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Abstract

We consider the problem of learning the best-fitting single neuron as measured
by the expected square loss E(x,y)∼D[(σ(w>x)− y)2] over some unknown joint
distribution D by using gradient descent to minimize the empirical risk induced by
a set of i.i.d. samples S ∼ Dn. The activation function σ is an arbitrary Lipschitz
and non-decreasing function, making the optimization problem nonconvex and
nonsmooth in general, and covers typical neural network activation functions and
inverse link functions in the generalized linear model setting. In the agnostic PAC
learning setting, where no assumption on the relationship between the labels y and
the input x is made, if the optimal population risk is OPT, we show that gradient
descent achieves population risk O(OPT) + ε in polynomial time and sample
complexity when σ is strictly increasing. For the ReLU activation, our population
risk guarantee is O(OPT1/2) + ε. When labels take the form y = σ(v>x) + ξ
for zero-mean sub-Gaussian noise ξ, we show that the population risk guarantees
for gradient descent improve to OPT + ε. Our sample complexity and runtime
guarantees are (almost) dimension independent, and when σ is strictly increasing,
require no distributional assumptions beyond boundedness. For ReLU, we show
the same results under a nondegeneracy assumption for the marginal distribution
of the input.

1 Introduction
We study learning the best possible single neuron that captures the relationship between the input
x ∈ Rd and the output label y ∈ R as measured by the expected square loss over some unknown but
fixed distribution (x, y) ∼ D. In particular, for a given activation function σ : R→ R, we define the
population risk F (w) associated with a set of weights w as

F (w) := (1/2)E(x,y)∼D

[(
σ(w>x)− y

)2]
. (1.1)

The activation function is assumed to be non-decreasing and Lipschitz, and includes nearly all
activation functions used in neural networks such as the rectified linear unit (ReLU), sigmoid, tanh,
and so on. In the agnostic PAC learning setting [23], no structural assumption is made regarding the
relationship of the input and the label, and so the best-fitting neuron could, in the worst case, have
nontrivial population risk. Concretely, if we denote

v := argmin‖w‖2≤1F (w), OPT := F (v), (1.2)
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then the goal of a learning algorithm is to (efficiently) return weights w such that the population risk
F (w) is close to the best possible risk OPT. The agnostic learning framework stands in contrast to
the realizable PAC learning setting, where one assumes OPT = 0, so that there exists some v such
that the labels are given by y = σ(v>x).

The learning algorithm we consider in this paper is empirical risk minimization using vanilla gradient
descent. We assume we have access to a set of i.i.d. samples {(xi, yi)}ni=1 ∼ Dn, and we run
gradient descent with a fixed step size on the empirical risk F̂ (w) = (1/2n)

∑n
i=1(σ(w>xi)− yi)2.

A number of early neural network studies pointed out that the landscape of the empirical risk of a
single neuron has unfavorable properties, such as a large number of spurious local minima [6, 3], and
led researchers to instead study gradient descent on a convex surrogate loss [16, 17]. Despite this, we
are able to show that gradient descent on the empirical risk itself finds weights that not only have
small empirical risk but small population risk as well.

Surprisingly little is known about neural networks trained by minimizing the empirical risk with
gradient descent in the agnostic PAC learning setting. We are aware of two works [2, 1] in the
improper agnostic learning setting, where the goal is to return a hypothesis h ∈ H that achieves
population risk close to ÔPT, where ÔPT is the smallest possible population risk achieved by a
different set of hypotheses Ĥ. Another work considered the random features setting where only
the final layer of the network is trained and the marginal distribution over x is uniform on the unit
sphere [34]. But none of these address the simplest possible neural network: that of a single neuron
x 7→ σ(w>x). We believe a full characterization of what we can (or cannot) guarantee for gradient
descent in the single neuron setting will help us understand what is possible in the more complicated
deep neural network setting. Indeed, two of the most common hurdles in the analysis of deep neural
networks trained by gradient descent—nonconvexity and nonsmoothness—are also present in the
case of the single neuron. We hope that our analysis in this relatively simple setup will be suggestive
of what is possible in more complicated neural network models.

Our main contributions can be summarized as follows.

1) Agnostic setting (Theorem 3.3). Without any assumptions on the relationship between y and
x, and assuming only boundedness of the marginal distributions of x and y, we show that for
any ε > 0, gradient descent finds a point wt with population risk O(OPT) + ε with sample
complexity O(ε−2) and runtime O(ε−1) when σ(·) is strictly increasing and Lipschitz. When σ is
ReLU, we obtain a population risk guarantee of O(OPT1/2) + ε with sample complexity O(ε−4)
and runtime O(ε−2) when the marginal distribution of x satisfies a nondegeneracy condition
(Assumption 3.2). The sample and runtime complexities are independent of the input dimension
for both strictly increasing activations and ReLU.

2) Noisy teacher network setting (Theorem 4.1). When y = σ(v>x) + ξ, where ξ|x is zero-mean
and sub-Gaussian (and possibly dependent on x), we demonstrate that gradient descent finds wt
satisfying F (wt) ≤ OPT + ε for activation functions that are strictly increasing and Lipschitz
assuming only boundedness of the marginal distribution over x. The same result holds for ReLU
under a marginal spread assumption (Assumption 3.2). The runtime and sample complexities
are of order Õ(ε−2), with a logarithmic dependence on the input dimension. When the noise
is bounded, our guarantees are dimension independent. If we further know ξ ≡ 0, i.e. the
learning problem is in the realizable rather than agnostic setting, we can improve the runtime
and sample complexity guarantees from O(ε−2) to O(ε−1) by using online stochastic gradient
descent (Theorem E.1).

2 Related work
Below, we provide a high-level summary of related work in the agnostic learning and teacher network
settings. Detailed comparisons with the most related works will appear after we present our main
theorems in Sections 3 and 4. In Appendix A, we provide tables that describe the assumptions and
complexity guarantees of our work in comparison to related results.

Agnostic learning: The simplest version of the agnostic regression problem is to find a hypothesis
that matches the performance of the best linear predictor. In our setting, this corresponds to σ
being the identity function. This problem is completely characterized: Shamir [29] showed that any
algorithm that returns a linear predictor v has risk OPT + Ω(ε−2 ∧ dε−1) when the labels satisfy
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|y| ≤ 1 and the marginal distribution over x is supported on the unit ball, matching upper bounds
proved by Srebro et al. [32] using mirror descent.

When σ is not the identity, related works are scarce. Goel et al. [12] studied agnostic learning of
the ReLU on distributions supported on the unit sphere but had runtime and sample complexity
exponential in ε−1. In another work on learning a single ReLU, Goel et al. [14] showed that learning
up to risk OPT + ε in polynomial time is as hard as the problem of learning sparse parities with
noise, long believed to be computationally intractable. Additionally, they provided an approximation
algorithm that could learn up to O(OPT2/3) + ε risk in poly(d, ε−1) time and sample complexity
when the marginal distribution over x is a standard Gaussian. In a related but incomparable set of
results in the improper agnostic learning setting, Allen-Zhu et al. [2] and Allen-Zhu and Li [1] showed
that multilayer ReLU networks trained by gradient descent can match the population risk achieved by
multilayer networks with smooth activation functions. Vempala and Wilmes [34] studied agnostic
learning of a one-hidden-layer neural network when the first layer is fixed at its (random) initial
values and the second layer is trained. A very recent work by Diakonikolas et al. [8] showed that
population risk O(OPT) + ε can be achieved for the single ReLU neuron by appealing to gradient
descent on a convex surrogate for the empirical risk.

Teacher network: The literature refers to the case of y = σ(v>x) + ξ for some possible zero mean
noise ξ variously as the “noisy teacher network” or “generalized linear model” (GLM) setting, and is
related to the probabilistic concepts model [22]. In the GLM setting, σ plays the role of the inverse
link function; in the case of logistic regression, σ is the sigmoid function.

The results in the teacher network setting can be broadly characterized by (1) whether they cover
arbitrary distributions over x and (2) the presence of noise (or lackthereof). The GLMTron algorithm
proposed by Kakade et al. [20], itself a modification of the Isotron algorithm of Kalai and Sastry [21],
is known to learn a noisy teacher network up to risk OPT + ε for any Lipschitz and non-decreasing
σ and any distribution with bounded marginals over x. Mei et al. [25] showed that gradient descent
learns the noisy teacher network under a smoothness assumption on the activation function for a large
class of distributions. Foster et al. [11] provided a meta-algorithm for translating ε-stationary points
of the empirical risk to points of small population risk in the noisy teacher network setting. A recent
work by Mukherjee and Muthukumar [26] develops a modified SGD algorithm for learning a ReLU
with bounded adversarial noise on distributions where the input is bounded.

Of course, any guarantee that holds for a neural network with a single fully connected hidden layer of
arbitrary width holds for the single neuron, so in this sense our work can be connected to a larger
body of work on the analysis of gradient descent used for learning neural networks. The majority
of such works are restricted to particular input distributions, whether it is Gaussian or uniform
distributions [30, 33, 31, 36, 13, 7]. Du et al. [10] showed that in the noiseless (a.k.a. realizable)
setting, a single neuron can be learned with SGD if the input distribution satisfies a certain subspace
eigenvalue property. Yehudai and Shamir [35] studied the properties of learning a single neuron for a
variety of increasing and Lipschitz activation functions using gradient descent, as we do in this paper,
although their analysis was restricted to the noiseless setting.

3 Agnostic learning setting
We begin our analysis by assuming there is no a priori relationship between x and y, so the population
risk OPT of the population risk minimizer v defined in (1.2) may, in general, be a large quantity. If
OPT = 0, then σ(v>x) = y a.s. and the problem is in the realizable PAC learning setting. In this
case, we can use a modified proof technique to get stronger guarantees for the population risk; see
Appendix E for the complete theorems and proofs in this setting. We will thus assume without loss of
generality that 0 < OPT ≤ 1.

The gradient descent method we use in this paper is as follows. We assume we have a training sample
{(xi, yi)}ni=1

i.i.d.∼ Dn, and define the empirical risk for weight w by

F̂ (w) = (1/2n)
∑n
i=1(σ(w>xi)− yi)2.

We perform full-batch gradient updates on the empirical risk using a fixed step size η,

wt+1 = wt − η∇F̂ (wt) = wt − (η/n)
∑n
i=1(σ(w>t xi)− yi)σ′(w>t xi)xi, (3.1)

where σ′(·) is the derivative of σ(·). If σ is not differentiable at a point z, we will use its subderivative.

We begin by describing one set of activation functions under consideration in this paper.
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Assumption 3.1. (a) σ is continuous, non-decreasing, and differentiable almost everywhere.

(b) For any ρ > 0, there exists γ > 0 such that inf |z|≤ρ σ
′(z) ≥ γ > 0. If σ is not differentiable at

z ∈ [−ρ, ρ], assume that every subderivative g on the interval satisfies g(z) ≥ γ.

(c) σ is L-Lipschitz, i.e. |σ(z1)− σ(z2)| ≤ L|z1 − z2| for all z1, z2.

We note that if σ is strictly increasing and continuous, then σ satisfies Assumption 3.1(b) since
its derivative is never zero. In particular, the assumption covers the typical activation functions in
neural networks like leaky ReLU, softplus, sigmoid, tanh, etc., but excludes ReLU. Yehudai and
Shamir [35] recently showed that when σ is ReLU, there exists a distribution D supported on the
unit ball and unit length target neuron v such that even in the realizable case of y = σ(v>x), if the
weights are initialized randomly using a product distribution, there exists a constant c0 such that with
high probability, F (wt) ≥ c0 > 0 throughout the trajectory of gradient descent. This suggests that
gradient-based methods for learning ReLUs are likely to fail without additional assumptions. Because
of this, they introduced the following marginal spread assumption to handle the learning of ReLU.
Assumption 3.2. There exist constants α, β > 0 such that the following holds. For any w 6= u,
denote by Dw,u the marginal distribution of D on span(w, u), viewed as a distribution over R2, and
let pw,u be its density function. Then infz∈R2:‖z‖≤α pw,u(z) ≥ β.

This assumption covers, for instance, log-concave distributions like the Gaussian and uniform
distribution with α, β = O(1) [24]. We note that a similar assumption was used in recent work on
learning halfspaces with Massart noise [9]. We will use this assumption for all of our results when
σ is ReLU. Additionally, although the ReLU is not differentiable at the origin, we will denote by
σ′(0) its subderivative, with the convention that σ′(0) = 1. Such a convention is consistent with the
implementation of ReLUs in modern deep learning software packages.

With the above in hand, we can describe our main theorem.
Theorem 3.3. Suppose the marginals of D satisfy ‖x‖2 ≤ BX a.s. and |y| ≤ BY a.s. Let a :=
(|σ(BX)|+BY )2. When σ satisfies Assumption 3.1, let γ > 0 be the constant corresponding to ρ =
2BX and fix a step size η ≤ (1/8)γL−3B−2X . For any δ > 0, with probability at least 1− δ, gradient
descent initialized at the origin and run for T = dη−1γ−1L−1B−1X [OPT + an−1/2 log1/2(4/δ)]−1e
iterations finds weights wt, t < T , such that

F (wt) ≤ C1OPT + C2n
−1/2, (3.2)

where C1 = 12γ−3L3 + 2 and C2 = O(L3B2
X

√
log(1/δ) + C1a

√
log(1/δ)).

When σ is ReLU, further assume that Dx satisfies Assumption 3.2 for constants α, β > 0, and let
ν = α4β/8

√
2. Fix a step size η ≤ (1/4)B−2X . For any δ > 0, with probability at least 1 − δ,

gradient descent initialized at the origin and run for T = dη−1B−1X [OPT+an−1/2 log1/2(4/δ)]−1/2e
iterations finds a point wt such that

F (wt) ≤ C1OPT
1/2 + C2n

−1/4 + C3n
−1/2, (3.3)

where C1 = O(BXν
−1), C2 = O(C1a

1/2 log1/4(1/δ)), and C3 = O(B2
Xν
−1 log1/2(1/δ)).

We remind the reader that the optimization problem for the empirical risk is highly nonconvex [3]
and thus any guarantee for the empirical risk, let alone the population risk, is nontrivial. This makes
us unsure if the suboptimal guarantee of O(OPT1/2) for ReLU is an artifact of our analysis or a
necessary consequence of nonconvexity.

In comparison to recent work, Goel et al. [14] considered the agnostic setting for the ReLU activation
when the marginal distribution over x is a standard Gaussian and showed that learning up to risk OPT+
ε is as hard as learning sparse parities with noise. By using an approximation algorithm of Awasthi
et al. [4], they were able to show that one can learn up to O(OPT2/3) + ε with O(poly(d, ε−1))
runtime and sample complexity. In a very recent work, Diakonikolas et al. [8] improved the population
risk guarantee for the ReLU to O(OPT) + ε when the features are sampled from an isotropic log-
concave distribution by analyzing gradient descent on a convex surrogate loss. Projected gradient
descent on this surrogate loss produces the weight updates of the GLMTron algorithm of Kakade et al.
[20]. Using the solution found by gradient descent on the surrogate loss, they proposed an improper
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learning algorithm that improves the population risk guarantee from O(OPT) + ε to (1 + δ)OPT+ ε
for any δ > 0.

By contrast, we show that gradient descent on the empirical risk learns up to a population risk of
O(OPT) + ε for any joint distribution with bounded marginals when σ is strictly increasing and
Lipschitz, even though the optimization problem is nonconvex. In the case of ReLU, our guarantee
holds for the class of bounded distributions over x that satisfy the marginal spread condition of
Assumption 3.2 and hence covers (bounded) log-concave distributions, although the guarantee is
O(OPT1/2) in this case. For all activation functions we consider, the runtime and sample complexity
guarantees do not have (explicit) dependence on the dimension.1 Moreover, we shall see in the next
section that if the data is known to come from a noisy teacher network, the guarantees of gradient
descent improve to OPT + ε for both strictly increasing activations and ReLU.

In the remainder of this section we will prove Theorem 3.3. Our proof relies upon the following
auxiliary errors for the true risk F :

G(w) := (1/2)E(x,y)∼D

[(
σ(w>x)− σ(v>x)

)2]
,

H(w) := (1/2)E(x,y)∼D

[(
σ(w>x)− σ(v>x)

)2
σ′(w>x)

]
. (3.4)

We will denote the corresponding empirical risks by Ĝ(w) and Ĥ(w). We first note that G
trivially upper bounds F : this follows by a simple application of Young’s inequality and, when
E[y|x] = σ(v>x), by using iterated expectations.
Claim 3.4. For any joint distribution D, for any vector u, and any continuous activation func-
tion σ, F (u) ≤ 2G(u) + 2F (v). If additionally we know that E[y|x] = σ(v>x), we have
F (u) = G(u) + F (v).

This claim shows that in order to show the population risk is small, it suffices to show that G is small.
It is easy to see that if infz∈R σ

′(z) ≥ γ > 0, then H(w) ≤ ε implies G(w) ≤ γ−1ε, but the only
typical activation function that satisfies this condition is the leaky ReLU. Fortunately, when σ satisfies
Assumption 3.1, or when σ is ReLU and D satisfies Assumption 3.2, Lemma 3.5 below shows that
H is still an upper bound for G. The proof is deferred to Appendix B.
Lemma 3.5. If σ satisfies Assumption 3.1, ‖x‖2 ≤ B a.s., and ‖w‖2 ≤W , then for γ corresponding
to ρ = WB, H(w) ≤ ε implies G(w) ≤ γ−1ε. If σ is ReLU and D satisfies Assumption 3.2
for some constants α, β > 0, and if for some ε > 0 the bound H(w) ≤ βα4ε/8

√
2 holds, then

‖w − v‖2 ≤ 1 implies G(w) ≤ ε.

Claim 3.4 and Lemma 3.5 together imply that if gradient descent finds a point with auxiliary error
H(wt) ≤ O(OPTα) for some α ≤ 1, then gradient descent achieves population risk O(OPTα).
In the remainder of this section, we will show that this is indeed the case. In Section 3.1, we first
consider activations satisfying Assumption 3.1, for which we are able to show H(wt) ≤ O(OPT).
In Section 3.2, we show H(wt) ≤ O(OPT1/2) for the ReLU.

3.1 Strictly increasing activations

In Lemma 3.6 below, we show that Ĥ(wt) is a natural quantity of the gradient descent algorithm
that in a sense tells us how good a direction the gradient is pointing at time t, and that Ĥ(wt) can be
as small as O(F̂ (v)). Our proof technique is similar to that of Kakade et al. [20], who studied the
GLMTron algorithm in the (non-agnostic) noisy teacher network setup.
Lemma 3.6. Suppose that ‖x‖2 ≤ BX a.s. under Dx. Suppose σ satisfies Assumption 3.1, and let
γ be the constant corresponding to ρ = 2BX . Assume F̂ (v) > 0. Gradient descent with fixed step
size η ≤ (1/8)γL−3B−2X initialized at w0 = 0 finds weights wt satisfying Ĥ(wt) ≤ 6L3γ−2F̂ (v)

within T = dη−1γ−1L−1B−1X F̂ (v)−1e iterations, with ‖wt − v‖2 ≤ 1 for each t = 0, . . . , T − 1.

Before beginning the proof, we first note the following fact, which allows us to connect terms that
appear in the gradient to the square loss.

1We note that for some distributions, the BX term may hide an implicit dependence on d; more detailed
comments on this are given in Appendix A.
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Fact 3.7. If σ is strictly increasing on an interval [a, b] with σ′(z) ≥ γ > 0 for all z ∈ [a, b], and if
z1, z2 ∈ [a, b], then, it holds that

γ(z1 − z2)2 ≤ (σ(z1)− σ(z2)) (z1 − z2). (3.5)

Proof of Lemma 3.6. The proof comes from the following induction statement. We claim that
for every t ∈ N, either (a) Ĥ(wτ ) ≤ 6L3γ−2F̂ (v) for some τ < t, or (b) ‖wt − v‖22 ≤
‖wt−1 − v‖22 − ηLF̂ (v) holds. If this claim is true, then until gradient descent finds a point where
Ĥ(wt) ≤ 6L3γ−2F̂ (v), the squared distance ‖wt − v‖22 decreases by ηLF̂ (v) at every iteration.
Since ‖w0 − v‖22 = 1, this means there can be at most 1/(ηLF̂ (v)) = η−1L−1F̂ (v)−1 iterations
until we reach Ĥ(wt) ≤ 6L3γ−2F̂ (v).

So let us now suppose the induction hypothesis holds for t, and consider the case t+ 1. If (a) holds,
then we are done. So now consider the case that for every τ ≤ t, we have Ĥ(wτ ) > 6L3γ−2F̂ (v).
Since (a) does not hold, ‖wτ − v‖22 ≤ ‖wτ−1 − v‖

2
2 − ηLF̂ (v) holds for each τ = 1, . . . , t, and so

‖w0 − v‖2 = 1 implies
‖wτ − v‖2 ≤ 1 ∀τ ≤ t. (3.6)

In particular, ‖wτ‖2 ≤ 1 + ‖v‖2 ≤ 2 holds for all τ ≤ t. By Cauchy–Schwarz, this implies
|w>τ x| ∨ |v>x| ≤ 2BX a.s. By defining ρ = 2BX and letting γ be the constant from Assumption
3.1, this implies σ′(z) ≥ γ > 0 for all |z| ≤ 2BX . Fact 3.7 therefore implies

σ′(w>τ x) ≥ γ > 0 and (σ(w>τ x)−σ(v>x))·(w>τ x−v>x) ≥ γ(w>τ x−v>x)2 ∀τ ≤ t. (3.7)

We proceed with the proof by demonstrating an appropriate lower bound for the quantity

‖wt − v‖22 − ‖wt+1 − v‖22 = 2η
〈
∇F̂ (wt), wt − v

〉
− η2

∥∥∥∇F̂ (wt)
∥∥∥2
2
.

We begin with the inner product term. We have〈
∇F̂ (wt), wt − v

〉
= (1/n)

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)
σ′(w>t xi)(w

>
t xi − v>xi)

+ (1/n)

n∑
i=1

(
σ(v>xi)− yi

)
γ−1/2 · γ1/2σ′(w>t xi)(w>t xi − v>xi)

≥ (γ/n)

n∑
i=1

(
w>t xi − v>xi

)2
σ′(w>t xi)

− γ−1

2n

n∑
i=1

(
σ(v>xi)− yi

)2
σ′(w>t xi)−

γ

2n

n∑
i=1

(
w>t xi − v>xi

)2
σ′(w>t xi)

≥ γ

2

n∑
i=1

(w>t xi − v>xi)2σ′(w>t xi)− Lγ−1F̂ (v)

≥ γL−2Ĥ(wt)− Lγ−1F̂ (v). (3.8)

In the first inequality we used (3.7) for the first term and Young’s inequality for the second (and that
σ′ ≥ 0). For the final two inequalities, we use that σ is L-Lipschitz.

For the gradient upper bound,∥∥∥∇F̂ (w)
∥∥∥2 ≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

(σ(w>xi)− σ(v>xi))σ
′(w>xi)xi

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

(σ(v>xi)− yi)σ′(w>xi)xi

∥∥∥∥∥
2

≤ 2

n

n∑
i=1

(σ(w>xi)− σ(v>xi))
2σ′(w>xi)

2 ‖xi‖22
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+
2

n

n∑
i=1

(σ(v>xi)− yi)2σ′(w>xi)2 ‖xi‖22

≤ 2LB2
X

n

n∑
i=1

(σ(w>xi)− σ(v>xi))
2σ′(w>xi) + 4L2B2

X F̂ (v)

= 4LB2
XĤ(w) + 4L2B2

X F̂ (v). (3.9)

The first inequality is due to Young’s inequality, and the second is due to Jensen’s inequality. The last
inequality holds because σ is L-Lipschitz and ‖x‖2 ≤ BX a.s. Putting (3.8) and (3.9) together and
taking η ≤ (1/8)L−3B−2X γ,

‖wt − v‖2 − ‖wt+1 − v‖2 ≥ 2η(γL−2Ĥ(wt)− Lγ−1F̂ (v))− 4η2(LB2
XĤ(wt) + L2B2

X F̂ (v))

≥ 2η
(
1/2 · γL−2Ĥ(wt)− 5/2 · Lγ−1F̂ (v)

)
≥ ηγLF̂ (v).

The last inequality uses the induction assumption that Ĥ(wt) ≥ 6L3γ−2F̂ (v), completing the
proof.

Since the auxiliary error Ĥ(w) is controlled by F̂ (v), we need to bound F̂ (v). When the marginals
of D are bounded, Lemma 3.8 below shows that F̂ (v) concentrates around F (v) = OPT at rate
n−1/2 by Hoeffding’s inequality; for completeness, the proof is given in Appendix F.
Lemma 3.8. If ‖x‖2 ≤ BX and |y| ≤ BY a.s. under Dx and Dy respectively, and if σ is non-
decreasing, then for a := (|σ(BX)|+BY )

2 and ‖v‖2 ≤ 1, we have with probability at least 1− δ,

|F̂ (v)− OPT| ≤ 3a
√
n−1 log(2/δ).

The final ingredient to the proof is translating the bounds for the empirical risk to one for the
population risk. Since Dx is bounded and we showed in Lemma 3.6 that ‖wt − v‖2 ≤ 1 throughout
the gradient descent trajectory, we can use standard properties of Rademacher complexity to get it
done. The proof for Lemma 3.9 can be found in Appendix F.
Lemma 3.9. Suppose σ is L-Lipschitz and ‖x‖2 ≤ BX a.s. Denote `(w;x) :=

(1/2)
(
σ(w>x)− σ(v>x)

)2
. For a training set S ∼ Dn, let RS(G) denote the empirical Rademacher

complexity of the following function class

G := {x 7→ w>x : ‖w − v‖2 ≤ 1, ‖v‖2 = 1}.
Then we have

R(` ◦ σ ◦ G) = ES∼DnRS(` ◦ σ ◦ G) ≤ 2L3B2
X/
√
n.

With Lemmas 3.6, 3.8 and 3.9 in hand, the bound for the population risk follows in a straightforward
manner.

Proof of Theorem 3.3 for strictly increasing activations. By Lemma 3.6, there exists some wt with
t < T and ‖wt − v‖2 ≤ 1 such that Ĥ(wt) ≤ 6L3γ−2F̂ (v). By Lemmas 3.5 and Lemma 3.8, this
implies that with probability at least 1− δ/2,

Ĝ(wt) ≤ 6L3γ−3
(
OPT + 3an−1/2 log1/2(4/δ)

)
. (3.10)

Since ‖w − v‖2 ≤ 1 implies `(w;x) = (1/2)(σ(w>x) − σ(v>x))2 ≤ L2B2
X/2, standard results

from Rademacher complexity (e.g., Theorem 26.5 of [28]) imply that with probability at least 1−δ/2,

G(wt) ≤ Ĝ(wt) + ES∼DnRS(` ◦ σ ◦ G) + 2L2B2
X

√
2 log(8/δ)

n
,

where ` is the loss and G is the function class defined in Lemma 3.9. We can combine (3.10) with
Lemma 3.9 and a union bound to get that with probability at least 1− δ,

G(wt) ≤ 6L3γ−3

(
OPT + 3a

√
log(4/δ)

n

)
+

2L3B2
X√

n
+

2L2B2
X

√
2 log(8/δ)√
n

.
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This shows that G(wt) ≤ O(OPT + n−1/2). By Claim 3.4, we have

F (wt) ≤ 2G(wt) + 2OPT ≤ O(OPT + n−1/2),

completing the proof for those σ satisfying Assumption 3.1.

3.2 ReLU activation

The proof above crucially relies upon the fact that σ is strictly increasing so that we may apply Fact 3.7
in the proof of Lemma 3.6. In particular, it is difficult to show a strong lower bound for the gradient
direction term in (3.8) if it is possible for (z1 − z2)2 to be arbitrarily large when (σ(z1)− σ(z2))2 is
small. To get around this, we will use the same proof technique wherein we show that the gradient
lower bound involves a term that relates the auxiliary error Ĥ(wt) to F̂ (v), but our bound will involve
a term of the form O(F̂ (v)1/2) rather than O(F̂ (v)). The proof of Lemma 3.10 is in Appendix C.

Lemma 3.10. Suppose that ‖x‖2 ≤ BX a.s. under Dx. Suppose σ is non-decreasing and
L-Lipschitz. Assume F̂ (v) ∈ (0, 1). For any initialization w0, gradient descent with fixed
step size η ≤ (1/4)L−2B−2X finds weights wt satisfying Ĥ(wt) ≤ 2L2BX F̂ (v)1/2 within
T = dη−1L−1B−1X F̂ (v)−1/2e iterations, with ‖wt − v‖2 ≤ ‖w0 − v‖2 for each t = 0, . . . , T − 1.

With this lemma, the proof of Theorem 3.3 for the ReLU activation follows just as in the strictly
increasing case. The details are left for Appendix C.

Remark 3.11. An examination of the proof of Theorem 3.3 shows that when σ satisfies Assumption
3.1, any initialization with ‖w0 − v‖2 bounded by a universal constant will suffice. In particular,
if we use Gaussian initialization w0 ∼ N(0, τ2Id) for τ2 = O(1/d), then by concentration of the
chi-square distribution the theorem holds with (exponentially) high probability over the random
initialization. For ReLU, initialization at the origin greatly simplifies the proof since Lemma
3.10 shows that ‖wt − v‖2 ≤ ‖w0 − v‖2 for all t. When w0 = 0, this implies ‖wt − v‖2 ≤ 1
and allows for an easy application of Lemma 3.5 to show that H(wt) is small implies F (wt) is
small. For isotropic Gaussian initialization, one can show that with probability approaching 1/2
that ‖w0 − v‖2 < 1 provided its variance satisfies τ2 = O(1/d) (see e.g. Lemma 5.1 of Yehudai
and Shamir [35]). In this case, the theorem will hold with constant probability over the random
initialization.

4 Noisy teacher network setting
In this section, we consider the teacher network setting, where the joint distribution of (x, y) ∼ D is
given by a target neuron v (with ‖v‖2 ≤ 1) plus zero-mean s-sub-Gaussian noise,

y|x ∼ σ(v>x) + ξ, Eξ|x = 0.

We assume throughout this section that ξ 6≡ 0; we deal with the realizable setting separately (and
achieve improved sample complexity) in Appendix E. We note that this is precisely the setup of the
generalized linear model with (inverse) link function σ. We further note that we only assume that
E[y|x] = σ(v>x), i.e., the noise is not assumed to be independent of the input x, and thus falls into
the probabilistic concept learning model of Kearns and Schapire [22].

With the additional structural assumption of a noisy teacher, we can improve the agnostic result from
O(OPT) + ε (for strictly increasing activations) and O(OPT1/2) + ε (for ReLU) to OPT + ε. The
key difference from the proof in the agnostic setting is that when trying to show the gradient points in
a good direction as in (3.8) and (C.2), since we know E[y|x] = σ(v>x), the average of terms of the
form ai(σ(v>xi)− yi) with fixed and bounded coefficients ai will concentrate around zero. This
allows us to improve the lower bound from 〈∇F̂ (wt), wt − v〉 ≥ C(Ĥ(w)− F̂ (v)α) to one of the
form ≥ C(Ĥ(w)− ε), where C is an absolute constant. The full proof of Theorem 4.1 is given in
Appendix D.

Theorem 4.1. Suppose Dx satisfies ‖x‖2 ≤ BX a.s. and E[y|x] = σ(v>x) for some ‖v‖2 ≤ 1.
Assume that σ(v>x)− y is s-sub-Gaussian. Assume gradient descent is initialized at w0 = 0 and fix
a step size η ≤ (1/4)L−2B−2X . If σ satisfies Assumption 3.1, let γ be the constant corresponding to
ρ = 2BX . There exists an absolute constant c0 > 0 such that for any δ > 0, with probability at least
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1− δ, gradient descent for T = η−1
√
n/(c0LBxs

√
log(4d/δ)) iterations finds weights wt, t < T ,

satisfying

F (wt) ≤ OPT + C1n
−1/2 + C2n

−1/2
√

log(8/δ) + C3n
−1/2

√
log(4d/δ), (4.1)

where C1 = 4L3B2
X , C2 = 2

√
2L2B2

X

√
2, and C3 = 4c0γ

−1L2sBX . When σ is ReLU, further
assume that Dx satisfies Assumption 3.2 for constants α, β > 0, and let ν = α4β/8

√
2. Then (4.1)

holds for C1 = B2
Xν
−1, C2 = 2C1, and C3 = 4c0sν

−1BX .

We first note that although (4.1) contains a log(d) term, the dependence on the dimension can be
removed if we assume that the noise is bounded rather than sub-Gaussian; details for this are given in
Appendix D. As mentioned previously, if we are in the realizable setting, i.e. ξ ≡ 0, we can improve
the sample and runtime complexities to O(ε−1) by using online SGD and a martingale Bernstein
bound. For details on the realizable case, see Appendix E.

In comparison with existing literature, Kakade et al. [20] proposed GLMTron to show the learnability
of the noisy teacher network for a non-decreasing and Lipschitz activation σ when the noise is
bounded.2 In GLMTron, updates take the form wt+1 = wt − ηg̃t where g̃t = (σ(w>t x) − y)x,
while in gradient descent, the updates take the form wt+1 = wt − ηgt where gt = g̃tσ

′(w>t x).
Intuitively, when the weights are in a bounded region and σ is strictly increasing and Lipschitz, the
derivative satisfies σ′(w>t x) ∈ [γ, L] and so the additional σ′ factor will not significantly affect the
algorithm. For ReLU this is more complicated as the gradient could in the worst case be zero in a
large region of the input space, preventing effective learnability using gradient-based optimization,
as was demonstrated in the negative result of Yehudai and Shamir [35]. For this reason, a type of
nondegeneracy condition like Assumption 3.2 is essential for gradient descent on ReLUs.

Our GLM result is also comparable to recent work by Foster et al. [11], where the authors provide a
meta-algorithm for translating guarantees for ε-stationary points of the empirical risk to guarantees
for the population risk provided that the population risk satisfies the so-called “gradient domination”
condition and the algorithm can guarantee that the weights remain bounded (see their Proposition
3). By considering GLMs with bounded, strictly increasing, Lipschitz activations, they show the
gradient domination condition holds, and any algorithm that can find a stationary point of an `2-
regularized empirical risk objective is guaranteed to have a population risk bound. In contrast, our
result concretely shows that vanilla gradient descent learns the GLM, even in the ReLU setting.

5 Conclusion and remaining open problems
In this work, we considered the problem of learning a single neuron with the squared loss by using
gradient descent on the empirical risk. We first analyzed this in the agnostic PAC learning framework
and showed that if the activation function is strictly increasing and Lipschitz, then gradient descent
finds weights with population risk O(OPT) + ε, where OPT is the smallest possible population risk
achieved by a single neuron. When the activation function is ReLU, we showed that gradient descent
finds a point with population risk at most O(OPT1/2) + ε. Under the more restricted noisy teacher
network setting, we showed the population risk guarantees improve to OPT + ε for both strictly
increasing activations and ReLU.

Our work points towards a number of open problems. Does gradient descent on the empirical
risk provably achieve population risk with a better dependence on OPT than we have shown in
this work, or are there distributions for which this is impossible? Recent work by Goel et al. [15]
provides a statistical query lower bound for learning a sigmoid with respect to the correlation loss
E[`(yσ(w>x))], but we are not aware of lower bounds for learning non-ReLU single neurons under
the squared loss. It thus remains a possibility that gradient descent (or another algorithm) can achieve
OPT + ε risk for such activation functions. For ReLU, Diakonikolas et al. [8] showed that gradient
descent on a convex surrogate for the empirical risk can achieve O(OPT) + ε population risk for log
concave distributions; it would be interesting if such bounds could be shown for gradient descent on
the empirical risk itself.

2A close inspection of the proof shows that sub-Gaussian noise can be handled with the same concentration
of norm sub-Gaussian random vectors that we use for our results.
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Broader Impact
This paper provides a theoretical analysis of gradient descent when used for learning a single neuron.
As a theoretical work, its potential risk for negative societal impacts is extremely limited. On the
other hand, our general lack of understanding of why gradient descent on large neural networks
can find weights that have both small empirical risk and also small population risk is worrisome
given the widespread adoption of large neural networks in sensitive technology applications. (A
reasonable expectation for using a piece of technology is that we understand how and why it works.)
Our work helps explain how, in a simple neural network model, gradient descent can learn solutions
that generalize well even though the optimization problem is highly nonconvex and nonsmooth. As
such, it provides a building block for understanding how more complex neural network models can
be learned by gradient descent.
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