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Abstract

A major challenge in current optimization research for deep learning is to automat-
ically find optimal step sizes for each update step. The optimal step size is closely
related to the shape of the loss in the update step direction. However, this shape
has not yet been examined in detail. This work shows empirically that the batch
loss over lines in negative gradient direction is mostly convex locally and well
suited for one-dimensional parabolic approximations. By exploiting this parabolic
property we introduce a simple and robust line search approach, which performs
loss-shape dependent update steps. Our approach combines well-known methods
such as parabolic approximation, line search and conjugate gradient, to perform
efficiently. It surpasses other step size estimating methods and competes with
common optimization methods on a large variety of experiments without the need
of hand-designed step size schedules. Thus, it is of interest for objectives where
step-size schedules are unknown or do not perform well. Our extensive evaluation
includes multiple comprehensive hyperparameter grid searches on several datasets
and architectures. Finally, we provide a general investigation of exact line searches
in the context of batch losses and exact losses, including their relation to our line
search approach.

1 Introduction

Automatic determination of optimal step sizes for each update step of stochastic gradient descent is a
major challenge in current optimization research for deep learning [3,5,12,29,38,43,46,50,58]. One
default approach to tackle this challenge is to apply line search methods. Several of these have been
introduced for Deep Learning [12, 29, 38, 43, 58]. However, these approaches have not analyzed the
shape of the loss functions in update step direction in detail, which is important, since the optimal
step size stands in strong relation to this shape. To shed light on this, our work empirically analyses
the shape of the loss function in update step direction for deep learning scenarios often considered in
optimization. We further elaborate the properties found to define a simple, competitive, empirically
justified optimizer.

Our contributions are as follows: 1: Empirical analysis suggests that the loss function in negative
gradient direction mostly shows locally convex shapes. Furthermore, we show that parabolic approx-
imations are well suited to estimate the minima in these directions (Section 3). 2: Exploiting the
parabolic property, we build a simple line search optimizer which constructs its own loss function de-
pendent learning rate schedule. The performance of our optimization method is extensively analyzed,
including a comprehensive comparison to other optimization methods (Sections 4,5). 3: We provide
a convergence analysis which backs our empirical results, under strong assumptions (Section 4.4). 4:
We provide a general investigation of exact line searches on batch losses and their relation to line
searches on the exact loss as well as their relation to our line search approach (Section 6) and, finally,
analyze the relation of our approach to interpolation (Section 7).
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The empirical loss L is defined as the average over realizations of a batch-wise loss function L:
L(θ) : Rm → R, θ 7→ n−1

∑n
i=1 L(xi; θ) with n being the amount of batches, xi denotes a batch of

a dataset and θ ∈ Rm denotes the parameters to be optimized. Note, that we consider a sample as
one batch of multiple inputs. We denote L(xt; θt) the batch loss of a batch x at optimization step t.
In this work, we consider L(xt; θt) in negative gradient direction:

lt(s) : R→ R, s 7→ L(xt; θt + s · −gt
||gt||

) (1)

where gt is∇θtL(xt; θt). For simplification, we denote lt(s) a line function or vertical cross section
and s a step on this line. The motivation of our work builds upon the following assumption:

Assumption 1. (Informal) The position θmin = θt + smin
−gt
||gt|| of a minimum of lt is a well enough

estimator for the position of the minimum of the empirical loss L on the same line to perform a
successful optimization process.

We empirically analyze Assumption 1 further in section 6.

2 Related work

Our optimization approach is based on well-known methods, such as line search, the non linear
conjugate gradient method and quadratic approximation, which can be found in Numerical Opti-
mization [28], which, in addition, describes a similar line search routine for the deterministic setting.
The concept of parabolic approximations is also exploited by the well known line search of More
and Thunte [40]. Our work contrasts common optimization approaches in deep learning by directly
exploiting the parabolic property (see Section 3) of vertical cross sections of the batch loss. Similarly,
SGD-HD [3] performs update steps towards the minimum on vertical cross sections of the batch loss,
by performing gradient descent on the learning rate. Concurrently, [10] explored a similar direction
as this work by analyzing possible line search approximations for DNN loss landscapes, but does not
exploit these for optimization.

The recently published Stochastic Line-Search (SLS) [58] is an optimized backtracking line search
based on the Armijo condition, which samples, like our approach, additional batch losses from the
same batch and checks the Armijo condition on these. [58] assumes that the model interpolates the
data. Formally, this implies that the gradient at a minimum of the empirical loss is 0 for the empirical
loss as well as for all batch (sample) losses. [12] also uses a backtracking Armijo line search, but with
the aim to regulate the optimal batch size. SLS exhibits competitive performance against multiple
optimizers on several DNN tasks. [43] introduces a related idea but does not provide empirical results
for DNNs.

The methodically appealing but complex Probabilistic Line Search (PLS) [38] and Gradient Only
Line Search (GOLS1) [29] are considering a discontinuous stochastic loss function. GOLS1 searches
for a minimum on lines by searching for a sign change of the first directional derivative in search
direction. PLS optimizes on lines of a stochastic loss function by approximating it with a Gaussian
Process surrogate and exploiting a probabilistic formulation of the Wolf conditions. Both approaches
show that they can optimize successfully on several machine learning problems and can compete
against plain SGD.

From the perspective of assumptions about the shape of the loss landscape, second order methods such
as oLBFGS [53], KFRA [7], L-SR1 [45], QUICKPROP [15], S-LSR1 [4], and KFAC [39] generally
assume that the loss function can be approximated locally by a parabola of the same dimension as the
loss function. Adaptive methods such as SGD with momentum [49], ADAM [30], ADAGRAD [14],
ADABOUND [37], AMSGRAD [47] or RMSProp [57] focus more on the handling of noise than on
shape assumptions. In addition, methods exist that approximate the loss function in specific directions:
The L4 adaptation scheme [50] as well as ALIG [5] estimate step sizes by approximating the loss
function linearly in negative gradient direction, whereas our approach approximates the loss function
parabolically in negative gradient direction.

Finally, COCOB [42] has to be mentioned, an alternative learning rate free approach, which automati-
cally estimates step directions and sizes with a reward based coin betting concept.
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Figure 1: Representative batch losses on cross sections in negative normalized gradient direction
(blue), parabolic approximations (orange) and the position of the approximated minima (red). Further
plots are provided in Appendix A.

3 Empirical analysis of the shape of batch losses on vertical cross sections

In this section we analyze line functions (see Eq. 1) during the training of multiple architectures and
show that they locally exhibit mostly convex shapes, which are well suited for parabolic approxima-
tions. We focus on CIFAR-10, as it is extensively analyzed in optimization research for deep learning.
However, on random samples of MNIST, CIFAR-100 and ImageNet we observed the same results.
We analyzed cross sections of 4 common used architectures in detail. To do so, we evaluated the cross
sections of the first 10000 update steps for each architecture. For each cross section we sampled 50
losses and performed a parabolic approximation (see Section 4). An unbiased selection of our results
on a ResNet32 is shown in Figure 1. Further results are given in Appendix A. In accordance with [59],
we conclude that the analyzed cross sections tend to be locally convex. In addition, one-dimensional
parabolic approximations of the form f(s) = as2 + bs+ c with a 6= 0 are well suited to estimate the
position of a minimum on such cross sections. To substantiate the later observation, we analyzed
the angle between the line direction and the gradient at the estimated minimum during training. A
position is a local extremum or saddle point of the cross section if and only if the angle between the
line direction and the gradient at the position is 90◦, if measured on the same batch. 1 As shown
in Figures 2 and 3, this property holds well for several architectures trained on MNIST, CIFAR-10,
CIFAR-100 and ImageNet. The property fits best for MNIST and gets worse for more complex tasks
such as ImageNet. We have to note, that measuring step sizes and update step adaptations factors (see
Sections 4.1 and4.3) were chosen to fit the line functions decently. We can ensure that the extrema
found are minima, since we additionally plotted the line function for each update step.
In addition, we analyzed vertical cross sections in conjugate like directions and random directions.
Vertical cross section in conjugate like directions also tend to have convex shapes (see Appendix D.4
Figure 17 ). However, vertical cross sections in random directions rarely exhibit convex shapes.

Figure 2: Angles between the line direction and the gradient at the estimated minimum measured on
the same batch. If the angle is 90◦, the estimated minimum is a real local minimum. We know from
additional line plots that the found extrema or saddle points are minima. Left: measurement over the
first 10 epochs. Right: measurement over the first 60 epochs. Update step adaptation (see Section
4.3) is applied.

1This holds because if the directional derivative of the measured gradient in line direction is 0, the current
position is an extremum or saddle point of the cross sections and the angle is 90◦. If the position is not a
extremum or saddle point, the directional derivative is not 0 [28].
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Figure 3: Angles between the line direction and the gradient at the estimated minimum measured
on the same batch plotted over a whole training process on several networks and datasets. This
figure clarifies that the parabolic property is also valid on further datasets and during the training
process. It fits best for MNIST and becomes worse for ImageNet. Measuring step sizes and update
step adaptations factors (see Sections 4.1,4.3) were used to fit the cross sections decently.

4 The line search algorithm

By exploiting the property, that parabolic approximations are well suited to estimate the position of
minima on line functions, we introduce Parabolic Approximation Line Search (PAL). This simple
approach combines well-known methods from basic optimization such as parabolic approximation
and line search [28], to perform an efficient line search. We note, that the general idea of this method
can be applied to any optimizer that provides an update step direction.

4.1 Parameter update rule

An intuitive explanation of PAL’s parameter update rule based on a parabolic approximation is given
in Figure 4. Since lt(s) (see Eq.1) is assumed to exhibit a convex and almost parabolic shape, we
approximate it with l̂t(s) = as2 + bs + c with a 6= 0 and a, b, c ∈ R. Consequently, we need
three measurements to define a, b and c. Those are given by the current loss lt(0), the derivative

Figure 4: Basic idea of PAL’s parameter update
rule. The blue curve is the cross section of the
loss function in direction of the negative gradient
at L(xt; θt). It is defined by l(s) = L(xt; θt + s ·
−gt
||gt|| ) where gt is ∇θtL(xt; θt). The red curve is

its parabolic approximation l̂(s). With l(0), l(µ)
and gt (orange), we have the three parameters
needed to determine the update step supd to the
minimum of the parabolic approximation.

in gradient direction l′t(0) = −||gt|| (see Eq. 4)
and an additional loss lt(µ) with measuring dis-
tance µ ∈ R+. We get a =

lt(µ)−lt(0)−l′t(0)µ
µ2 ,

b = l′t(0), and c = lt(0). The update step supd
to the minimum of the parabolic approximation
l̂t(s) is thus given by:

supdt = −
l̂′t(0)

l̂′′t (0)
= − b

2a
=

−l′t(0)
2
lt(µ)−lt(0)−l′t(0)µ

µ2

(2)
Note, that l̂′′t (0) is the second derivative
of the approximated parabola and is only
identical to the exact directional derivative
−gt
||gt||H(L(xt; θt))

−gTt
||gt|| if the parabolic approxi-

mation fits. The normalization of the gradient to
unit length (Eq.1) was chosen to have the mea-
suring distance µ independent of the gradient
size and of weight scaling. Note that two net-
work inferences are required to determine lt(0)
and lt(µ). Consequently, PAL needs two for-
ward passes and one backward pass through a
model. Further on, the batch loss L(xt; θt) may
include random components, but, to ensure con-
tinuity during one line search, drawn random numbers have to be reused for each value determination
of L at t (e.g. for Dropout [55]. The memory required by PAL is similar to SGD with momentum,
since only the last update direction has to be saved. A basic, well performing version of PAL is given
in Algorithm 1.
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Algorithm 1 The basic version of our proposed line search algorithm. See Section 4 for details.

Input: µ: measuring step size
Input: L(x; θ): loss function
Input: x: list of input vectors
Input: θ0: initial parameter vector

1: t← 0
2: while θt not converged do
3: l0 ← L(xt; θt) # l0 = lt(0) see Eq. 1
4: gt ← −∇θtL(xt; θt)
5: lµ ← L(xt; θt + µ gt

||gt|| )

6: b← −||gt||

7: a← lµ−l0−bµ
µ2

8: if proper curvature then
9: supd ← − b

2a
10: else
11: # set supd according to section 4.2
12: end if
13: θt+1 ← θt + supd

gt
||gt||

14: t← t+ 1
15: end while
16: return θt

4.2 Case discrimination of parabolic approximations

Since not all parabolic approximations are suitable for parameter update steps, the following cases
are considered separately. Note that b = l′t(0) and a = 0.5l′′t (0). 1: a > 0 and b < 0: parabolic
approximation has a minimum in line direction, thus, the parameter update is done as described in
Section 4.1. 2: a ≤ 0 and b < 0: parabolic approximation has a maximum in negative line direction,
or is a line with negative slope. In those cases a parabolic approximation is inappropriate. supd is set
to µ, since the second measured point has a lower loss than the first. 3: Since b = −||gt|| cannot be
greater than 0, the only case left is an extremum at the current position (l′(0) = 0). In this case, no
weight update is performed. However, the loss function is changed by the next batch. In accordance
to Section 3, cases 2 and 3 appeared very rarely in our experiments.

4.3 Additions

We introduce multiple additions for Algorithm 1 to fine tune the performance and handle degenerate
cases. We emphasize that our hyperparameter sensitivity analysis (Appendix D.6) suggests that the
influence of the introduced hyperparameters on the optimizer’s performance are low. Thus, they only
need to be adapted to fine tune the results. The full version of PAL including all additions is given in
Appendix B Algorithm 2.

Direction adaptation: Instead of following the direction of the negative gradient we follow an
adapted conjugate-like direction dt:

dt = −∇θtL(xt; θt) + βdt−1 d0 = −∇θ0L(x0; θ0) (3)
with β ∈ [0, 1]. Since now an adapted direction is used, l′t(0) changes to:

l′t(0) = ∇θtL(xt; θt)
dt
||dt||

(4)

This approach aims to find a more optimal search direction than the negative gradient. We imple-
mented and tested the formulas of Fletcher-Reeves [16], Polak-Ribière [48], Hestenes-Stiefel [24]
and Dai-Yuan [11] to determine conjugate directions under the assumption that the loss function is a
quadratic. However, choosing a constant β of value 0.2 or 0.4 performs equally well. The influence
of β and dynamic update steps on PAL’s performance is discussed in Appendix D.5. In the analyzed
scenario β can both increase and decrease the performance, whereas, dynamic update steps mostly
increase the performance. The combination of both is needed to achieve optimal results.

Update step adaptation: Our preliminary experiments revealed a systematic error caused by con-
stantly approximating with slightly too narrow parabolas. Therefore, supd is multiplied by a parameter
α ≥ 1 (compare to Eq. 2). This is useful to estimate the position of the minimum on a line more
exactly, but has minor effects on training performance.

Maximum step size: To hinder the algorithm from failing due to inaccurate parabolic approxi-
mations, we use a maximum step size smax. The new update step is given by min(supd, smax).
However, most of our experiments with smax = 100.5 ≈ 3.16 never reached this step size and still
performed well.
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4.4 Theoretical considerations

Usually, convergence in deep learning is shown for convex stochastic functions with a L-Lipschitz
continuous gradient. However, since our approach originates from empirical results, it is not given
that a profound theoretical analysis is possible. In order to show any convergence guarantees for
parabolic approximations, we have to fall back to uncommonly strong assumptions which lead to
quadratic models. Since convergence proofs on quadratics are of minor importance for most readers,
our derivations can be found in Appendix C.

5 Evaluation

5.1 Experimental design

We performed a comprehensive evaluation to analyze the performance of PAL on a variety of deep
learning optimization tasks. Therefore, we tested PAL on commonly used architectures on CIFAR-
10 [31], CIFAR-100 [31] and ImageNet [13]. For CIFAR-10 and CIFAR-100, we evaluated on
DenseNet40 [25], EfficientNetB0 [56], ResNet32 [23] and MobileNetV2 [52]. On ImageNet we
evaluated on DenseNet121 and ResNet50. In addition, we considered an RNN trained on the Tolstoi
war and peace text prediction task. We compare PAL to SLS [58], whose Armijo variant is state-of-the-
art in the line search field for DNNs. In addition, we compare against the following well studied and
widely used first order optimizers: SGD with momentum [49], ADAM [30], and RMSProp [57] as well
as against SGDHD [3], ALIG [5], which automatically estimate learning rates in negative gradient
direction and, finally, against the coin betting approach COCOB [42]. To perform a fair comparison,
we compared a variety of hyperparameter combinations of commonly used hyperparameters for
each optimizer. In addition, we utilize those combinations to analyze the hyperparameter sensitivity
for each optimizer. Since a grid search on Imagenet was too expensive, the best hyperparameter
configuration from the CIFAR-100 evaluation was used to test hyperparameter transferability. A
detailed explanation of the experiments including hyperparameters and data augmentations used are
given in Appendix D.8. All in all, we trained over 4500 networks with Tensorflow 1.15 [1] on Nvidia
Geforce GTX 1080 TI graphic cards. Since PAL is a line search approach, the predefined learning
rate schedules of SGD and the generated schedules of SLS, ALIG, SGDHD and PAL were compared.
Due to normalization, PAL’s learning rate is given by supdt/||dt||.

5.2 Results

A selection of our results is given in Figure 5. The results of other architectures trained on CIFAR-10,
CIFAR-100, Imagenet and Tolstoi are found in Appendix D Figures 13,14,15. A table with exact
numerical results of all experiments is provided in Appendix D.9.

In most cases PAL decreases the training loss faster and to a lower value than the other optimizers (row
1 of Figures 5,13,14,15). Considering validation and test accuracy, PAL surpasses ALIG, SGDHD
and COCOB, competes with RMSProp and ADAM but gets surpassed by SGD (rows 2,3 of Figures
5,13,14,15). However, RMSProp, ADAM and SGD were tuned with a step size schedule. If we
compare PAL to their basic implementations without a schedule, which roughly corresponds to the
first plateau reached in row 2 of Figures 5,13,14,15, PAL would surpass the other optimizers and
shows that it can find a well performing step size schedule. This is especially interesting for problems
for which default schedules might not work.

SLS decreases the training loss further than the other optimizers on a few problems, but shows
weak performance and poor generalization on most. This contrasts to the results of [58], where SLS
behaves robustly and excels. To exclude the possibility of errors on our side, we reimplemented SLS
experiment on ResNet34 and could reproduce a similar well performance as in [58] (Appendix D.3).
Our results suggest, that the interpolation assumption on which SLS is based, is not always valid for
the considered tasks.

Considering the box plots of Figures 5 and 14, which represent the sensitivity to hyperparameter
combinations, one would likely try on a new unknown objective, we can see, that PAL has a strong
tendency to exhibit low sensitivity in combination with good performance. To emphasize this
statement, a sensitivity analysis of PAL’s hyperparameters (Appendix Figure 19) shows that PAL
performs well on a wide range for each hyperparameter on a ResNet32.
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Figure 5: Comparison of PAL against SLS, SGD, ADAM, RMSProp, ALIG, SGDHD and COCOB
on train. loss (row 1), val. acc. (row 2), test. acc. (row 3) and SLS, SGD, ALIG, SGDHD and PAL
on learning rates (row 4). Comparison is done across several datasets and models. Further results
are found in Appendix D.1 Figure (13,14,15). Results are averaged over 3 runs. Box plots result
from comprehensive hyperparameter grid searches in plausible intervals. Learning rates are averaged
over epochs. PAL surpasses, ALIG, SGDHD, and COCOB and competes against all other optimizers
except against SGD.

On wall-clock-time PAL performs as fast as SLS but slower than the other optimizers, which achieve
similar speeds (Appendix D.2). However, depending on the scenario, an automatic, well performing
leaning rate schedule might compensate for the slower speed.

Considering the learning rate schedules of PAL (row 4 of Figures 5,13,14,15) we achieved unexpected
results. PAL, which estimates the learning rate directly from approximated local shape information,
does not follow a schedule that is similar to the one of SLS, ALIG, SGDHD or any of the common
used hand crafted schedules such as piece wise constant or cosine decay. However, it achieves similar
results. An interesting side result is that ALIG and SGDHD tend to perform best, if hyperparameters
are chosen in a way that the learning rate is only changed slightly and therefore virtually an SGD
training with fixed learning rate is performed.
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Figure 6: Comparison of PAL against an expensive exact line search. The first plot shows the angle
between the direction and gradient vector at the update step position. A ResNet32 was trained on
CIFAR-10. One can observe that an exact line search exhibits poor performance.

6 On the exactness of line searches on batch losses

In this section we investigate the general question whether line searches which estimate the location
of the minimum of batch losses exactly are beneficial. In Figure 2 we showed that PAL can perform
an almost exact line search on batch losses if we use a fixed update step adaptation factor (Section
4.3). However, PAL’s best hyperparameter configuration does not perform an exact line search (see
Figure 6). Consequently, we analyzed how an exact line search, which exactly estimates a minimum
of the line function, behaves. We implemented an inefficient binary line search (see Appendix E),
which measured up to 20 values on each line to estimate the position of a minimum. The results,
given in Figure 6, show that an optimal line search does not optimize well. Thus, the reason why PAL
performs well is not the exactness of its update steps. In fact, slightly inexact update steps seem to be
beneficial.
These results query Assumption 1, which assumes that the position of a minimum on a line in negative
gradient direction of the batch loss L(xt; θ) is a suitable estimator for the minimum of the empirical
loss L on this line to perform a successful optimization process. To investigate this further, we
tediously measured the empirical loss L and the distribution of batch losses for one training process
on a ResNet32. Our results suggest, as exemplary shown in Figure 7, that on a line function defined
by the gradient of L(xt; θ), the position of the minimum of L(xt; θ) is not always a good estimator
for the position of the minimum of the empirical loss L. This explains why exact line searches on the
batch loss perform weak.

Corollaries are that the empirical loss on the investigated lines also tends to be locally convex and
that the optimal step size tends to be smaller than the step size given by the batch loss on such lines.
This is a possible explanation why the slightly too narrow parabolic approximations of PAL without
update step adaptation perform well.

Figure 7: Distributions (blue) over all batch losses on representative cross sections during a training
of a ResNet32 on CIFAR-10. The empirical loss, which is the mean value of the distribution, is given
in red. The quartiles are given in black. The batch loss, whose negative gradient defines the search
direction, is given in green. It can be observed that the minimum of the green batch loss is not always
an adequate estimator of the minimum of the empirical loss on the corresponding cross section.
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7 PAL and Interpolation

This section analyzes whether the reason why PAL performs well is related to the interpolation
condition. Formally, interpolation requires that the gradient with respect to each sample converges to
zero at the optimum. We repeated the experiments of the SLS paper (see [58] Section 7.2 and 7.3),
which analyze the performance on problems for which interpolation hold or does not hold.

Figure 8: The matrix factorization problem of [58] Section 7.2. For k = 1 and k = 4 interpolation
does not hold. Rank 1 factorization is under-parameterized, whereas rank 4 and rank 10 factorizations
are over-parameterized.

Figure 9: Binary classification task of [58] Section 7.3 using a softmax loss and RBF kernels for
mushrooms and ijcnn datasets. With RBF kernels, the mushrooms dataset is linear separable in
kernel-space with the selected kernel bandwidths, while the ijcnn dataset is not.

Figure 8 shows that PAL such as SLS converge faster to an artificial optimization floor on non-
over-parameterized models (k = 4) of the matrix factorization problem of [58] Section 7.2. In the
interpolation case PAL and SLS converge linearly to machine precision. On the binary classification
problem of [58] Section 7.3, which uses a softmax loss and RBF kernels on the mushrooms and
ijcnn datasets, we observe that PAL and SLS converge fast on the mushrooms task, for which the
interpolation condition holds (Figure 9). However, PAL converges faster on the ijcnn task, for which
the interpolation condition does not hold.

The results indicate that the interpolation condition is beneficial for PAL, but, PAL performs also
robust when it is likely not satisfied (see Figure 5,13,14,15. In those experiments PAL mostly performs
competitive but SLS does not. However, the relation of the parabolic property to interpolation needs
to be investigated more closely in future.

8 Conclusions

This work tackles a major challenge in current optimization research for deep learning: to automati-
cally find optimal step sizes for each update step. In detail, we focus on line search approaches to deal
with this challenge. We introduced a simple, robust and competitive line search approach based on
one-dimensional parabolic approximations of batch losses. The introduced algorithm is an alternative
to SGD for objectives where default decays are unknown or do not work.

Loss functions of DNNs are commonly perceived as being highly non-convex. Our analysis suggests
that this intuition does not hold locally, since lines of loss landscapes across models and datasets can
be approximated parabolically to high accuracy. This new knowledge might further help to explain
why update steps of specific optimizers perform well.

To gain deeper insights of line searches in general, we analyzed how an expensive but exact line
search on batch losses behaves. Intriguingly, its performance is weak, which lets us conclude that the
small inaccuracies of the parabolic approximations are beneficial for training.
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Potential Broader Impact

Since we understand our work as basic research, it is extremely error-prone to estimate its specific eth-
ical aspects and future positive or negative social consequences. As optimization research influences
the whole field of deep learning, we refer to the following works, which discuss the ethical aspects
and social consequences of AI and Deep Learning in a comprehensive and general way: [6, 41, 61].
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