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This document contains supplementary materials for the paper “Learning of Discrete Graphical
Models with Neural Networks”. Here we show results of some more experiments done with
NeurISE. Section A has results of learning the Ising model. Section B has more results on structure
learning, including learning hypergraphs. Section C has results on learning the full energy function
using NeurISE.

A Learning Ising models.

For this experiment we learn Ising models with two body interactions. We take random graphs with
an average degree of three and choose the interaction strengths uniformly at random from [-1,1].
The Hamiltonian here has the from,

H(g) = 050i0;. (1)

i<J

This is an adversarial experiment for NeurISE when compared to GRISE. GRISE will learn this
model in the second level of its hierarchy with O(p) parameters per optimization. The neural net
will have to fit a linear function of its inputs, which it will not be able to do as well as low-degree
GRISE. Despite this, NeurISE does a good job of learning the true model, albeit with more number
of free parameters when compared to second order GRISE.

—— d=1,w =10, N, =111
0.04 1 d=2, w =10, N, =221
—— d=3,w =10, N, =331

—8— GRISE, order =2, N, =9
0.03

Average error in conditionals

a
0.02 E
—+— n=10% NeurISE, N, =721
0.01 7 \\\
0.00 T T T
10° 106 106
Number of training samples Number of testing samples
(a) (b)

Figure 1: Learning a random Ising model (a) ¢; error in the learned conditionals averaged over all
possible inputs for a 10 variable model (b) TVD between samples drawn from the learned models
and those drawn from the true model for a 15 variable model. The neural net used here is [d=3,
w=15].
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B Structure learning with NeurISE.

B.1 Learning hypergraphs

We show that NeurISE can accurately reconstruct the neighbourhood of each variable for a general
model with higher order interactions. In Fig 2 we learn the following 15 variable model !,
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The 6* parameters here are chosen uniformly from [0.3,1.3]. As seen in Fig. 2b, NeurISE can
perfectly reconstruct the neighbourhoods of each variables. The fifth order term shows up as clique
of size 5 connecting the corresponding variables. Once the neighborhood reconstruction is done, we
can use this as a prior in GRISE. This can reduce the number of free parameters in L—order GRISE
from O(p*) to O(DT), where D is the size of the neighbourhood of the variable being learned.
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Figure 2: Structure learning on the energy function in Eq. (2) [p = 15, = 0.3, § = 1.3, d=2, w
=15, n = 10°]. (a) The histogram of ||, ,||» after training. The vertical red line is the threshold
used to distinguish edges from non edges. (b) Reconstructed graph. The neighbourhood of every
variable is learned perfectly

B.2 Learning graphs when the number of samples is too low

The success of structure learning depends on the number of samples used in the algorithm. The
number of samples required to perfectly learn the structure depends on the strength of interaction
and the degree of the underlying model. This is reflected in the sample complexity lower bound
which is exponential in the product of the degree of the graph and the maximum strength of inter-
action . In particular, learning models with higher degree with a limited number of samples makes
distinguishing edges from non-edges more difficult. The histogram of trained inputs weights in this
case will be more spread out as seen in Fig. 3a. Despite this there are only a few mis-classified
edges in the reconstructed graph. In the histogram these edges usually lie close to the large cluster
of weights close to zero. If the threshold line is chosen right after this large cluster most edges and
non-edges are classified accurately. GRISE also exhibits a similar behaviour when the number of
samples available are inadequate for perfect structure learning .

B.3 Accuracy of structure learning

Here we will look at the accuracy of structure learning with NeurISE over randomized experiments.

The results of structure learning for various classes of models is plotted in Fig.4. Each data point
in these plots is a result of 20 randomized experiments. The thresholds for structure learning where
chosen automatically by constructing the distribution of input weights and using an outlier detection

!Code available at https://github.com/lanl-ansi/NeurISE.
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Figure 3: Structure learning on a random graph of average degree of 3.6 [p = 20, @ = 0.3, 8 = 1.3,
d=2, w = 10, n = 10°] (a) The histogram of ||W,, ,]||> after training. The vertical red line is
the threshold used to distinguish edges from non edges. (b) Graph of the true model. (c) Graph
recor ' ¢
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Figure 4: Accuracy of structure learning over randomized experiments with confidence intervals.
For every model we take, [a, 5] = [0.3,1.3]. Every data point is result of 20 randomized experi-
ments. The “Total Accuracy” here refers to the accuracy of the algorithm for learning both edges and
non-edges in the graph. The average degree of each hypergraph is the average number of neighbours
of each node in the hypergraph



method to isolate the weights clustered around zero. The edges that were a fraction of the standard
deviation away from the mean of the distribution were labelled as edges. The value of this fraction
is a fixed value for each of the four experiments in Fig.4. This is fixed first by running a few test
experiments and inspecting the histograms of their input weights. The other hyper parameters for
learning are also fixed in this fashion. In general, visual inspection of the histogram gives a better
value for the threshold. But this is impractical if one has to run many randomized experiments. The
method based on the standard deviation of the histogram automates the structure learning process.

Systematically, these experiments show the difference of the neural network hierarchy from the
polynomial hierarchy. The sample complexity of learning a neural net representation of a random
fourth order model is much smaller than that of learning a random second order model or a random
third order. The neural net can learn a random fourth order order with higher accuracy consistently.
On the other hand, using the polynomial hierarchy would have made the learning of the lower order
models easier. From these results, we also see that structure learning accuracy gets worse with the
average degree of the true model. This is behavior is consistent with the known lower bounds on the
sample complexity of structure learning

These experiments also show that NeurISE has no problem finding the minima corresponding to the
true model even when the number of samples is finite.

C Results of learning the energy function with NeurISE.

In this section we will look at the results of learning the complete energy function using NeurISE
by training it with the loss function given in Eq. (20). We will look at the results of using this loss
on the Energy function in Eq. (16). Since we have the neural net representation for the full energy
function we will compute the average loss in the energy function rather than in the conditionals.
This comparison for a 10 variable model is given in Fig. 5a. We also compute the TVD between
sampled distributions for the 15 variable model in Fig. 5b . The samples are now generated from the
neural net using exact sampling rather than Gibbs sampling. This would have been intractable with
neural nets approximations of the partial energy functions.

GRISE directly learns in the monomial basis, so the total energy function can be approximated
by appropriately averaging the terms in the partial energy function. But this requires p separate
optimizations and increases the [V,, count of learning the energy function. To make the comparison

with NeurISE more fair, instead we compute the N}, value of L-order GRISE as Zle (¥). This is
just the total number of independent parameters in a L-order energy function with p variables.

From Fig. 5, we see that NeurISE learns the energy function well with less V,,. Notice that the
neural nets used here are larger in size than that used in learning the partial energies. But here a
single neural net learns the complete model, while in the other case we had p separate nets learning
the model.

100

0.7

Iy error in energy
o o o o o
[ O S

o

=4
o

108 106 104 108 106
Number of training samples Number of testing samples

(@ (b)

Figure 5: Learning the full energy function of the model in Eq. (16) (a) Average ¢, error in energy
for a 10 variable model (b) TVD between samples drawn from the learned models and those drawn
from the true model for a 15 variable model



