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Abstract

We present details on the proofs from the main paper in Sections A-C. We include
analysis on the effects of regularisation on the truncation error (Section D). Update
rules for the ODE solvers considered in the main paper are presented in Section
E. The connections between our method and Consensus optimisation, SGA and
extragradient are reported in Section F. Further details of experiments/additional
experimental results are in Section G-H. Image samples are shown in Section I.

A Real Part of the Eigenvalues are Positive

Definition A.1. The strategy (θ∗, φ∗) is a differential Nash equilibrium if at this point the first
order derivatives and second order derivatives satisfy ∂`D/∂θ = ∂`G/∂φ = 0 and ∂2`D/∂θ2 � 0,
∂2`G/∂φ

2 � 0 (see Ratliff et al. [12]).
Lemma A.1. For a matrix of form

H =

(
A BT

−B C

)
.

Given B is full rank, if either A � 0 and C � 0 or A � 0 and C � 0, H is invertible.

Proof. Let’s assume that A � 0, then we note C + BA−1BT � 0. Thus by definition A and
C +BA−1BT are invertible as there are no zero eigenvalues. The Schur complement decomposition
of H is given by

H =

(
I 0

−BA−1 I

)(
A 0
0 C +BA−1BT

)(
I A−1BT

0 I

)
Each matrix in this is invertible, thus H is invertible.

Lemma A.2. For a matrix of form (
A BT

−B C

)
,

if either A � 0 and C � 0 or vice versa, and B is full rank, the positive part of the eigenvalues of H
is strictly positive.

Proof. We assume A � 0 and C � 0. The proof for A � 0 and C � 0 is analogous.

To see that the real part of the eigenvalues are positive, we first note that the matrix satisfies the
following:

H =

(
A BT

−B C

)
⇒ xTHx ≥ 0.
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To see this more explicitly, note

[xT ,yT ] H [x,y] = [xT ,yT ]

(
A BT

−B C

)
[x,y] = xTAx+ yTCy ≥ 0 ∀x ∈ RN ,y ∈ RM ,

where N and M are the dimensions of θ and φ respectively. From this, we can derive the following
property about the eigenvalue λ = α+ iβ with corresponding eigenvector v = ur + iuc.

(H − λ)v = 0 (1)
⇒ (H − α− iβ)(ur + iuc) = 0 (2)

Thus the following conditions hold:

(H − α)ur + βuc = 0 (3)
(H − α)uc − βur = 0. (4)

Thus we can multiply the top equation by uTr and the bottom equation by uTc to retrieve the following:

α =
uTr Hur + uTc Huc
uTr ur + uTc uc

≥ 0

To see that this is strictly above zero, we note that we can split the eigenvector via the following:

ur + iuc =

(
u0
r + iu0

c

u1
r + iu1

c

)
.

Thus now α can be rewritten as the following:

α =

(
u0
r

)T
Au0

r +
(
u1
r

)T
Cu1

r +
(
u0
c

)T
Au0

c +
(
u1
c

)T
Cu1

c

uTr ur + uTc uc

Since A � 0, for this to be zero we note that the following must hold

ur + iuc =

(
0

u1
r + iu1

c

)
.

If this is the form of an eigenvector of H then we get the following:(
A BT

−B C

)(
0
u

)
=

(
BTu
Cu

)
= λ

(
0
u

)
where u = u1

r + iu1
c . One condition which is needed is that BTu = 0. Another condition needed for

this to be an eigenvector is that λ is an eigenvalue of C. However this would mean that the eigenvalue
λ is real. If this eigenvalue was thus at 0, the matrix H would not be invertible. Thus concluding the
proof.

Linear Analysis: The last part of the proof in Lemma 3.1 can be seen by using linear dynamical
systems analysis. Namely when we have the dynamics given by ẋ = Ax where x ∈ Rn and
A ∈ Rn × Rn is a diagonalisable matrix with eigenvalues λ1, · · ·λn. Then we can decompose
x(t) =

∑
i αi(t)vi where vi is the corresponding eigenvector to eigenvalue λi. The solution can be

derived as x(t) =
∑
i αi(0)e

λitvi.

B Off-Diagonal Elements are Opposites at the Nash

Here we show that the off diagonal elements of the Hessian with respect to the Wasserstein, cross-
entropy and non-saturating loss are opposites. For the cross-entropy and Wasserstein losses, this
property hold for zero-sum games by definition. Thus we only show this for the non-saturating loss.

For the non-saturating loss, the objectives for the discriminator and the generator is given by the
following:

`D(θ, φ) = −
∫
x

pd(x) log(D(x; θ))dx+

∫
z

p(z) log(1−D(G(z;φ); θ))dz (5)

`G(θ, φ) = −
∫
z

p(z) log(D(G(z;φ); θ)dz. (6)
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We transform this with x = G(z;φ) where x is now drawn from the probability distribution pg(x;φ).
We can rewrite this loss as the following:

`D(θ, φ) = −
∫
x

(pd(x) log(D(x; θ)) + pg(x;φ) log(1−D(x; θ))dx (7)

`G(θ, φ) = −
∫
x

pg(z;φ) log(D(x; θ))dx. (8)

Note that ∂
2`D
∂φ∂θ = − ∂2`G

∂θ∂φ

T
if and only if the following condition is true

∂2(`D + `G)

∂θ∂φ
= 0.

For the non-saturating loss this becomes the following:

∂2(`D + `G)

∂θ∂φ
= −

∫
x

∂D(x; θ)

∂θ

∂pg(x;φ)

∂φ

(
1

D(x; θ)
− 1

1−D(x; θ)

)
dx (9)

At the global Nash, we know that D(x) = pd(x)/(pd(x) + pg(x;φ)) and pg(x;φ) = pd(x), thus
this is identically zero.

C Hessian with Respect to the Discrimator’s Parameters is Semi-Positive
Definite for Piecewise-Linear Activation Functions

In this section, we show that when we use piecewise-linear activation functions such as ReLU or
LeakyReLUs in the case of the cross-entropy loss or the non saturating loss (as they are the same
loss for the discriminator), the Hessian wrt. the discriminator’s parameters will be semi-positive
definite. Here we also make the assumption that we are never at the point where the piece-wise
function switches state (as the curvature is not defined at these points). Thus we note

∂2D

∂θ2
= 0.

For the cross-entropy loss and non-saturating losses, the discriminator network often outputs the logit,
D(x; θ), for a sigmoid function σ(x) = 1/(1 + e−x). The Hessian with respect to the parameters is
given by:

`D(θ, φ) = −
∫
x

pD(x) log(σ(D(x; θ))) + pG(x) log(1− σ(D(x; θ)))dx

∂`D
∂θ

= −
∫
x

(pD(x)(1− σ(D(x; θ)))− pG(x)σ(D(x; θ)))
∂D(x; θ)

∂θ
dx

⇒ ∂2`D
∂θ2

=

∫
x

(pD(x) + pG(x))σ(D(x; θ))(1− σ(D(x; θ)))
∂D(x; θ)

∂θ

∂D(x; θ)

∂θ

T

dx � 0. (10)

D Gradient Norm Regularisation and Effects on Integration Error

Here we provide intuition for why gradient regularisation after applying the ODEStep might be
needed. We start by considering how we can approximate the truncation error of Euler’s method with
stepsize h.

The update rule of Euler is given by

yk+1 = yk + hv(yk).
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Note here yk = (θk, φk). The truncation error is approximated by comparing this update to that when
we half the step size and take two update steps:

ỹk+1 = yk +
h

2
v(yk) +

h

2
v

(
yk +

h

2
v(yk)

)
(11)

= yk + hv(yk) +
h2

4
v(yk)

∂v

∂y
(yk) +O(h3). (12)

= yk+1 +
h2

4
v(yk)

∂v

∂y
(yk) +O(h3) (13)

⇒ τk+1 = ỹk+1 − yk+1 ∼
h2

4
v(yk)

∂v

∂y
(yk) = O(|v|). (14)

Here we see that the truncation error is linear with respect to the magnitude of the gradient. Thus we
need the magnitude of the gradient to be bounded in order for the truncation error to be small.

E Numerical Integration Update Steps

Euler’s Method: (
θk+1

φk+1

)
=

(
θk
φk

)
+ hv(θk, φk) (15)

Heun’s Method (RK2):(
θ̃k
φ̃k

)
=

(
θk
φk

)
+ hv(θk, φk)(

θk+1

φk+1

)
=

(
θk
φk

)
+
h

2

(
v(θk, φk) + v(θ̃k, φ̃k)

)
(16)

Runge Kutta 4 (RK4):

v1 = v(θk, φk)

v2 = v

(
θk +

h

2
(v1)θ, φk +

h

2
(v1)φ

)
v3 = v

(
θk +

h

2
(v2)θ, φk +

h

2
(v2)φ

)
v4 = v(θk + h(v3)θ, φk + h(v3)φ)(
θk+1

φk+1

)
=

(
θk
φk

)
+
h

6
(v1 + 2v2 + 2v3 + v4) . (17)

Note vθ corresponds to the vector field element corresponding to θ, similarly for vφ.

F Existing Methods which Approximates Second-order ODE Solver

Here we show that previous methods such as consensus optimisation [8], SGA [1] or Crossing-the-
Curl [4], and extragradient methods [7, 2] approximates second-order ODE solvers1.

To see this let’s consider an “second-order" ODE solver of the following form:(
θ̃k
φ̃k

)
=

(
θk
φk

)
+ γv(θk, φk) =

(
θk
φk

)
+ h (18)(

θk+1

φk+1

)
=

(
θk
φk

)
+
h

2

(
av(θk, φk) + bv(θ̃k, φ̃k)

)
(19)

1Note that methods such as consensus optimisation or SGA/Crossing-the-Curl are methods which address
the rotational aspects of the gradient vector field.
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where h = γ[vθ,vφ] and a, b scales of each term.

Extra-gradient: Note that when a = 0 and b = 2 and γ = h, this is the extra-gradient method by
definition [7].

Consensus Optimisation: Note that a = b = 1 and γ = h, we get Heun’s method (RK2). For
consensus optimisation, we only need a = b = 1. If we perform Taylor Expansion on Eq (19):(

θk+1

φk+1

)
=

(
θk
φk

)
+ hv(θk, φk) + h

(
(∇v)Th+O(|h|2)

)
. (20)

With this, we see that this approximates consensus optimisation [8].

SGA/Crossing the Curl: To see we can approximate one part of SGA [1]/Crossing-the-Curl [4], the
update is now given by:(

θk+1

φk+1

)
=

(
θk
φk

)
+
h

2

(
v(θk, φk) +

(
vθ(θk, φ̃k)

vφ(θ̃k, φk)

))
(21)

where vθ denotes the element of the vector field corresponding to θ and similarly for vφ, and θ̃k, φ̃k
are given in Eq. (18). The Taylor expansion of this has only the off-diagonal block elements of the
matrix ∇v. More explicitly this is written out as the following:(

θk+1

φk+1

)
=

(
θk
φk

)
+
h

2

(
vθ + γvφ

∂vθ
∂φ

vφ + γvθ
∂vφ
∂θ

)
+O(h|h|2) (22)

All algorithms are known to improve GAN’s convergence, and we hypothesise that these effects are
also related to improving numerical integration.

G Experimental Setup

We use two GAN architectures for image generation of CIFAR-10: the DCGAN [11] modified
by Miyato et al. [10] and the ResNet [6] from Gulrajani et al. [5], with additional parameters from
[10], but removed spectral-normalisation. For conditional ImageNet 128× 128 generation we use
a similar ResNet architecture from Miyato et al. [10] with conditional batch-normalisation [3] and
projection [9] but with spectral-normalisation removed. We also consider another ResNet where the
size of the hidden layers is 2× the previous ResNet, we also increase the latent size from 128 to 256,
we denote this as ResNet (large).

G.1 Hyperparameters for CIFAR-10 (DC-GAN)

For Euler, RK2 and RK4 integration, we first set h = 0.01 for 500 steps. Then we go to h = 0.04
till 400k steps and then we decrease the learning rate by half. For Euler integration we found that
h = 0.04 will be unstable, so we use h = 0.02. We train using batch size 64. The regularisation
weight used is λ = 0.01. For the Adam optimiser, we use hG = 1 × 10−4 for the generator and
hD = 2× 10−4 for the discriminator, with λ = 0.1.

G.2 Hyperparameters for CIFAR-10 (ResNet)

For RK4 first we set h = 0.005 for the first 500 steps. Then we go to h = 0.01 till 400k steps and
then we decrease the learning rate by 0.5. We train with batch size 64. The regularisation weight
used is λ = 0.002. For the Adam optimiser, we use h = 2 × 10−4 for both the generator and the
discriminator, with λ = 0.1.

G.3 Hyperparameters for ImageNet (ResNet)

The same hyperparameters are used for ResNet and ResNet (large). For RK4 first we set h = 0.01
for the first 15k steps, then we go to h = 0.02. We train with batch size 256. The regularisation
weight used is λ = 0.00002.
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H Additional Experiments

Here we show experiments on ImageNet; ablation studies on using different orders of numerical
integrators; effects of gradient regularisation; as well as experiments on combining the RK4 ODE
solver with the Adam optimiser.

H.1 Conditional ImageNet Generation

0 800000 1600000
Step

5

10

15

20

25

30

35

40

IS

ODEGAN
SNGAN

0 800000 1600000
Step

10

15

20

25

30

35

40

45

50

FI
D

ODEGAN
SNGAN

0 800000 1600000
Step

5

10

15

20

25

30

35

40

45

50

IS

ODEGAN
SNGAN

0 800000 1600000
Step

10

20

30

40

50

60

70

FI
D

ODEGAN
SNGAN

Figure H1: Comparison of IS and FID for ODE-GAN (RK4) vs. SNGAN trained on ImageNet
128 × 128. In the plot on the left we used a ResNet architecture similar to Miyato et al. [10] for
ImageNet; on the right we trained with ResNet (large).

Table H1: Comparison of ODE-GAN and the SN-GAN trained on
ImageNet (conditional image generation) on ResNet (large).

FID (best) / FID (final) IS (best) / IS (final)
SN-GAN 45.62 / 70.38 24.64 / 16.01
ODE-GAN 22.29 / 23.46 46.17 / 44.66

Fig. H1 shows that ODE-
GAN can significantly im-
prove upon SNGAN with
respect to both Inception
Score (IS) and Fréchet In-
ception Distance (FID). As
in [10] we use conditional

batch-normalisation [3] and projection [9]. Similarly to what we have observed in CIFAR-10, the per-
formance degrades over the course of training when we use SNGAN whereas ODE-GAN continues
improving. We also note that as we increase the architectural size (i.e. increasing the size of hidden
layers 2× and latent size to 256) the IS and FID we obtain using SNGAN gets worse. Whereas, for
ODE-GAN we see an improvement in both IS and FID, see Table H1 and Fig. H1. We want to note
that our algorithm seems to be more prone to landing in NaNs during training for conditional models,
something we would like to further understand in future work.

H.2 Ablation Studies

Table H2: Ablation Studies for ODE-GAN for CIFAR-10 (DCGAN).

Solver λ FID (best) / FID(final) IS (best)/IS(final)
ODE Solvers

Euler 0.01 19.43 ± 0.03 / 19.76 ± 0.02 7.85 ± 0.03 / 7.75 ± 0.03
RK2 0.01 18.66 ± 0.24 / 18.93 ± 0.33 7.90 ± 0.01 / 7.82 ± 0.00
RK4 0.01 17.66± 0.38 / 18.05± 0.53 7.97 ± 0.03 / 7.86 ± 0.09

Regularisation
RK4 0.001 25.09± 0.61 / 26.93± 0.13 7.27 ± 0.07 / 7.17 ± 0.03
RK4 0.005 18.34± 0.24 / 18.61± 0.30 7.82 ± 0.03 / 7.79 ± 0.06
RK4 0.01 17.66± 0.38 / 18.05± 0.53 7.97 ± 0.03 / 7.86 ± 0.09

Adam Optimisation
Adam 0.01 21.17± 0.10 / 23.21± 0.25 7.78 ± 0.08 / 7.51 ± 0.05
RK4 + Adam 0.01 20.45± 0.35 / 27.74± 1.15 7.80 ± 0.07 / 7.18 ± 0.23
Adam 0.1 17.90± 0.05 / 21.88± 0.05 8.01 ± 0.05 / 7.58 ± 0.06
RK4 + Adam 0.1 17.47 ± 0.30 / 23.20 ± 0.95 8.00 ± 0.06 / 7.59 ± 0.14
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Figure H2: Using RK4 with λ = 0.001, h = 0.03. We show the progression at 0, 2k, 4k and 6k steps.
The right most figure shows the losses and the norms of the gradients. The dashed lines are the Nash
equilibrium values (log(4) for the discriminator log(2) for the generator).

H.3 Supplementary: Effects of Regularisation

Gradient regularisation allows us to control the magnitude of the gradient. We hypothesise that this
helps us control for integration errors. Holding the step size h constant, we observe that decreasing
the regularisation weight λ lead to increased gradient norms and integration errors (Fig. H4), causing
divergence. This is shown explicitly in Fig. H2, where we show that, with low regularisation weight
λ, the losses for the discriminator and the generator start oscillating heavily around the point where
the gradient norm rapidly increases.
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Figure H3: Comparison between SN vs gradi-
ent regularisation (without ODEStep). Both are
trained with Adam optimisation, λ = 0.01.
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Figure H4: We plot the truncation er-
ror over time for different λ (shown in
legend) and h = 0.04.

Gradient Regularisation vs SN and Truncation Error Analysis We find that our regularisation
(Grad Reg) outperforms spectral normalisation (SN) as measured by FID and IS (Fig. H3). Meanwhile,
Fig. H4 depicts the integration error (from Fehlberg’s method) over the course of training. As is
visible, heavier regularisation leads to smaller integration errors.
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I ODE-GAN Samples

Figure I5: Architecture used DCGAN (CIFAR-10). Sample of images generated using ODE-GAN
with h = 0.04, RK4 as the integrator and λ = 0.01.

Figure I6: Architecture used ResNet (CIFAR-10). Sample of images generated using ODE-GAN
(RK4) with h = 0.01, RK4 as the integrator and λ = 0.01.
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Figure I7: Architecture used ResNet (ImageNet conditional). Sample of images generated using
ODE-GAN (RK4) with h = 0.02, RK4 as the integrator and λ = 0.00002.
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