
We thank all the reviewers for their insightful comments and suggestions.1

Reviewer 1:2

(1) Prior Literature (A)-(C): Thanks for the suggestions. We agree and will integrate them into the paper.3

(2) Separate assumption latex environment: We fully agree. Thanks for the suggestion.4

(3) Diversity: This is a good point. We will add a paragraph.5

(4) Prior: It was not our intention to claim that this is a **novel** prior family. We will rewrite that.6

(5) Discretized Prior: We fully agree with you that there are many arguments against the use of a discretized prior. It is7

not a natural choice. We do not advocate for this kind of priors, we use them because they allow us to characterize8

ensembles as variational methods which approximate the posterior distribution with a finite set of particles (instead9

of a continuous density belonging to some parametric family, as it is usually the case). One could, for example, use10

a mixture of Gaussians, which (in my opinion) will be more powerful and will also capture multimodality, but their11

treatment will be much more involved. But this characterization, which has been previously mentioned in [53], helps us12

to establish a direct link between our theoretical analysis and ensemble learning algorithms. So, the main purpose of13

Section 6.3 (and the use of the discretized prior) is to show that this work provides a candidate theoretical tool to study14

the generalization capacity of ensembles-like algorithms. In any case, we will add a caveat about the use of these priors15

and the reasons because we introduce them.16

Bernstein/Hoeffding type assumptions: Theorem 1 was initially presented in [2] and was restricted to “losses/likelihoods17

(and priors) under which the usual Bernstein/Hoeffding type assumptions hold”. But later, [17,45] showed that Theorem18

1 was also valid under general unbounded losses.19

Reviewer 2:20

Thanks for enumerating the typos. We plan to send the paper to a native English speaker.21

The paper focuses on density estimation because it is easier to present (and the notation is a bit simpler), but it readily22

applies to conditional densities too. Experiments were performed in supervised problems involving Bayesian neural23

networks because these are the settings where the community is currently paying more attention.24

Reviewer 3:25

Computational Complexity: Thanks for the point. You are right and we haven’t discussed it in the paper. But we are26

glad to introduce the following discussion either in the main body or in the appendix. From our theoretical analysis, we27

derive a new **loss** function, introduced in Equation (4). The computation of the gradient of this loss function is28

more complex than the standard variational loss function (see Equation (2)), but not too much. Looking at Equation29

(C.12), we can see that it is a constant factor 2 more complex. However, it is not clear if the optimization of this new30

loss function is or not more involved than the optimization of the standard variational loss function (Equation (2)), this31

is going to depend on the loss landscape and the noise of the gradients. More research in this direction is needed in32

order to properly answer this question.33

Evaluation Simpler Models: This is also a good point. This is mostly a theoretical paper, but we decided to illustrate34

this approach in a modern or hot problem to highlight that this theoretical analysis could be potentially very useful35

(and it is not just a theoretical curiosity). In any case, Figures C5-C9 in the appendix further illustrate this approach36

on simpler models. We are currently working on an evaluation based on a mixture of Gaussians where the number of37

components is misspecified, and we plan to include it in the appendix (if the paper is accepted). And, of course, future38

works will focus on extensive empirical evaluations of this approach.39

Reviewer 4:40

Comparisions with stronger baselines: Thanks for the reference, we were not aware of SWAG, and we will try to41

include it in the experimental evaluation, we think it is a fair comparison. We use standard mean-field variational42

because is simple and widely used in this kind of problems. In this case, the mean-field approach defines the solution43

space. So, the variational approach gets the minimum of Equation (2) within this solution space. We think it is fair44

to compare with the minimum of Equation (4) within the same solution space. Because, in this case, we can clearly45

evaluate which is the effect of considering the new presented loss function. Richer solution spaces could be considered46

too (e.g. “The k-tied Normal Distribution” Swiatkowski et al (2020)). But the fair comparison will be to evaluate both47

the minimum of Equation (2) versus the minimum of Equation (4) within the same solution space. Moreover, one could48

eventually think if a counter-part version of SWAG could be defined using the insights derived from this paper. In any49

case, we agree that an extensive empirical evaluation of this approach is needed to see whether this research direction is50

able to provide new SOTA results.51


