
We thank all reviewers for their valuable feedback. We tried our best to address their questions within the page limit.1

(R1,R3)(1): We agree that R1’s suggested approach (of training structured convolution as a architectural feature) is2

more direct and does not require computing the regularization. We actually experimented with the suggested ‘direct’3

approach and observed that the regularization based approach always outperformed the direct approach (by 1.5% for4

Struct-18-A and by 0.9% for Struct-MV2-A). We think this is because the direct approach optimizes the weights in a5

restricted subspace of c×n×n kernels right from the start, whereas the regularization based approach gradually moves6

the weights from the larger (C×N×N ) subspace to the restricted subspace with gradual imposition of the structure7

constraints using the regularization loss. We will include this analysis and the results in more detail in the revision. We8

hope that this also addresses R3’s question “why not directly optimize the weights in the restricted subspace?”9

(R1)(2): We agree with R1 that finetuning using Eq (3) from pretrained weights (whenever they are available) may be a10

useful alternative, but our proposed method also works well with random initialization.11

Training costs
(batchsize=256)

Struct-18-A Struct-MV2-A

Mem sec/iter Mem sec/iter

With SR loss 9.9GB 0.46s 18.8GB 0.38s
Without SR loss 9.2GB 0.44s 17.9GB 0.37s

(R1,R4) Computational cost of regularization term:12

Although our focus is more on inference efficiency, we13

measure memory and time-per-iteration for training with14

and w/o SR loss, on an NVIDIA V100 GPU. Mathemat-15

ically, the SR term,
∑L

l=1

‖(I−AlA
+
l )Wl‖

F

‖Wl‖F
, is indepen-16

dent of the input size. Hence, when using a large batchsize, the SR term’s memory and runtime overhead is relatively17

small as shown in the table. As R1 suggested, we could eliminate the computational cost of the regularization term if18

we use the ‘direct’ approach, but that leads to a noticeable loss in accuracy as shown in above answer.19

(R1) Comments on Fig.6: In Fig. 6, we compare our performance with the widely20

used structured compression approaches [48]-2016, [12]-2017, [35]-2018, since our21

method belongs to this category. In addition, Tables 1,2,3 present comparisons with22

some of the most recent methods in efficient architectures (e.g. GhostNet - CVPR23

2020, SlimmableNets - ICLR 2019). Following R1’s suggestion, we will add error-24

bars to Fig.6. We show one of the acc v/s parameters plots here for reference. Note25

that, we provide the mean ± stddev values for our method, whereas the compared26

methods have only provided their ‘best’ numbers. As visible, the proposed method27

outperforms by a considerable margin (0.5% than the highly regarded AMC [11]).28

Looking beyond performance numbers, we think that our proposal of the structured29

convolutions offers a new way in efficient model design.30

(R1,R4) Inference latency: Following the convention in EfficientNet paper [37],31

we report the average inference latency over 50 runs measured with batch size 1 on a single core of Intel Xeon CPU32

W-2123. As discussed on lines 231-23533 ResNet18 0.039s MobilenetV2 0.088s EfficientNet-B1 0.114s

Struct-18-A 0.030s Struct-MV2-A 0.078s Struct-EffNet 0.101s
and also pointed out by R4, our method34

is designed for recent accelerators [44]35

that allow efficient sum-pooling operations, thus the theoretical speedups (Tables 1-4) are realizable on such platforms.36

(R3,R4) Details on training Steps 1 and 2: To answer R4’s question, we first train the model until convergence in37

Step1 which imposes the desired structure and then decompose in Step 2. To answer R3’s question, the approximation38

error comes in Step 2 after decomposition (αl = A+
l Wl). This is because the desired structure is not enforced, but39

induced via the loss function. We do provide performance numbers after 1st step (and 2nd step) for ResNet18 in Sec. E40

(tables 3,4) of supplementary. We will report these numbers for all other architectures too in our camera-ready version.41

(R4) Clarification on Implementation Details: We will add pseudocode and more intuitive diagrams about the42

training details in the appendix of our camera-ready version. As outlined in Fig. 4 of paper, the implementation steps43

may be summarized as follows - in Step 1, we train the architecture with original C×N×N kernels in place and the44

regularization loss imposes desired structure on these kernels. Then, in step 2, we decompose the C×N×N convolution45

layer and replace it with a sum-pooling layer followed by a smaller conv layer with kernels of size c×n×n. The reported46

parameters and operations (in Tables 1-4) were calculated using https://github.com/sovrasov/flops-counter.pytorch.47

(R3) Laplacian filter: A Laplacian filter can be constructed with the48

basis (βi’s) as shown, hence can be decomposed into just a horizontal49

and vertical sum-pooling component. This is an interesting analysis question, that we plan to look into as future work.50

(R2): Simply swapping 3×3 kernels with 2×2’s in MobileNetV2 led to a severe drop in accuracy (≈ 4.5%). This, we51

believe, is due to the loss of receptive field that was being captured by the sum-pooling part of structured convolutions.52

(R2,R3) Typos: Thanks R2, R3 for finding the typos. We will correct them in the camera-ready version.53


