
Appendix

A MDP Examples for Section 3

Problem with selecting oracles based on initial value. In the example of Figure 4, each oracle
π` and πr individually gets same the suboptimal reward of 1/2. Alternatively, we can switch between
the oracles once to get a reward of 3/4, and twice to get the optimal reward of 1.
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Figure 4: An example MDP for illustrative purposes. All terminal states not shown give a reward of
0 and intermediate states have no rewards. Two oracle policies π` and πr choose the left and right
actions respectively in each state. The optimal terminal state is outlined in bold.

Ordering of π• and πmax. Consider the example MDP of Figure 5. In the state s0, the policy π•
selects the oracle with largest value in s0 and goes left. It subsequently selects the right oracle in
s1 and left in s4 to get the optimal reward. πmax on the other hand chooses between the left and
right actions in s0 based on fmax(s1) = 0.7 and fmax(s2) = 3/4. Consequently it goes right and
eventually obtains a suboptimal reward of 3/4. In this case, we see that π• is better than πmax. On
the other hand, if we swap the rewards of s7 and s11, then π• chooses the right action in s0 and
gets a suboptimal reward. Further swapping the rewards of s9 and s10 makes πmax pick the left
action in s0 and it eventually reaches the optimal reward. This illustrates clearly that πmax and π•
are incomparable in general.
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Figure 5: An alternate example MDP for illustrative purposes. All terminal states not shown give a
reward of 0 and intermediate states have no rewards. Two oracle policies π` and πr choose the left
and right actions respectively in each state. The optimal terminal state is outlined in bold.
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B Additional Notes on Related Work

Several prior works proposed empirical approaches to IL settings with multiple oracles. Info-
GAIL [20] is an extension of GAIL [39] that aims at automatically identifying semantically mean-
ingful latent factors that can explain variations in demonstrations across oracles. It assumes that
demonstrations come from a mixture-of-oracles policy, where each demonstration is generated by
sampling a value of the latent factors from a prior and using it to condition an oracle’s action choices.
InfoGAIL tries to recover this oracle mixture. In contrast, MAMBA can be viewed as choosing
actions based on learned estimates of oracles’ value functions without imitating any single oracle or
their mixture directly. In multi-modal IL [40], latent factors conceptually similar to those in InfoGAIL
correspond to different skills being demonstrated by the oracles, and Tamar et al. [41]’s approach
focuses on settings where these factors characterize different oracles’ intentions. OIL [19] is more
similar to MAMBA: like MAMBA, it uses individual oracle policies’ state values to decide on an
action in a given state. However, OIL does so by using the best-performing oracle in a given state as
the learner’s “critic" and doesn’t justify its approach theoretically.

At least two algorithms have used a Bayesian approach to decide which oracle to trust in a multiple-
oracle setting. AC-Teach [21] models each oracle with a set of attributes and relies on a Bayesian
approach to decide which action to take based on their demonstrations. Gimelfarb et al. [42] assumes
that oracles propose reward functions, some of which are inaccurate, and uses Bayesian model
combination to aggregate their advice. Out of the two, AC-Teach can be regarded as a Bayesian
counterpart of MAMBA, but, like other existing approaches to learning from multiple oracles, doesn’t
come with a theoretical analysis.

Lastly, we remark that the improvement made from the suboptimal oracles in MAMBA is attributed
to using reward information in IL, similar to AggreVaTeD [14] but different from behavior cloning [7]
or DAgger [12]. While we allow weaker oracle policies than are typical in IL literature, they still
need to have meaningful behaviors to provide an informative advantage MAMBA to improve upon;
e.g., they cannot be completely uniformly random policies as is often done in the batch RL setting.

C Proofs

C.1 Proof of Lemma 1

Lemma 1. [26, 27] Let f : S → R be such that f(sT ) = 0. For any MDP and policy π,

V π(d0)− f(d0) = TEs∼dπ [Af (s, π)]. (4)

Proof. By definition of dπ , we can write

V π(d0) = TEs∼dπEs∼π|s[r(s, a)] = TEs∼dπ [r(s, π)]

On the other hand, we can write

−f(d0) =

T−1∑
t=1

f(dt)−
T−1∑
t=0

f(dt) = TEs∼dπ [Ea∼π|sEs′∼P|s,a[f(s′)]− f(s)]

Combing the two equalities shows the result. �

C.2 Proof of Corollary 1

Corollary 1. If f is improvable w.r.t. π , then V π(s) ≥ f(s), ∀s ∈ S.

Proof. Because Lemma 1 holds for any MDP, given the state s in Corollary 1 we can define a new
MDP whose initial state is at s and properly adapt the problem horizon. Then Corollary 1 follows
directly from applying Lemma 1 to this new MDP. �

C.3 Proof of Proposition 1

Proposition 1. fmax in (5) is improvable with respect to π•, i.e. Amax(s, π•) ≥ 0.
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Proof. Let us recall the definition (3) of ks and let us assume without loss of generality that ks = 1.
We observe that

Amax(s, π•) = r(s, π•) + Ea∼π•|sEs′∼P|s,a[fmax(s′)]− fmax(s)

≥ r(s, π•) + Ea∼π•|sEs′∼P|s,a[V 1(s′)]− V 1(s) = AV
1

(s, π1) ≥ 0

where the last step follows since π•(a|s) = πks(a|s) = π1(a|s) and the advantage of a policy with
respect to its value function is always 0. �

C.4 Proof of Theorem 1

Theorem 1. Suppose a first-order online algorithm that satisfies E[RegretN ] ≤ O(βN +
√
νN) is

adopted, where β and ν are the bias and the variance of the gradient estimates, respectively. Then

E[ max
n∈[N ]

V πn(d0)] ≥ Es∼d0 [ max
k∈[K]

V k(s)] + E[∆N − εN (Π)]−O(β +
√
νN−1/2) (11)

where the expectation is over the randomness in feedback and the online algorithm.

Proof. By using (8) and the assumption on the first-order algorithm, we can write

E

 1

N

∑
n∈[N ]

V πn(d0)

 = fmax(d0) + E
[
∆N − εN (Π)− RegretN

N

]

≥ fmax(d0) + E [∆N − εN (Π)]−O
(
β +

√
ν

N

)
Finally, using 1

N

∑
n∈[N ] V

πn(d0) ≤ maxn∈[N ] V
πn(d0) and the definition of fmax, we have the

final statement. �

C.5 Proof of Lemma 2

Lemma 2. For any policy π, any λ ∈ [0, 1], and any baseline value function f : S → R,

V π(d0)− f(d0) = (1− λ)TEs∼dπ
[
Af,πλ (s, π)

]
+ λEs∼d0

[
Af,πλ (s, π)

]
, (14)

where Af,πλ is defined like Amax,π
λ but with a general f instead of fmax.

Proof. The proof is uses a new generalization of the Performance Difference Lemma (Lemma 1),
which we state generally for non-Markovian processes. A similar equality holds for the infinite-
horizon discounted problems.

Lemma 5 (Non-even performance difference lemma). Let π be a policy and let f be any function that
is history dependent such that EhT∼dπT [f(hT )] = 0. Let τ0, τ1, τ2, . . . τI be monotonically increasing
integers where τ0 = 0 and τI = T . For any non-Markovian decision process, it holds that,

V π(d0)− f(d0) =

I−1∑
k=0

Ehτk∼dπτk [Af,π(ik)(hτk , π)]

where ik = τk+1 − τk − 1.

Proof of Lemma 5. By definition,

V π(d0) =

T−1∑
t=0

Eht∼dπt [r(ht, π)] =

I−1∑
k=0

Ehτk∼dπτkEρπ|hτk

[
τk+1−1∑
t=τk

r(ht, at)

]

On the other hand, we can write −f(d0) =
∑I
k=1 f(dπτk) −

∑I−1
k=0 f(dπτk). Combing the two

equalities shows the result. �
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Now return to the Markovian case. Using Lemma 5, we derive a λ-weighted Performance Difference
Lemma (Lemma 2). A history dependent (discounted) version can be shown similarly. To simplify
writing, we let Θ = V π(d0)−f(d0) andA(i) = Af,π(i) as shorthands, and we will omit the dependency
on random variables in the expectation. Using Lemma 5, we can write

Θ =
∑

t=0,1,...,T−1

Edπt Eπ[A(0)]

2Θ =
∑

t=0,2,4...

Edπt Eπ[A(1)] +

(
Ed0Eπ[A(0)] +

∑
t=1,3...

Edπt Eπ[A(1)]

)

= Ed0Eπ[A(0)] +

T−1∑
t=0

Edπt Eπ[A(1)]

3Θ =
∑

t=0,3,6...

Edπt Eπ[A(2)] +

(
Ed0Eπ[A(0)] +

∑
t=1,4...

Edπt Eπ[A(2)]

)

+

(
Ed0Eπ[A(1)] +

∑
t=2,5...

Edπt Eπ[A(2)]

)

= Ed0Eπ[A(0)] + Ed0Eπ[A(1)] +

T−1∑
t=0

Edπt Eπ[A(2)]

...

Applying a λ-weighted over these terms, we then have

(1− λ)(1 + 2λ+ 3λ2 + . . . )Θ = TEdπEπ

[
(1− λ)

∞∑
i=0

λiA(i)

]
+ λ

∞∑
i=0

λiEd0Eπ[A(i)]

Because for λ < 1, λ+ 2λ2 + 3λ3 + · · · = λ
(1−λ)2 , we have

(1− λ)(1 + 2λ+ 3λ2 + . . . ) =
1− λ
λ

(λ+ 2λ2 + 3λ3 + . . . ) =
1− λ
λ

λ

(1− λ)2
=

1

1− λ
The above derivation implies that

Θ = V π(d0)− f(d0) = (1− λ)TEdπEπ

[
(1− λ)

∞∑
i=0

λiA(i)

]
+ λ(1− λ)

∞∑
i=0

λiEd0Eπ
[
A(i)

]
�

C.6 Proof of Lemma 3

Lemma 3. For any λ ∈ [0, 1], any baseline value function f : S → R, and any policy π, the
following holds:

h(π;λ) := (1− λ)TEs∼dµ
[
Af,πλ (s, π)

]
+ λEs∼d0

[
Af,πλ (s, π)

]
(15)

∇h(π;λ)|µ=π = TEs∼dπEa∼π|s[∇ log π(a|s)Af,πλ (s, a)], (16)

where dµ denotes the average state distribution of a policy µ.

Proof. We first show the gradient expression in the second term in h(π;λ).

Lemma 6.

∇Es∼d0
[
Af,πλ (s, π)

]
=

T−1∑
t=0

λtEst∼dπt Eat∼π|st
[
∇ log π(at|st)Af,πλ (st, at)

]
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Proof of Lemma 6. Define Qf,π(i−t)(st, at) := Eρπ|st,at
[∑i−t

τ=0 r(st+τ , at+τ ) + f(si+1)
]
. By using

the definition of i-step advantage function Af,π(i) , we can first rewrite the desired derivative as

∇Es∼d0
[
Af,π(i) (s, π)

]
= ∇Es∼d0Eρπ|s0 [r(s0, a0) + r(s1, a1) + · · ·+ r(si, ai) + f(si+1)]− f(st)

=

i∑
t=0

Est∼dπt Eat∼π|st
[
∇ log π(at|st)Qf,π(i−t)(st, at)

]
=

i∑
t=0

Est∼dπt Eat∼π|st
[
∇ log π(at|st)Af,π(i−t)(st, at)

]
where in the last equality we use the fact∇Ea∼π|s[f(s)] = 0 for any f : S → R. Therefore, we can
write the λ-weighted version as follows:

∇Es∼d0
[
Afλ(s, π)

]
= (1− λ)

∞∑
i=0

∇Es∼d0
[
λiAf,π(i) (s, a)

]
= (1− λ)

∞∑
i=0

i∑
t=0

λiEst∼dπt Eat∼π|st
[
∇ log π(at|st)Af,π(i−t)(st, at)

]
= (1− λ)

T−1∑
t=0

∞∑
i=t

λiEst∼dπt Eat∼π|st
[
∇ log π(at|st)Af,π(i−t)(st, at)

]
= (1− λ)

T−1∑
t=0

λt
∞∑
j=0

λjEst∼dπt Eat∼π|st
[
∇ log π(at|st)Af,π(j) (st, at)

]

=

T−1∑
t=0

λtEst∼dπt Eat∼π|st
[
∇ log π(at|st)Af,πλ (st, at)

]
�

With this intermediate result, we can further derive the gradient expression in the first term in
∇h(π;λ) when µ = π:

TEs∼dπ
[
∇Af,πλ (s, π)

]
=

T−1∑
t=0

Es∼dπt ∇
[
Afλ(s, π)

]
=

T−1∑
t=0

T−1∑
τ=t

λτ−tEsτ∼dπτEaτ∼π|sτ
[
∇ log π(aτ |sτ )Af,πλ (sτ , aτ )

]
=

T−1∑
τ=0

Esτ∼dπτEaτ∼π|sτ
[
∇ log π(aτ |sτ )Af,πλ (sτ , aτ )

]( τ∑
t=0

λτ−t

)

=

T−1∑
t=0

1− λt+1

1− λ
Est∼dπt Eat∼π|st

[
∇ log π(at|st)Af,πλ (st, at)

]
Finally, combining the two equalities, we arrive at a very clean expression:

∇h(π;λ)|µ=π = (1− λ)TEs∼dπ
[
∇Afλ(s, π)

]
+ λEs∼d0

[
∇Afλ(s, π)

]
=

T−1∑
t=0

Est∼dπt Eat∼π|st
[
∇ log π(at|st)Af,πλ (st, at)

](
(1− λ)

1− λt+1

1− λ
+ λ · λt

)

=

T−1∑
t=0

Est∼dπt Eat∼π|st
[
∇ log π(at|st)Af,πλ (st, at)

]
�
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C.7 Proof of Lemma 4

Lemma 4. Define Â(s, a) := r(s, a) + Es′|s,a[f̂max(s′)]− f̂max(s). It holds that for all λ ∈ [0, 1],

Âπλ(st, at) = Eξt∼ρπ|st
[∑T−1

τ=t λ
τ−tÂ(aτ , sτ )

]
(18)

Proof. This equality can be derived as follows:

Âπλ(st, at)

= (1− λ)Eξt∼ρπ|st

[ ∞∑
i=0

λi

(
t+i∑
τ=t

r(sτ , aτ ) + f̂max(st+i+1)

)]
− f̂max(st)

= Eξt∼ρπ|st

[
T−1∑
τ=t

r(sτ , aτ )

(
(1− λ)

∞∑
i=τ−t

λi

)
+ (1− λ)

∞∑
i=0

λif̂max(st+i+1)

]
− f̂max(st)

= Eξt∼ρπ|st

[
T−1∑
τ=t

λτ−tr(sτ , aτ ) + (1− λ)

T−1∑
τ=t

λτ−tf̂max(sτ+1)

]
− f̂max(st)

= Eξt∼ρπ|st

[
T−1∑
τ=t

λτ−tr(sτ , aτ ) +

T−1∑
τ=t

λτ−tf̂max(sτ+1)−
T−1∑
τ=t+1

λτ−tf̂max(sτ )

]
− f̂max(st)

= Eξt∼ρπ|st

[
T−1∑
τ=t

λτ−t
(
r(sτ , aτ ) + f̂max(sτ+1)− f̂max(sτ )

)]

= Eξt∼ρπ|st

[
T−1∑
τ=t

λτ−tÂ(sτ , aτ )

]

�

C.8 Proof of Theorem 2

Theorem 2. Performing no-regret online learning w.r.t. (12) has the guarantee in Theorem 1, except
now εN (Π) can be negative when λ > 0.

Proof. The proof Theorem 2 is based on the non-trivial technical lemma of this general λ-weighted
advantage, which we recall below.

Lemma 2. For any policy π, any λ ∈ [0, 1], and any baseline value function f : S → R,

V π(d0)− f(d0) = (1− λ)TEs∼dπ
[
Af,πλ (s, π)

]
+ λEs∼d0

[
Af,πλ (s, π)

]
, (14)

where Af,πλ is defined like Amax,π
λ but with a general f instead of fmax.

To prove the theroem, we can then write down an equality like (8) by the equality V πn(d0) −
fmax(d0) = `n(πn;λ) we just obtained:

1

N

∑
n∈[N ]

V πn(d0) = fmax(d0) + ∆N − εN (Π)− RegretN
N

where RegretN , ∆N , and εN (Π) are now defined with respect to the λ-weighted online loss `n(π;λ).
Therefore, running a no-regret algorithm with respect to the approximate gradient (17) of this online
loss function `n(π;λ) would imply a similar performance guarantee shown in Theorem 1 (see the
proof Theorem 1).

Finally, to justify the use of (17), what remains to be shown is that the term ∆N − εN (Π) behaves
similarly as before. First we notice that, because πmax may not be the best policy for the multi-step
advantage in the online loss `n(π;λ), εN (Π) now be negative (which is in our favor). Next, we show
that ∆N ≥ 0 is true by Proposition 2 (whose proof is given below).
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Proposition 2. It holds −`n(πmax;λ) ≥ 0.

These results conclude the proof of Theorem 2.

�

C.8.1 Proof of Proposition 2

Proposition 2. It holds −`n(πmax;λ) ≥ 0.

Proof. We first prove a helpful lemma.

Lemma 7. For πmax, it holds that Amax
(i) (s, πmax) ≥ 0.

Proof of Lemma 7. Without loss of generality, take s = s0. First we arrange

Amax
(i) (s0, π

max) = Eρπmax |s0

[
r(s0, a0) + r(s1, a1) + · · ·+ r(si, ai) + V ksi+1 (si+1)

]
− V ks0 (s0)

= Eρπmax |s0 [r(s0, a0) + r(s1, a1) + · · ·+Qmax(si, π
max)]− V ks0 (s0)

where we have the inequality

Qmax(si, π
max) := Eai∼πmax|si [r(si, ai) + Esi+1∼P|si,ai [V

ksi+1 (si+1)]]

≥ Eai∼πksi |si [r(si, ai) + Esi+1∼P|si,ai [V
ksi+1 (si+1)]]

≥ Eai∼πksi |si [r(si, ai) + Esi+1∼P|si,ai [V
ksi (si+1)]]

= V ksi (si)

By applying this inequality recursively, we get

Amax
(i) (s0, π

max) ≥ V ks0 (s0)− V ks0 (s0) ≥ 0

�

The lemma above implies Amax
λ (s, πmax) ≥ 0 for λ ≥ 0 and therefore we have

−ln(πmax;λ) = (1− λ)TEs∼dπn [Amax
λ (s, πmax)] + λEs∼d0 [Amax

λ (s, πmax)] ≥ 0

�

D Experiment Details and Additional Results

In this section we describe the details of MAMBA and additional experimental results.

D.1 Implementation Details of MAMBA

We provide the details of MAMBA in Algorithm 1 as Algorithm 2, which closely follows Algorithm 1
with a few minor, practical modifications which we describe below:

• The UpdateInputWhitening function keeps a moving average of the first and the second
moment of the states it has seen, which is used to provide whitened states (by subtracting
the estimated mean and dividing by the estimated standard deviation) as the input to the
neural network policy.

• In Algorithm 2, te = SampleSwitchTime(tavg) samples te based on a geometric distribution
whose mean is tavg, because in the learner might not always be able to finish the full T
steps. The trajectory data are therefore suitably weighted by an importance weight 1

Tp(te)
to

correct for this change from using the uniform distribution in sampling for te.

Apart from these two changes, Algorithm 2 follows the pseudo-code in Algorithm 1.

We provide additional details of the experimental setups below.
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Algorithm 2 Implementation details of MAMBA for IL with multiple oracles

Input: Initial learner policy π1, oracle polices {πk}k∈[K], function approximators {V̂ k}k∈[K].
Output: The best policy in {π1, . . . , πN}.
1: For each k ∈ [K], collect data Dk by rolling out πk for the full problem horizon.
2: Update value models V̂ k = MonteCarloRegression(Dk) for k ∈ [K].
3: π1 = UpdateInputWhitening(π1,

⋃
Dk)

4: for n = 1 . . . N − 1 do
5: Sample a trajectory using πn to collect data D′n.
6: Let te = SampleSwitchTime(tavg) ∈ [T − 1], where tavg is the average trajectory length of D′1:n−1 (for

the first iteration set tavg = 0). Sample a RIRO trajectory using πn and then πk after t ≥ te to collect
data DRIRO, where k is uniformly sampled in [K]. If the sampled trajectory in DRIRO is longer than te,
aggregate the trajectory after te in DRIRO into Dk with importance weight 1

Tp(te)
. Otherwise, aggregate

DRIRO into D′n.
7: Update value model V̂ k = MonteCarloRegression(Dk).
8: Let π′n = UpdateInputWhitening(πn,D′n) and compute the sampled gradient based onD′n with one-step

importance sampling as

gn = −
T−1∑
t=0

∇ log π′n(at|st)
π′n(at|st)
πn(at|st)

(
T−1∑
τ=t

λτ−t
(
r(sτ , aτ ) + f̂max(sτ+1)− f̂max(sτ )

))

where the recursion starts with V̂ k(sT ) = 0 and f̂max(s) = maxk∈[K] V̂
k(s).

9: Update the policy πn+1 = MirrorDescent(π′n, gn).
10: end for

• Time is appended as a feature in addition to the raw state, i.e. s = (t, s̄).
• The policy is a Gassian with mean modeled by a (128, 128) FCNN (fully connected neural

network), and the standard deviation is diagonal, learnable and independent of the state. The
value function is estimated by a (256, 256) FCNN. In these FCNNs, the activation functions
are tanh except the last layer is linear. The policy and the value networks are parameterized
independently.

• MonteCarloRegression performs weighted least-squared regression by first whitening the
input and then performing 100 (CartPole, DoubleInvertedPendulum) or 800 (HalfCheetah,
Ant) steps of ADAM with a batchsize of 128 samples and step size 0.001. The target is
constructed by Monte-Carlo estimate and one-step importance sampling, if necessary.

• MirrorDescent is set to be either ADAM [37] or Natural Gradient Descent (NGD) [38]. We
adopt the default hyperparamters of ADAM (β1 = 0.9 and β2 = 0.99) and a stepsize 0.001.
For NGD, we adopt the ADAM-style adaptive implementation described in [43, Appendix
C.1.4] using β2 = 0.99 and a stepsize of 0.1.

• Dk is limited to data from the past 100 (CartPole, DoubleInvertedPendulum) or 2 (HalfChee-
tah, Ant) iterations. Policy gradient always keeps 2 iterations of data.

• All MAMBA, PG-GAE, and AggreVaTeD follow the protocol in Algorithm 2. In the pre-
training phase (lines 1-3), each oracle policy (or the learner policy for PG-GAE) would
perform 16 (CartPole, DoubleInvertedPendulum) or 512 (HalfCheetah, Ant) rollouts to
collect the initial batch of data to train its value function estimator. For HalfCheetah and
Ant, these data are also used to pretrain the learner policies by behavior cloning7 In every
iteration, each algorithm would perform 8 (CartPole, DoubleInvertedPendulum) or 256
(HalfCheetah, Ant) rollouts: For MAMBA and AggreVaTeD, half rollouts are used to collect
data for updating the value functions (line 6) and half rollouts (line 5) are for computing
the gradient. For PG-GAE, all rollouts are performed by the learner; they are just used to
compute the gradient and then update the value function (so there is no correlation).

• Additional 8 (CartPole, DoubleInvertedPendulum) or 256 (HalfCheetah, Ant) rollouts are
performed to evaluate the policy’s performance, which generate the plots presented in the
paper.

7We found that without behavior cloning AggreVaTeD would not learn to attain the oracle’s performance,
potentially due to high dimensionality. Therefore, we chose to perform behavior cloning with the best oralce
policy as the initialization for all IL algorithms in comparison here.
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• All environments have continuous states and actions. CartPole and DoubleInvertedPendulum
have a problem horizon of 1000 steps. HalfCheetah and Ant have a problem horizon of
500 steps. For CartPole, the dimensions of the state and the action spaces are 4 and 1,
respectively. For DoubleInvertedPendulum, the dimensions of the state and the action spaces
are 8 and 1, respectively. For HalfCheetah, the dimensions of the state and the action spaces
17 and 6, respectively. Finally, for Ant, the dimensions of the state and the action spaces 111
and 8, respectively.

Computing Infrastructure The CartPole and DoubleInvertedPendulum experiments were con-
ducted using Azure Standard F64s_v2, which was based on the Intel Xeon Platinum 8168 processor
with 64 cores (base clock 3.4 GHz; turbo clock 3.7 GHz) and 128 GB memory. The HalfCheetah and
Ant experiments were conducted using Azure Standard HB120rs_v2, which was based on the AMD
EPYC 7002-series processor with 120 cores (base clock 2.45 GHz; turbo clock 3.1 GHz) and 480 GB
memory. No GPU was used. The operating system was Ubuntu 18.04.4 LTS. The prototype codes
were based on Python and Tensorflow 2. Using a single process in the setup above, a single seed of
the CartPole experiment (100 iterations) took about 27 minutes to 45 minutes to finish, whereas a
single seed of the DoubleInvertedPendulum experiment (200 iterations) took about 110 minutes to
125 minutes to finish. For HalfCheetah, 8 cores were used for each seed (1000 iterations) and the
experiments took about 19.5 to 30.7 hours. For Ant, 8 cores were used for each seed (400 iterations)
and the experiments took about 8 to 12 hours.

Hyperparameter Selection For CartPole and DoubleInvertedPendulum, we only performed a
rough search of the step sizes of ADAM (0.01 vs 0.001) and Natural Gradient Descent (0.1 vs 0.01).
We conducted experiments with different λ and number of oracles in order to study their effects
on MAMBA. The main paper presents the results of the pilot study: we first investigated the effect
of λ by comparing MAMBA with AggreVaTeD and concluded with a choice of λ = 0.9; using
this λ value, we then studied the effects of the number of oracles. For completeness, we present
and discuss results of all the hyperparamters for CartPole and DoubleInvertedPendulum below. For
HalfCheetah, we did a hyperparamter search over the size of replay buffer and the optimization steps
for value function fitting such that AggreVaTeD can achieve the oracle-level performance. Once that
is chose, we apply the same hyperparamters to other algorithms. For Ant, we simply apply the same
hyperparamters used in HalfCheetah.

Oracle Performance For Cartpole and DoubleInvertedPendulum, please see the detailed discussion
in the next section. For HalfCheetah, the four oracles used in the experiments have scores of 1725.80,
1530.85, 1447.84, and 1395.36, respectively. For Ant, the four oracles used in the experiments have
scores of 1050.57, 1038.03, 883.18, 775.70, respectively.

D.2 Additional Experimental Results of Hyperparamter Effects

In this section, we include in Figs. 6 to 9 additional experimental results of CartPole and DoubleIn-
vertedPendulum environments. The purpose of these extra results is to provide a more comprehensive
picture of the properties of MAMBA under various hyperparamter settings,.

Setup For each of the environments (CartPole and DoubleInvertedPendulum), we conduct experi-
ments with Bad Oracles (Figs. 6 and 8) and Mediocre Oracles (Figs. 7 and 9), where the results of the
Bad Oracles are the ones presented in the main paper. In each experiment, we run MAMBA with
λ = 0, 0.1, 0.5 and 0.9, and with the number of oracles varying between 1, 2, 4 and 8. In addition,
we run AggreVaTeD with each of the oracles (whereas the main paper only presents the results of the
oracles with the highest return). Finally, for baselines, we include the learning curve of PG-GAE as
well as the return of each oracle. Recall that the oracles are indexed in a descending order of their
returns, which are estimated by performing 8 rollouts.

D.2.1 Brittleness of AggreVaTeD

First, the experiments of AggreVaTeD highlight that performing IL via policy improvement8 from
the best oracle (in terms of the return) does not always lead to the best learner policy, as constantly

8AggreVaTeD is an approximate policy improvement algorithm [14].
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(e) AggreVaTeD

Return
oracle0 89.04
oracle1 61.73
oracle2 34.78
oracle3 26.34
oracle4 18.19
oracle5 16.36
oracle6 10.38
oracle7 9.78

(f) Oracle Performance

Figure 6: Performance of the best policies in CarlPole with Bad Oracles. (a)-(d) MAMBA with λ =
0, 0.1, 0.5, 0.9 (e) AggreVaTeD with different oracles. (f) The return of each oracle policy. A curve shows an
algorithm’s median performance across 8 random seeds. The center and right figures use the same line colors for
all methods. The shaded area shows 25th and 75th percentiles.

shown in Figs. 6 to 9. In general there is no upper bound on the amount of performance change that
policy improvement can make, because the policy improvement operator is myopic, only looking
at one step ahead. As a result, running AggreVaTeD with the best oracle does not always give the
best performance that can be made with an oracle chosen in the hindsight. Another factor to the
differences between the best foresight and hindsight oracles is that the return of each oracle is only
estimated by 8 rollouts here.

Our experimental results show that such sensitivity is reduced in MAMBA: even in the single-oracle
setting, using a λ > 0 in MAMBA generally leads to more robust performance than AggreVaTeD
using the same, best oracle, which is namely MAMBA with λ = 0. We should remark that this
robustness is not fully due to the bias-variance trade-off property [17], but also by large attributed
to the incorporation of the multi-step information in online loss in (12) (cf. Theorem 2). By using
λ > 0, MAMBA can start to see beyond one-step improvement and becomes less dependent on the
oracle quality. In the experiments, we observe by picking a large enough λ, MAMBA with a single
oracle usually gives comparable if not better performance than AggreVaTeD with the best policy
chosen in the hindsight.
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(c) λ = 0.5
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(d) λ = 0.9
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(e) AggreVaTeD

Return
oracle0 411.40
oracle1 226.89
oracle2 102.80
oracle3 82.24
oracle4 70.10
oracle5 23.14
oracle6 23.10
oracle7 21.68

(f) Oracle Performance

Figure 7: Performance of the best policies in CarlPole with Mediocre Oracles. (a)-(d) MAMBA with λ =
0, 0.1, 0.5, 0.9 (e) AggreVaTeD with different oracles. (f) The return of each oracle policy. A curve shows an
algorithm’s median performance across 8 random seeds. The center and right figures use the same line colors for
all methods. The shaded area shows 25th and 75th percentiles.

D.2.2 Effects of λ-weighting

Beyond the single-oracle scenario discussed above, we see consistently in Figs. 6 to 9 that using a
non-zero λ improves the performance of MAMBA. The importance of λ is noticeable particularly
in setups with Bad Oracles, as well as in the experiments with the higher-dimensional environment
DoubleInvertedPendulum. Generally, when the oracles are bad (as in Figs. 6 and 8), using a larger
λ provides the learner a chance to outperform the suboptimal oracles as suggested by Theorem 2,
because the online loss function in (12) starts to use multi-step information. On the other hand, when
the top oracles’ performance is better and the state space is not high-dimensional, as in CartPole with
Mediocre Oracles in Fig. 7, the effects of λ is less prominent. The usage of λ > 0 also helps reduce
the dependency on function approximation error, which is a known GAE property [17], as we see in
the experiments with DoubleInvertedPendulum in Figs. 8 and 9.

D.2.3 Effects of multiple oracles

Using more than one oracles generally lead to better performance across Figs. 6 to 9. In view of
Theorem 2, using more oracles can improve the quality of the baseline value function, though at the
cost of having a higher bias in the function approximators (because more approximators need to be
learned). We see that the benefit of using more oracles particularly shows up when higher values of λ
are used; the change is smaller in the single-oracle settings.
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(c) λ = 0.5
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0 25 50 75 100 125 150 175
Iteration

2000

4000

6000

8000

Be
st

 P
ol

icy
 P

er
fo

rm
an

ce

AggreVaTeD-0
AggreVaTeD-1
AggreVaTeD-2
AggreVaTeD-3
AggreVaTeD-4
AggreVaTeD-5
AggreVaTeD-6
AggreVaTeD-7
PG-GAE-0.9

(e) AggreVaTeD

Return
oracle0 4244.16
oracle1 3408.81
oracle2 2775.02
oracle3 2440.19
oracle4 2329.90
oracle5 2177.31
oracle6 859.82
oracle7 712.61

(f) Oracle Performance

Figure 8: Performance of the best policies in DoubleInvertedPendulum with Bad Oracles. (a)-(d) MAMBA
with λ = 0, 0.1, 0.5, 0.9 (e) AggreVaTeD with different oracles. (f) The return of each oracle policy. A curve
shows an algorithm’s median performance across 8 random seeds. The center and right figures use the same line
colors for all methods. The shaded area shows 25th and 75th percentiles.

However, in the settings with Mediocre Oracles in Figs. 7 and 9, increasing the number of oracles
beyond a certain threshold degrades the performance of MAMBA. Since a fixed number of rollouts
are performed in each iteration, having more oracles implies that the learner would need to spend
more iterations to learn the oracle value functions to a fixed accuracy. In turn, this extra exploration
reflects as slower policy improvement. Especially, because using more oracles here means including
strictly weaker oracles, this phenomenon is visible, e.g., in Fig. 9.

D.3 Additional Experimental Results of Oracle Ordering

In all the previous experiments, we order the oracles based on the their performance in terms of
their return. However, these return estimates are only empirical and do not always correspond to the
true ordering of the oracles, as we discussed in Appendix D.2.1. To study the robustness to oracle
selection, here we randomly order the oracles before presenting them to the IL algorithms (MAMBA
and AggreVaTeD) and repeat the controlled experiment of testing the effects of λ-weighting and the
number of oracles in Fig. 3. The results of random oracle ordering are presented in Fig. 10; because
of this extra randomness we inject in oracle ordering, we use more seeds in these experiments. First,
we see in Fig. 10a using the random ordering degrades of the performance of the single-oracle setup.
This is reasonable because there is a high chance of selecting an extremely bad oracle (see Fig. 6 for
the oracle quality). Nonetheless, the usage of λ > 0 still improves the performance: the learning is
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(c) λ = 0.5
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(d) λ = 0.9
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(e) AggreVaTeD

Return
oracle0 9453.84
oracle1 9079.43
oracle2 6193.54
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oracle6 1535.97
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(f) Oracle Performance

Figure 9: Performance of the best policies in DoubleInvertedPendulum with Mediocre Oracles. (a)-(d) MAMBA
with λ = 0, 0.1, 0.5, 0.9 (e) AggreVaTeD with different oracles. (f) The return of each oracle policy. A curve
shows an algorithm’s median performance across 8 random seeds. The center and right figures use the same line
colors for all methods. The shaded area shows 25th and 75th percentiles.

faster and converges to higher performance, though it is still slower than PG-GAE because of the
extremely bad oracles.

But interestingly once we start to use multiple oracles in Fig. 10b, MAMBA starts to significantly
outperform AggreVaTeD and PG-GAE. By using more than one oracle, there is a higher chance of
selecting one reasonable oracle in the set filled with bad candidates. In addition, the diversity of
oracle properties also help strengthen the baseline value function (cf. Theorem 2). Thus, overall we
observe that MAMBA with λ > 0 and multiple oracles yields the most robust performance.
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(b) Effects of number of oracles

Figure 10: Performance of the best policies with random orderings of oracles in CartPole with Bad Oracles. (a)
shows the single-oracle setup comparing MAMBA with different λ values. (b) show MAMBA with different
number of oracles (λ = 0.9). A curve of MAMBA and AggreVaTeD shows the performance across 32 random
seeds. The curves of PG-GAE shows the performance across 8 random seeds. The shaded area shows 25th and
75th percentiles.
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