategy to derive hydrodynamics mean-field equations developed in physics consists in using the
following equation, valid for M →∞ and any test function H:

1

M

M∑
i=1

H(θi(t)) =

∫
dθH(θ)ρ(θ, t) (3)

and then in differentiating RHS and LHS with respect to time, see e.g. [1]. The important point here
(and later) is that the density ρ(θ, t), which depends on the random initial conditions, concentrates in
the large M limit due to the nature of the interaction between parameters, which is only through the
function f , and the type of distributions considered for the initial conditions.1. The derivative of the
RHS leads to ∫

dθH(θ)∂tρ(θ, t) (4)

whereas the derivative of the LHS reads:

− β

M

M∑
i=1

∇θH(θi(t))
1

N

N∑
n=1

∂`(yn, f(xn;θ))

∂f
∇θσ(xn;θi(t)). (5)

1These two features lead to mean-field interactions in which one parameter interacts weakly with all the
others. In physical systems a particle instead interacts only with a finite number of other particles, hence
the density field remains highly fluctuating. Only performing coarse-graining in space and time one can get
hydrodynamic equations, see [2] for a rigorous presentation and [3] for a more general one.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



We now use the identity:

δL[ρ(θ, t)]

δρ(θ, t)
=

1

N

N∑
n=1

∂`(yn, f(xn;θ))

∂f
σ(xn;θ(t)) (6)

to rewrite the LHS as

− β

M

M∑
i=1

∇θH(θi(t))∇θi(t)
δL[ρ(θ, t)]

δρ(θ, t)

∣∣∣∣
θ=θi(t)

. (7)

For M →∞ this expression can be rewritten as

−β
∫
dθρ(θ, t)∇θH(θ)∇θ

δL[ρ(θ, t)]

δρ(θ, t)
=

∫
dθH(θ)

[
β∇θ

(
ρ(θ, t)∇θ

δL[ρ(θ, t)]

δρ(θ, t)

)]
(8)

where we have used an integration by part to obtain the last identity. Since the expressions in (4) and
(8) are equal for any test function H , we obtain that the density ρ(θ, t) verifies the equation written
in the main text:

∂tρ(θ, t) = β∇θ

(
ρ(θ, t)∇θ

δL[ρ(θ, t)]

δρ(θ, t)

)
, ρ(θ, 0) = N (0, I). (9)

The initial condition for ρ(θ, t) is a Gaussian distribution since the parameters at initialization are
i.i.d. Gaussian variables.

1.2 Calculation of I(t)

We want to compute the integral of Eq. (9) of the main text:

〈u(x, y; t)θ (w · x) y x〉x,y =

∫ ∑
y=±1

u(x, y; t)θ (w · x) y xP (x, y)dx (10)

for the task and distributions mentioned in the text.

Let us start by observing that since P (x, y) has spherical symmetry and u(x, y; t) has cylindrical
symmetry around ŵ∗ and is symmetric under inversion along ŵ∗ (because of the label symmetry
of the problem), the whole integrand without the θ (w · x) is symmetric under inversion operation.
Indeed, P (x, y) = P (−x,−y), u(x, y; t) = u(−x,−y; t) and yx = sign(ŵ∗ · x)x = sign(ŵ∗ ·
(−x))(−x). The effect of the θ (w · x) term is to select one particular half-space over which the
integral is done. However, because of the symmetric under inversion the integral on any half space is
equivalent, hence the result is independent of w. Moreover for any direction orthogonal to ŵ∗, the
integrand is odd under inversion of that component, and is therefore 0. The only component different
from zero is then the one along ŵ∗, dubbed I(t) in the text. Let us define ŵ∗ · x = x‖ and notice
that that yx‖ = sign(x‖)x‖ =

∣∣x‖∣∣ so that we can for simplicity consider the integral on the positive
values

I(t) =

∫
x‖>0

∑
y=±1

u(x, y; t)x‖P (x, y)dx. (11)

We will now consider the specific expression found in the main text u(x, y; t) = θ(H − yx‖), and
for the noiseless case P (x, y) = P (x)θ(yx‖).

In the case of normally distributed data, all orthogonal directions integrate to 1 and we are left with a
simple Gaussian integral

I(t) =

∫ H

0

x‖N0,1(x‖)dx‖ =
1√
2π

(
1− e−H

2/2
)
. (12)

With H = 2h
√
d

α sinh(2γ(t)) and γ̇(t) = β

α
√
d
I(t), we recover Eq. (13) from the text.

For the case of data uniformly distributed on the d− 1-dimensional unit sphere in d dimensions, we
divide by the sphere surface Sd−1 and integrate on the d − 1 angular coordinates. Because of the
symmetry, we perform d− 2 angular integrals and obtain the surface of the d− 2-dimensional sphere.
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The u(x, y; t) = θ(H − yx‖) limit will set the extreme of integration to arccos(H) for H < 1 and
not affect the integral otherwise. Considering for simplicity directly the H < 1 limit we obtain:

I(t) =
Sd−2
Sd−1

∫ π/2

arccosH

cos(φ) sind−2(φ)dφ =
Sd−2

(d− 1)Sd−1

[
1− (sin arccos(H))

d−1
]
. (13)

Using the equation Sn−1 = nπn/2/Γ(n/2 + 1) for the sphere surface and properly accounting for
the different H cases we recover Eq. (14) from the text.

1.3 Calculation of finite size quantities

Finite number of nodes. To estimate the fluctuations due to a finite number of nodes, we will
have to estimate the width of the output distribution for a given set of parameters. Let us explicit
from equations (10) of the main text for the parameters evolution that, starting from i.i.d. Gaussian
initialization, the distribution of (a,w‖) is

ρ(a(t), w‖(t)) = N
(

0,

(
cosh(2γ(t)) sinh(2γ(t))
sinh(2γ(t)) cosh(2γ(t))

))
, (14)

while all perpendicular components remain i.i.d.

The average output f(x;θ) for an example x can then be simply computed from its definition as∫ ∞
−∞

da(t)

∫ ∞
0

dw‖(t)
a(t)w‖(t)x‖√

d
ρ(a(t), w‖(t)) =

x‖

2
√
d

〈
a(t)w‖(t)

〉
=

sinh(2γ(t))x‖

2
√
d

(15)

(all orthogonal integrals being equal to 1), having defined again ŵ∗ · x = x‖. This proves Eq. (11) of
the main text.

In order to estimate the fluctuations we should however compute the integral (we drop the t dependence
for simplicity) 〈

f(x;θ)2
〉
θ

=
1

d

∫
da dw a2(w · x)2 θ(w · x)ρ(a,w). (16)

Since the integral is 1 for any direction perpendicular to x, this is more easily done considering
the distribution of wx = w · x̂ (with x̂ = x/ |x|). Defining ŵ+ as (x − x‖ŵ∗)/

∣∣x− x‖ŵ∗∣∣, i.e.
the versor in the direction of x̂ perpendicular to ŵ∗, we can write x̂ = cos θŵ∗ + sin θŵ+ and
calling w+ = w · ŵ+ (being a component perpendicular to ŵ∗ and therefore i.i.d) we can explicit
wx = w‖ cos θ + w+ sin θ.

We can thus write the distribution for this component as

ρ(a(t), wx(t)) = N
(

0,

(
cosh(2γ(t)) sinh(2γ(t)) cos θ

sinh(2γ(t)) cos θ cosh(2γ(t)) cos2 θ + sin2 θ

))
, (17)

and the integral as just

|x|2

d

∫
da dwx a2w2

x θ(wx)ρ(a,wx) =

=
|x|2

2d

(
cosh2(2γ(t)) cos2 θ + cosh(2γ(t)) sin2 θ + 2 sinh2(2γ(t)) cos2 θ

)
.

(18)

The total spread due to this is thus

σ2
f (t) ≡

〈
f(x;θ)2

〉
θ
− 〈f(x;θ)〉2θ =

=
|x|2

4d

[(
(5 cosh2(2γ(t))− 2 cosh(2γ(t))− 3

)
cos2 θ + 2 cosh(2γ(t))

]
,

(19)

which is equivalent to Eq. (17) in the main text.

To estimate the error in Fig. 1d of the main text, we ask what are the values of x‖ = x cos θ such
that the average output plus or minus a standard deviation, divided by

√
M , would be equal to

the threshold. Since the standard deviation involves |x|2, we estimate its average value for points
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with a given x‖, i.e.
〈
|x|2 |x‖

〉
= x‖

2
+ d − 1. The variance is thus the sum of two terms: σ2

‖ =(
(5 cosh2(2γ(t))− 3

)
/(4dM) multiplying x‖

2
and a constant σ2

0 = (d − 1) cosh(2γ(t))/(2dM).

Requesting that h/α = sinh(2γ(t))x‖±/(2
√
d)±

√
σ2
‖x
‖2
± + σ2

0 we find:

x‖± =
1

sinh2(2γ(t))/(4d)− σ2
‖

h sinh(2γ(t))

2α
√
d

±

√
hσ2
‖

α2
+
σ2
0 sinh2(2γ(t))

4d
− σ2

0σ
2
‖

 . (20)

These values are the dashed lines reported in Fig.1d of the main text.

Figure 1: Evolution of |w⊥(t)| for the same evolution as Fig. 1 of the main text.

Finite number of data. To estimate the fluctuations due to finite number of data in
〈u(x, y; t)θ (w · x) y x〉x,y in the direction perpendicular to ŵ∗, we use the central limit theorem,

which gives fluctuations of the order
〈

(u(x, y; t)θ (w · x) y x)
2
〉
x,y

/N . We refer to section 1.2 for

the general symmetry considerations about that integral: in the case of normally distributed data, and
if all data are not satisfied, i.e. u(x, y; t) = 1 inside the empirical average over data, then for any
given direction orthogonal to ŵ∗ one obtains 1/2N . Since there are d− 1 such direction, this means
that that considering finite number of data leads to a fluctuating component orthogonal to ŵ∗ of norm
of the order of

√
(d− 1)/(2N).

Let us consider now the case in which only NU = fUN examples remain to satisfy, then the number
of terms in the empirical sum is NU instead of N . In consequence, we obtain the same results than
previously for the variance, but with an extra-factor fU in front, thus leading to an error of order√

(d− 1)fU/(2N) ≡ J(t)/
√
N .

Estimating fU (t) for normally distributed data, and with the specific expression u(x, y; t) = θ(H −
yx‖) is then a simple Gaussian integral:

fU (t) ≡ 〈u(x, y; t)〉x,y =

∫ H

−H
N0,1(x‖)dx‖ = erf

(
H√

2

)
. (21)

Computing this for normally distributed data leads to:

J(t) =

√√√√ (d− 1)

2
erf

(
h
√

2d

α sinh(2γ(t))

)
, (22)

as was used to compute the estimates in Fig.3b in the main text.
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Figure 2: a: Training (blue) and generalization (orange) error (fraction of misclassified examples),
during a training with a small fraction δ = 0.01 of mislabeled examples. Training parameters:
M = 400, N = 105, d = 100, α = 1.0, β∗ = 103, timesteps tmax = 104, validation on 105

examples. b: Components of 〈u(x, y; t)θ (w · x) y x〉x,y along ŵ∗ (parallel) and perpendicular to it,
during training. The dots are numerical results for the same training show in a. The lines represent our
analytical predictions Iδ(t) and Jδ(t) for the same parameters (Eqs. (23) and (24)). c, d: Evolution
of a sample (10) of the ai(t) (c) and w‖i (t) (d) during training (circles) compared to our theoretical
prediction (lines) for the noiseless case with the same initial values and parameters. e: Evolution of
|w⊥(t)| for the same sample of nodes.

1.4 Calculations for the mislabeling case

We now analyze the case, qualitatively described in the text, where a small fraction δ of the examples
has been mislabeled as belonging to the opposite class.

Looking back at Eq. (11) and with u(x, y; t) = θ(H − yx‖), it is clear that with an infinite number of
examples the mislabeled ones are simply never classified, so that the 1−δ fraction of correct examples
gives rise to a normal dynamics, while the δ fraction of opposite ones contributes an opposite term of
constant magnitude. The effective integrals entering the dynamics are thus in this case

Iδ(t) = (1− δ)I(t)− δI(0), (23)
and would drive the dynamics until the two contributions are equal.

When considering a finite number of data, as discussed in Sec. 1.3, the number of unsatisfied examples
with the correct label amounts to (1− δ)fU (t), but since all the mislabeled examples are unsatisfied
the total number will be incremented by δ leading to fUδ (t) = (1− δ)fU (t) + δ.

Again, evaluating this for the normally distributed case we find:

Jδ(t) =

√√√√ (d− 1)

2

[
(1− δ)erf

( √
2d

α sinh(2γ(t))

)
+ δ

]
. (24)

2 Further numerical experiments

2.1 Evolution of w⊥

We report in Fig. 1 the perpendicular component of the weights for a selection of nodes for the same
example shown in Fig. 1 of the main text. As expected, the perpendicular component does not evolve
for most of the training, and only increases moderately when we move into the overfitting regime.
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2.2 Quantities for the mislabeling case

We report here in Fig. 2 some of the same quantities shown in Fig. 1 and Fig. 3 of the main text, for a
case where a small fraction δ = 0.01 of the examples are mislabeled. As discussed in the main text,
we can see how the dynamics still follows our estimate initially, then diverges into a much stronger
overfitting state. Panel b shows a comparison of numerical quantities to our estimates of Sec. 1.4: our
estimate are still accurate up to the overfitting regime, after which the dynamics changes qualitatively.

2.3 Experiments on CIFAR-10 and ImageNet

Figure 3: Training and validation error (left) and parameter evolution in the (a,w‖) plane for the
early stages of evolution (right) for data from CIFAR-10 (top) and ImageNet (bottom). The dashed
lines on the left indicate the cutoff steps considered in the corresponding plots on the right.

We present here in Fig. 3 the results of a brief training of our architecture on data from CIFAR-10 [4]
and ImageNet [5].

For CIFAR-10, we consider the input 32× 32 color images as vectors of size 3072, taking a subset of
104 images for both training and validation. We rescale each dimension by a factor 1/255 and remove
the average over the training set, to avoid a common evolution of all classes. Since the considered
hinge loss requires 2 classes, we divide the original 10 classes in 2 random groups (based on parity of
the numeric label). We can then take the reference vector ŵ∗ as the difference between the averages
over the two classes. We then proceed to train a network with M = 500 hidden nodes until the whole
training set is learnt (top left in Fig. 3), obtaining an unremarkable final validation error of ∼ 28%, as
expected for such a simple architecture on a rather challenging task. If we however focus on the early
evolution of the weights a and w‖ (top right in Fig. 3), we can see how up to step ∼ 200 the shape of
the evolution is still similar to what was predicted by our simple model (see Fig. 2 in the main text).
After this, the richer shape of the dataset leads to a more complex evolution, not shown here.

In the case of ImageNet data, since we require a fixed-size input we consider a fixed resolution
32× 32 version of the images, leading to an input size equal to CIFAR-10. The same rescaling by
a factor 1/255 and removing of the average over the training set is also applied. However, even so
simplified, we verified that a random binary division of all 1000 ImageNet classes would be an almost
impossible task for our simple architecture, leading to validation errors no better than random. We
suspect this to be due to the rich variety of input and great similarity of many classes (e.g. different
dog races). To circumvent this problem, we exploit the fact that the first 398 classes are from the
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animal kingdom (i.e. possibly more homogeneous) and verify that a split between the first/last 500
classes represent a slightly more feasible task. As in the other cases, we take ŵ∗ as the difference
between the averages over the two classes. We further push the limits of our network by considering
a large M = 1000 and a training set of 105 images, using minibatches of 104 examples (validation is
performed on 104 images). Even with all these simplification, the validation error still barely reaches
40% before overfitting, as shown in the bottom left of Fig. 3. Despite the poor performance (as
expected of this problem), we can still observe (bottom right of Fig. 3) that the parameter evolution
of a and w‖ in very early steps of training is qualitatively in line with our theory. An interesting new
feature in this case is the different duration of the regime for the two classes, where one class leaves
the regime after only ∼ 20 steps, while the other reaches a similar distribution around step 70. We
suspect this behaviour to be due to the different “concentration” of the two classes, where one is
rather homogeneous (mostly animals) while the other contains any other possible object. Remarkably,
this asymmetry was not visible for the binary class case (not shown), where the evolution was closer
to our theory, despite the network failing completely to generalize. We imagine that a different shape
of data (e.g. two gaussians with different standard deviation) could account for this kind of effect in
our simple model. However, this seems to be at the edge of the applicable cases for our theory, and a
more complete treatment is needed to properly deal with the evolution in such complex scenarios.

3 Other material

Code. The code to reproduce all numerical results and graphs reported in this article can be found
at https://github.com/phiandark/DynHingeLoss/. It consists of a single Jupyter notebook,
based on Python 3 and requiring libraries numpy, scipy, tensorflow (1.xx), and matplotlib. All
examples can be run in a few minutes on a moderately powerful machine. For more details, please
see comments in the code.

Time evolution. An animation showing the training and validation error and parameters evolution
for the same cases reported in Fig. 2 of the main text can be found on the same page. As discussed in
Sec. 3.2 of the main text, the different behavior of the parameters is apparent, despite the similar final
error. Moreover, the effects of overfitting can be noticed in the final phases of training.
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