- We are very grateful to the reviewers for their constructive and detailed feedback. We address specific reviewer
- comments and questions below; we will incorporate all the feedback into any final version of our paper.
- **Novelty of the paper** (Reviewer 3): What's the main novelty of this paper, in light of techniques in prior work?
- We agree that the core self-avoiding walk technique (as well as the color-coding technique) appeared in HS17 in the
- context of stochastic block models, and that nonbacktracking walks appeared in other prior work on stochastic block
- models. However, we feel that the main result of our paper a polynomial-time algorithm for the spiked matrix model
- with heavy-tailed noise is compelling on its own, because it provides a sharp algorithmic guarantee for a very simple
- and widely-studied problem. Our results also illustrate the versatility of the self-avoiding walk technique, in directions
- which were not obvious from prior literature, which focused on stochastic block models. For example, 9
 - the technique can provide sharp guarantees for general noise distributions, not just discrete distributions,
 - the technique does not require the assumption that the entries in **spiked vector** are sampled from some **i.i.d** distribution with zero mean and unit variance,
 - the technique can extend beyond matrix settings, to handle **spiked tensor models**.
- Furthermore, our work overcomes nontrivial technical difficulties in extending the self-avoiding walk method to these 14
- more general settings for instance, allowing general spike vectors x (rather than $x \in \{\pm 1\}^n$ as in the block model 15
- setting) requires a substantially more challenging analysis of both the mean and the variance of the self-avoiding walk 16
- estimator. 17

10

11

12

13

- **Exposition**: Writing in sections 2 and 3 is uneven 18
- Several reviewers remarked that while the introduction to our paper is well written, the exposition in sections 2 and 3 is 19
- more uneven. We are grateful for this feedback. We have already worked to improve the exposition in these sections, 20
- and we will additionally incorporate the feedback from reviewers in the final version of our paper. 21

Technical clarifications and detailed responses

- Dependence on δ (Reviewer 1): The dependence of δ in the main theorem is indeed $n^{\text{poly}(1/\delta)}$.
- Clarifications in proof of Theorem 2.4 (Reviewer 3): We will include proof of the graph-theoretic relation $p \le r s k$ 24
- and the bound $n^{2(\ell-1)-r}\ell^{O(r-k)}$ in a revised full version. Following the line 227, the second expectation is uniformly 25
- taken over the labeling of $2(\ell-1)-r$ vertices in $\alpha\cup\beta$. Finally, $\ell^{O(1)}$ diminish' means that for r=k, the bound is given by $(1+n^{-\Omega(1)})\lambda^{2\ell}n^{2(\ell-1)}n^{-k}\lambda^{-2k}$, without additional $\ell^{O(1)}$ factor. Again, we will clarify these points upon 26
- 27
- revision.
- Clarification in the statement of lemma 2.5(Reviewer 3): Let $V \subseteq [n]$, $||x|| = \sqrt{n}$ and $t_1, t_2 \in \mathbb{N}$. We define the 29
- quantity $S_{t_1,t_2,V} = \mathbb{E}_{(v_1,\dots,v_{t_1+t_2})\subseteq [n]\setminus V}\left[\prod_{i=1}^{t_1}x_{v_i}^2\prod_{i=t_1+1}^{t_1+t_2}x_{v_i}^4\right]$ where $(v_1,v_2,\dots,v_{t_1+t_2})$ is uniformly sampled from all size- (t_1+t_2) ordered subsets of $[n]\setminus V$ (without repeating elements). Then assuming $|V|,t_1,t_2=O(\log n)$ and $\|x\|_{\infty}^2=n^{1-\Omega(1)}$, we have $S_{t_1,t_2,V}\leq (1+n^{-\Omega(1)})\|x\|_{\infty}^{2t_2}$. Further if $t_2=0$, we have $S_{t_1,t_2,V}\geq 1-n^{-\Omega(1)}$.
- 31
- 32
- Notation in figures describing experiments (Reviewer 4): The label "naive" corresponds to the naive PCA algo-33
- rithm(extracting the leading eigenvector). The label "worst" corresponds to the information-theoretically optimal 34
- recovery rate in case of Gaussian noise. 35
- Why do some figures only have curves of truncation method and some figures only have curves of self-avoiding walk
- estimator? The scale 2000×2000 will be computationally expensive for self-avoiding walk estimator; at this scale 37
- we can still run the truncation-based algorithm. We thank reviewer 4 for the suggestion of putting all five methods in at 38
- least one figure (this can be done for matrices with smaller dimension) we will add such a figure. 39
- In the spiked matrix model, the authors only make assumption about the infinity norm of the spiked vector. However in 40
- the spiked tensor model, the authors assume that the entries are i.i.d sampled with zero mean and unit variance. Is this 41
- difference essential? (Reviewer 3, Reviewer 4): This difference is not essential. We can prove similar guarantee for 42
- spiked tensor model using nearly the same techniques, only assuming bound on the infinity norm of the spiked vector. 43
- However, the proof becomes lengthier. We will discuss this in a revised version of our paper.
- Does the result in [PWBM18] require light tail? (Reviewer 4): [PWBM18] requires the 10-th moment of each entry in 45
- the noise matrix to remain constant as $n \to \infty$. 46
- Typos: We are grateful to several reviewers for supplying a list of typos and small errors; we will address all of these in 47
- a revised manuscript. 48
- Relevant literature: We are grateful to reviewer 4 for pointing out a relevant literature.