
R1: We agree that defining a canonical orientation for local patches is mainly aimed at descriptor matching. However,1

we propose a more general framework that can also be adopted to orient whole objects and perform rotation-invariant2

shape classification. Moreover, as recently shown in Bai et al. in "D3Feat: Joint Learning of Dense Detection3

and Description of 3D Local Features." (CVPR 2020), while FCGF performs very well when trained and tested on4

the 3DMatch dataset, it suffers from a large drop in performance in transfer learning towards the ETH dataset. This5

weakness in transfer learning is particularly critical for supervised methods, such as FCGF, because it limits applicability6

only to datasets for which the ground truth is available. One reason for this performance drop is likely to be the handling7

of rotation invariance by data augmentation, which may hardly generalize to unseen datasets. Indeed, 3DSN [10], which8

achieves rotation invariance by a LRF, outperforms the competitors by a considerable margin in transfer learning on9

ETH. Based on these considerations, we believe that it is not yet been established that rotation-invariant descriptor10

matching can be solved without orienting surfaces. Thus, as vouched by its large performance gain with respect to11

existing LRFs across different datasets, we believe that Compass is a principled and useful contribution that can improve12

the performance of learned feature descriptors relying on LRFs.13

Compass extracts the canonical orientation for a patch in 17.85ms. We will add this information to the revised version.14

In the evaluation in Table 2, we follow the standard protocol used in [39] to perform a fair comparison. We believe15

that this kind of evaluation provides important insights as it highlights whether learned methods can generalize or not16

to unseen rotations. We agree with the reviewer that it would also be interesting to investigate on the behavior of the17

competitors when trained on the full spectrum of SO(3) rotations, but we could not run such experiment in the limited18

time available to complete the rebuttal, as it requires re-training all competitors listed in Table 2. We will mention it as19

future work and highlight the importance of this complementary assessment in the conclusions.20

R2: We used the more general term "pose" to refer to canonical orientation as achieving translation invariance is usually21

trivial, but we agree that this use may be misleading. As suggested, we will use only the term orientation.22

(Pointed out also by R3) We agree that the notation in (4) should be changed from g−1(V) to g(V)−1, since inversion is23

applied to the output of function g, i.e. the learned rotation matrix. We will modify it in the final version of the paper.24

We agree that the domain of Spherical CNNs feature maps is key and we will better highlight it in the final version.25

Since we seek for one rotation, the loss function in (6) is applied once, and only to the last layer of the network.26

The input of our network is a spherical signal that is invariant to permutations of the input data. More details about it27

can be found in [39]. As for PointNet, we use the original implementation provided by the authors.28

We experimentally verified that a larger overlap between fragments improves the repeatability of Compass on local29

patches. We will add this insight to the discussion of the experimental results.30

R3: The output of a spherical correlation is a signal living in SO(3). In particular, each feature map is a cube where31

each cell, indexed by i, j, k, represents an element of SO(3), i.e. a rotation.32

As suggested, we trained a version of PointNet without the T-Nets. The performance in test is: NR: 88.49; AR: 8.35.33

The use of Blendsor would have required generation of a cumbersome off-line training dataset. We instead used an34

on-the fly data augmentation where occlusions can be randomly generated across epochs: since it proved effective, as35

demonstrated by the ablation study, we consider its simplicity a positive aspect, as suggested also by the reviewer.36

We rely on Spherical-CNNs because equivariance to rotations is crucial to satisfy (5) and they are equivariant to SO(3)37

by construction. Conventional neural networks do not possess this property.38

We will update Figure 2 including all the symbols adopted in the definition of the methodology. The loss compares the39

max entries of the final features maps, which corresponds to rotations, as explained above.40

R4: We present the first machine learning approach to orient point clouds. Differently from previous handcrafted41

solutions, no geometrical cues are adopted to design a repeatable canonical orientation, while we leverage the equiv-42

ariance of Spherical CNNs and show that a fully data-driven approach is feasible and, indeed, more effective than43

SOTA solutions. It is worth pointing out that this problem can not be tackled by supervised learning as there is no44

unique manner to define the ground-truth (i.e. a repeatable canonical orientation). Thus, we propose a self-supervised45

formulation where the network is able to discover the best suited canonical orientation based on training data.46

Unlike T-Net, Compass is not trained end-to-end with PointNet. In the simplified scenario where the input data is47

always under the same pose (NR), a canonicalization step is useless and can only lower performance by injecting noise48

due to its errors. T-Nets trained jointly with PointNet can instead learn that the best orientation in this scenario is the49

identity matrix. Yet, Compass could be easily modified to be trained end-to-end with the down stream task: this is an50

interesting future work we would like to explore.51


