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Abstract

Several problems in machine learning, statistics, and other fields rely on computing
eigenvectors. For large scale problems, the computation of these eigenvectors is
typically performed via iterative schemes such as subspace iteration or Krylov
methods. While there is classical and comprehensive analysis for subspace conver-
gence guarantees with respect to the spectral norm, in many modern applications
other notions of subspace distance are more appropriate. Recent theoretical work
has focused on perturbations of subspaces measured in the `2→∞ norm, but does
not consider the actual computation of eigenvectors. Here we address the con-
vergence of subspace iteration when distances are measured in the `2→∞ norm
and provide deterministic bounds. We complement our analysis with a practical
stopping criterion and demonstrate its applicability via numerical experiments. Our
results show that one can get comparable performance on downstream tasks while
requiring fewer iterations, thereby saving substantial computational time.

1 Introduction & Background

Spectral methods play a fundamental role in machine learning, statistics, and data mining. Meth-
ods for foundational tasks such as clustering [52]; semi-supervised learning [36]; dimensionality
reduction [5, 22, 45]; latent factor models [25] ranking and preference learning [38, 51]; graph signal
processing [42, 49]; and covariance estimation all use information about eigenvalues and eigenvectors
(or singular values and singular vectors) from an underlying data matrix (either directly or indirectly).
The pervasiveness of spectral methods in machine learning applications1 has greatly influenced the
last decade of research in large-scale computation, including but not limited to sketching / randomized
NLA [26, 37, 53] as well as theoretical guarantees for linear algebra primitives (e.g., eigensolvers,
low-rank decompositions) in previously overlooked settings.

In many of these cases, the relevant information is in the “leading” eigenvectors, i.e., those corre-
sponding to the k algebraically largest eigenvalues for some k (possibly after shifting and rescaling).
To avoid performing a full eigendecomposition, these are typically approximated with iterative
algorithms such as the power or Lanczos methods. The approximation quality, as measured by

1For example, searching for “arpack” [30] (an iterative eigensolver) in the scikit-learn [44] Github
repository reveals that several modules depend on it crucially.
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subspace distance (equivalent to using the `2 norm, up to rotation), is well-understood and enjoys
comprehensive convergence analysis [16, 24, 43, 47].

While spectral norm error analysis has been the standard-bearer for numerical analysis, recent work
has considered different subspace distance measures [8, 11, 19, 54]. The motivation for these changes
is statistical, as opposed to numerical: we observe a matrix Ã = A+E, where E is a source of noise
and A = E

[
Ã
]

is the “population” version of A, containing the desired spectral information. We
are then interested in ‖ũi ± ui‖∞ as a distance measure between the eigenvectors of Ã and A. Here,
the `∞ norm captures “entry-wise” error and is more appropriate when we care about maximum
deviation; for example, when entries of the eigenvector are used to rank nodes or provide cluster
assignments in a graph. This type of distance is often much smaller than the spectral norm and,
in contrast to the latter, reveals information about the distribution of error over the entries. Recent
theoretical results relate the noise E to the perturbation in the eigenvectors, as measured by `∞
or `2→∞ norm errors [10, 15, 20, 28, 31]. Moreover, these results are often directly connected to
machine learning problems [1, 12, 17, 56].

The message from this body of literature is that when eigenvectors are interpreted entry-wise, we
should measure our error entry-wise as well. The aforementioned works show what we can do if
we have eigenvectors satisfying perturbation bounds in a different norm, but do not address their
computation. Numerical algorithms typically use the `2 norm, yet the motivation for norms like `2→∞
is that `2 can be a severe overestimate for the relevant approximation quality. Moreover, despite
the long history of research into stopping criteria for iterative methods in the unitarily-invariant
setting [3, 4, 6, 23, 29], there are no generic stopping criteria closely tracking the quality of an
approximation in the `2→∞ norm. For example, downstream tasks that depend on entrywise ordering,
such as graph bipartitioning via the (approximate) Fiedler vector [18] or spectral ranking via the Katz
centrality [40] employ `2 bounds, when instead the `∞ norm would constitute a better proxy. Some
local spectral graph partitioning methods can be written as iteratively approximating an eigenvector
in a (scaled) `∞ norm [2], but these algorithms are far more specialized than general eigensolvers.
The situation is similar when using more than one eigenvector; in spectral clustering with r clusters,
after an appropriate rotation of the eigenvector matrix, the magnitude of the elements in the ith row
measures the per-cluster membership likelihood of the ith node, making the `2→∞ norm (which
is invariant to unitary transformations on the right) a more appropriate distance measure than the
spectral norm (see e.g., [34]).

Here, we bridge this gap by providing an analysis for the convergence of subspace iteration, a widely-
used iterative method for computing leading eigenvectors, in terms of `2→∞ errors. We complement
that with a practical stopping criterion applicable to any iterative method for invariant subspace
computation that tracks the `2→∞ error of the approximation. Our results show how, for a given
error tolerance, one can perform many fewer subspace iterations to get the same desired performance
on a downstream task that uses the eigenvectors (or, more generally, an invariant subspace) — as
‖V ‖2→∞ ∈ [1,

√
r] maxi,j |Vij | for V ∈ Rn×r, and often r � n, our bounds are also a good “proxy”

for the maximum entrywise error. The aforementioned reduction in iterations directly translates to
substantial reductions in computation time. We demonstrate our methods with the help of applications
involving real-world graph data, including node ranking in graphs, sweep cut profiles for spectral
bipartioning, and general spectral clustering.

1.1 Notation

We use the standard inner product on Euclidean spaces, defined by 〈X,Y 〉 := Tr (XTY ) for
vectors/matrices X,Y . We write On,k for the set of matrices U ∈ Rn×k such that UTU = Ik,
dropping the second subscript when n = k. We use standard notation for norms, namely ‖A‖2 :=

supx:‖x‖2=1 ‖Ax‖2 and ‖A‖F :=
√
〈A,A〉. Moreover, we remind the reader that the `∞ → `∞

operator norm for a matrix A ∈ Rm×n is given by ‖A‖∞ := maxi∈[m] ‖Ai,:‖1 , where Ai,: denotes
the ith row of A and A:,i denotes its ith column. Finally, the `2→∞ norm is defined by

‖A‖2→∞ := sup
x:‖x‖2=1

‖Ax‖∞ = max
i∈[m]

‖Ai,:‖2 . (1)

Subspace distances. Given two orthogonal matrices V, Ṽ ∈ On,r inducing subspaces V, Ṽ , their
so-called subspace distance is defined as dist2(V, Ṽ ) := ‖V V T − Ṽ Ṽ T‖2, with several equivalent
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Algorithm 1 Subspace iteration

Input: initial guess Q0 ∈ On,k, symmetric matrix A, iterations T
for t = 1, 2, . . . , T do

V (t) := AQt−1; Qt, Rt = qr(V (t)) . QR decomposition
end for
return QT

definitions, e.g., via the concept of principal angles, or via
∥∥V T
⊥ Ṽ

∥∥
2
, where V⊥ is a basis for the

subspace orthogonal to V . Here we will use a slightly different notion of distance between subspaces
with respect to ‖·‖2→∞ defined as

dist2→∞(V, Ṽ ) := inf
O∈Or,r

∥∥V − Ṽ O∥∥
2→∞ . (2)

This metric allows us to control errors in a “row-wise” or “entry-wise” sense; for example, in the case
where r = 1 this reduces to infinity norm control over the differences between eigenvectors. Finally,
some of the stated results use the separation between matrices measured along a linear subspace
(with respect to some norm ‖·‖?):

sep?,W (B,C) = inf {‖ZB − CZ‖? | ‖Z‖? = 1, Z ∈ range(W )} (3)

When ‖·‖? is unitarily invariant and B,C are diagonal, we recover sep?,W (B,WCWT) =
λmin(B)− λmax(C); thus sep generalizes the notion of an eigengap.

2 Convergence of subspace iteration

In this section, we analyze the convergence of subspace iteration (Algorithm 1) with respect to
the `2→∞ distance. In particular, we assume that we are working with a symmetric matrix A with
eigenvalue decomposition

A = V ΛV T + V⊥Λ⊥V
T
⊥ , (4)

where Λ,Λ⊥ are diagonal matrices containing the r largest and n− r smallest eigenvalues of A. For
simplicity, we assume that the eigenvalues satisfy λ1(A) ≥ · · · ≥ λr(A) > λr+1(A) ≥ . . . λn(A)
and, furthermore, that mink=1,...,r|λk(A)| > maxk=r+1,...,n|λk(A)|.2

Our perturbation bounds and stopping criterion both involve the coherence of the principal eigenvector
matrix, which is a standard assumption in compressed sensing [9].
Definition 1 (Coherence). Given V ∈ On,r, we define its coherence as the smallest µ > 0 such that

‖V ‖2→∞ = max
i∈[n]
‖V V Tei‖2 ≤ µ

√
r

n
. (5)

Given Definition 1, a matrix of eigenvectors is incoherent if none of its rows have a large element (i.e.
all elements are on the order of

√
1/n).

The following result shows that dist2→∞(Qt, V ) can be considerably smaller than dist2(Qt, V ).
Unfortunately, our analysis involves the unwieldy term ‖V⊥Λt⊥V

T
⊥ ‖∞, which is nontrivial to upper

bound to obtain a better rate than that obtained using norm equivalence. To circumvent this, we
impose a technical assumption.
Assumption 1. For the matrix of interest, V⊥ satisfies

‖V⊥Λt⊥V
T
⊥ ‖∞ ≤ C · λtr+1 ‖V⊥V T

⊥ ‖∞ , (6)

for a small constant C and all powers t ∈ N.

Assumption 1 arises due to our proof technique, and may be removed by a more careful analysis
(the supplement contains a preliminary result in this direction). We empirically verified that it
holds with a constant C < 2, for all powers t up to the last elapsed iteration of Algorithm 1 in our
numerical experiments of Section 4; this makes us rather confident that it is a reasonable assumption
in real-world datasets.

2Our results hold for the largest magnitude eigenvalues assuming one defines the eigenvalue gap appropriately
later. The simplification to the r algebraically largest eigenvalues being the largest in magnitude avoids
burdensome notation without losing anything essential.
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Proposition 1. Suppose Assumption 1 holds. The iterates {Qt} produced by Algorithm 1 with initial
guess Q0 satisfy

dist2→∞(Qt, V ) ≤
(λr+1

λr

)t [
µ

√
2r

n

d0√
1− d20

+
C(1 + µ

√
r)√

1− d20
dist2→∞(Q0, V )

]
, (7)

where d0 := ‖QT
0V⊥‖2 ≡ dist2(Q0, V ), r = dim(V ), and µ is the coherence of V .

Proof. The proof is attached in the supplementary material.

When λr+2 � λr+1, a slight modification of the above proof yields a potentially refined upper bound.
The proof is contained in the supplementary material as well.
Proposition 2. The iterates {Qt} produced by Algorithm 1 with initial guess Q0 satisfy

dist2→∞(Qt, V ) ≤
(λr+1

λr

)t [
µ

√
2r

n
· d0√

1− d20
+
‖vr+1v

T
r+1‖∞√

1− d20
· dist2→∞(Q0, V )

]
+
(λr+2

λr

)t d0√
1− d20

,

(8)

where µ is the coherence of V .

Typically, we expect that dist2→∞(Q0, V ) � dist2(Q0, V ), since otherwise the error is highly
localized in just a few rows of the matrix. Therefore, Propositions 1 and 2 show that we can achieve
significant practical improvements in that regime (recall that convergence analysis with respect to the
spectral norm gives a rate of (λr+1/λr)

t d0√
1−d20

[24]). Section 4 illustrates this concept in practical

examples.

3 Stopping criteria

In this section, we propose and analyze a stopping criterion for tracking convergence with respect to
the 2→∞ norm. Notably, this stopping criterion is generic and applicable to any iterative method
for computing an invariant subspace.3 Suppose that we have

AQ−QS = E, ‖E‖2 ≤ ε, Q ∈ On,r, S = ST.

Then it is well-known [24, Theorem 8.1.13] that there exist µ1, . . . , µr ∈ Λ(A) such that
|µk − λk(S)| ≤

√
2ε, ∀k ∈ [r]. This provides a handy criterion for testing convergence of

eigenvalues, by setting S = Dt, the diagonal matrix of approximate eigenvalues at the tth step and
Q = Qt, the orthogonal matrix of approximate eigenvectors. The following lemma is straightforward
to show.
Lemma 1. Suppose that A = AT ∈ Rn×n satisfies AQ−QS = E, Q ∈ On,r, for some diagonal
matrix S. Then Q is an invariant subspace of the matrix A− EQT.

We demonstrate that checking ‖AQ−QS‖ leads to an appropriate stopping criterion for iterative
methods, and simplifies under standard incoherence assumptions. The proof of Proposition 3, crucially
relies on a perturbation bound from [15] and is deferred to the supplement.4

Proposition 3. Assume that A is symmetric with V as its dominant subspace and V⊥ spans the
orthogonal complement of V , with V ∈ On,r; furthermore, suppose that A satisfies the conditions of
Lemma 1 for some Q and let gap := min

{
λr(A)− λr+1(A), sep(2,∞),V⊥

(Λ, V⊥Λ⊥V T
⊥ )
}

. Then, if
Q is the leading invariant subspace of A− EQT and ‖E‖2 ≤ gap

5 , we have

dist2→∞(V,Q) ≤ 8 ‖V ‖2→∞
( ‖E‖2
λr − λr+1

)2

+ 2 ‖V⊥V T
⊥ ‖∞

‖E‖2→∞
gap

·
(

1 +
2 ‖E‖2

λr − λr+1

)
.

3This includes Algorithm 1 and other common methods such as (block) Lanczos.
4As the perturbed matrix is non-normal, an eigengap condition does not suffice to guarantee that V is the

leading invariant subspace of the perturbed matrix. To invoke Proposition 3 with the approximate eigenvectors
in the place of Q, one relies on the fact that Q approaches the leading eigenvector matrix V by convergence
theory of subspace iteration. For more details, we refer the reader to the supplementary material.
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Corollary 1. Suppose that V ∈ On,r with coherence µ and that the conditions of Lemma 1 are
satisfied with ‖E‖2 ≤ ε1, ‖E‖2→∞ ≤ ε2. Then the approximate eigenvector matrix Q satisfies

dist2→∞(V,Q) ≤ 8µ

√
r

n

(
ε1

λr − λr+1

)2

+ 2
1 + µ

√
r

gap
·
(
ε2 + 2

ε1ε2
λr − λr+1

)
, (9)

with gap defined as in Proposition 3.

Practical issues. Checking the criterion of Corollary 1 requires computing ‖E‖2, ‖E‖2→∞ and
estimating gap. The first two terms are straightforward. To estimate gap in practice, we assume
that sep2→∞,V⊥

(Λ, V⊥Λ⊥V T
⊥ ) is a small multiple of the λr − λr+1, motivated by the observation

that sep2→∞ is at worst a factor of 1√
n

smaller than the eigengap [15, Lemma 2.4]; moreover, this
1√
n

factor is typically loose. To estimate λr − λr+1, we may use a combination of techniques, such
as augmenting the “seed” subspace by a constant number of columns and setting |λr − λr+1| ≈
λ̂r − λ̂r+1 – where λ̂i = λi(Q

TAQ) are the approximate eigenvalues – as it is well known that
eigenvalue estimates converge at a quadratic rate for symmetric matrices [50].

In the absence of incoherence information, it is not possible to evaluate Equation (9), and we may
instead replace all quantities in the residual by estimates (which is common practice for unknown
quantities in standard eigensolvers). For any B, ‖BQt‖2→∞ ≈ ‖BV ‖2→∞ (by [10, Prop. 6.6]
and since QtQT

t ≈ V V T after sufficient progress). Similar arguments for the other terms yield an
approximated residual:

res2→∞(t) := 8 ‖Qt‖2→∞
( ‖E‖2
λr − λr+1

)2

+
2 ‖(I −QtQT

t )E‖2→∞
gap

·
(

1 +
2 ‖E‖2

λr − λr+1

)
.

(10)

The main drawback of using Equation (10) is that the substitutions used above are not accurate until
QtQ

T
t is sufficiently close to V V T. This is observed empirically in Section 4, as res2→∞(t) is looser

than average in the first few iterations.

Another practical concern is evaluating the quality of the bound in Corollary 1; there is no
known method for computing the 2 → ∞ subspace distance minZ∈Or

∥∥V̂ − V Z∥∥
2→∞ in closed

form or via some globally convergent iterative method. However, rather than computing Z? =

argminZ∈Or

∥∥V̂ − V Z∥∥
2→∞, we can instead substitute ZF = argminZ∈Or

∥∥V̂ − V Z∥∥
F
, the min-

imizer of the so-called orthogonal Procrustes problem, whose solution can be obtained via the SVD
of V TV̂ [27], as a proxy for tracking the behavior of the `2→∞ distance; this is precisely the solution
used by [15] to study perturbations on the `2→∞ distance. Via standard arguments, we are able to
show that the aforementioned proxy

∥∥V̂ − V ZF∥∥2→∞ enjoys a similar convergence guarantee with
an additional multiplicative factor of

√
r, which is typically negligible compared to n – the details

are in the supplementary material.

4 Applications

In this section, we present a set of numerical experiments illustrating the results of our analysis in
practice, as well as the advantages of the proposed stopping criterion. Importantly, in our applications,
entry-wise error is the natural criterion, often because what matters for the downstream task is an
ordering induced by computed eigenvectors. The supplementary material contains more details about
the implementation and the experimental setup.

Synthetic examples. To verify our theory and get a sense of the tightness of our bounds on
convergence rates, we first test on synthetic data. To this end, we generate matrices as follows, given
a pair of matrix and subspace dimensions (n, r):

1. Sample a matrix from On uniformly at random (see [39] for details) and select r of its
columns uniformly at random to form V .

2. generate λi ≡ ρi−1, for a decay factor ρ = 0.95.
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Figure 1: Distances (solid lines) and residuals (dashed lines) for synthetic examples with r = 50 and
target accuracies ε = 10−4 (left), ε = 10−5 (middle) and ε = 10−6 (right). Each plot corresponds
to an independently generated synthetic example.
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Figure 2: Distance (solid lines) and convergence rates from Equation (11) for matrix and subspace
dimensions (n, r) = (1000, 10) (left); (3500, 15) (middle); and (8000, 20) (right). Our rate3 from
Proposition 1 tracks the “idealized” rate rate1 closely in the synthetic data examples.

3. FormA = [V V⊥] Λ [V V⊥]
T, where V⊥ is initialized as a random subset of the columns

of the identity matrix, and subsequently orthogonalized against V .

We compare distances and residuals for synthetic examples with n = 5000 and r = 50 and various
stopping thresholds ε for the residuals (Figure 1). Each plot in Figure 1 corresponds to a different
matrix generated independently according to the aforementioned scheme. While the `2 norm residual
closely tracks the corresponding distance, the residual from Equation (10) overshoots by a small
multiplicative factor, suggesting that the large constants in Proposition 3 may only be necessary
in pathological cases and could be reduced in practice. Moreover, the `2→∞ norm residual can
substantially overestimate the actual distance in the first few iterations, as the estimate of Equation (10)
depends on QtQT

t not being “too far” from V V T. The gap narrows after a few dozen iterations.

In addition, we examine the looseness of the bounds from Propositions 1 and 2 for the same experiment
(Figure 2). We evaluate the following rates:

rate1(t) :=
(λr+1

λr

)t
· dist2→∞(Q0, V )√

1− d20
, rate2(t) := rate from Proposition 2,

rate3(t) := rate from Proposition 1, ratenaive(t) :=
(λr+1

λr

)t d0√
1− d20

(11)

Here, rate1 is an idealized rate that mirrors classical convergence results for the `2 norm [24, Theorem
8.2.2]; on the other hand, the naive rate just measures the `2 subspace distance. In all the synthetic
examples we generated, Assumption 1 was verified to hold with constant C < 2 for all elapsed
iterations t.

Remarkably, for a range of dimensions n and r we find that rate3 (which uses Proposition 1)
closely tracks the “idealized” rate1 on these synthetic matrices (Figure 2). Also, rate2 (which uses
Proposition 2) is a looser upper bound. This agrees with our theoretical analysis, as λr+2 is only
moderately smaller than λr+1 in our synthetic matrix construction. Finally, as expected, the naive
rate is the loosest bound.

Eigenvector centrality. Next, we develop an experiment for network centrality, where the task is to
measure the influence of nodes in a graph [41]. Each node is assigned a score, which is a function of
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Table 1: Summary statistics of network datasets.
Dataset Citation # nodes # edges
CA-HEPPH [32] 11204 117649
CA-ASTROPH 17903 197031

GEMSEC-FACEBOOK-ARTIST [46] 50515 819306

COM-DBLP [55] 317080 1049866
COM-LIVEJOURNAL 3997962 34681189
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Figure 3: Ratio of the number of iterations needed to satisfy the two stopping criteria outlined in (13),
for thresholds ε = 10−k, for computing eigenvector centrality to find the b√nc most influential
nodes (left) and computing the leading r eigenvectors for spectral clustering (right). Our analysis
and stopping criteria enable significantly fewer iterations.

the graph topology, and a typical underlying assumption is that a node with a high score contributes
a larger influence to its adjacent ones. Here, we consider eigenvector centrality, which is one the
standard measures in network science. Given a graph G = (V,E); the eigenvector centrality score of
a node u, xu > 0, is defined as a solution to the following equation:

xu :=
1

λ

∑
v∈V

Auvxv, Auv :=

{
1, if u links to v
0, otherwise

, (12)

where λ is a proportionality constant. Here, node u’s scores depend linearly on all of its neighbors’
scores. Under the positivity requirement of xu and provided that the graph is connected and non-
bipartite, rearranging and the Perron-Frobenius theorem show that x = v1, the leading eigenvector
of A (up to scaling). To determine the most influential nodes, we are typically interested in the
induced ordering of nodes and not the actual scores themselves. Therefore, the `2→∞ distance, which
measures ‖v1 − v̂1‖∞, is more appropriate than ‖v1 − v̂1‖2 as a proxy for the quality of the estimate
v̂1. To get a correct ranking result, it suffices to have ‖v1 − v̂1‖∞ < (1/2) ·mini,j |vi − vj |. On the
other hand, ‖v̂1 − v1‖2 does not have an interpretable criterion.

We demonstrate the above principle by comparing two stopping criteria: the criterion from Equa-
tion (10) with a specified threshold ε against the “naive” way of stopping when

∥∥Av̂1 − λ̂v̂1∥∥2 ≤ λ̂ε,
where λ̂ is the current eigenvalue estimate, via the two following stopping times:

tcomp := min {t > 0 | res2→∞(t) ≤ ε}
tnaive := min

{
t > 0

∣∣ ∥∥AV̂:,j − λ̂j V̂:,j∥∥ ≤ ελ̂j ,∀j ∈ {1, . . . , r}}. (13)

For a user-specified tolerance ε, we expect that using our `2→∞ error measurements and our corre-
sponding stopping criteria will tell us that we can be confident in our solution much more quickly.
This is indeed the case — using our methodology provides a substantial reduction in computation
time on a variety of real-world graphs, whose summary statistics are in Table 1. Figure 3 (left)
shows the ratio between the two quantities tcomp and tnaive, defined as in Equation (13). In the low-to-
medium accuracy regimes, using our stopping method results in at least a 20–40% reduction in the
number of iterations needed. In this regime, the ranking induced by the approximate eigenvector
had typically already converged to the “true” ordering obtained by computing the eigenvector to
machine precision.
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Spectral clustering in graphs. Another downstream task employing invariant subspaces is spectral
clustering, which we study here as a way to partition a graph into well-separated “communities”
or “clusters.” The standard pipeline is to compute the leading r-dimensional eigenspace of the
normalized adjacency matrix, where r is the desired number of clusters, The resulting eigenvector
matrix provides an r-dimensional embedding for each node, which is subsequently fed to a point
cloud clustering algorithm such as k-means [52]. For our experiment, we use the deterministic
QR-based algorithm from [14] on the same set of real-world graphs that we used for eigenvector
centrality.

In this setup, the eigenvectors (more carefully, a rotation of them) are approximate cluster indicators.
Indeed, spectral clustering on graphs is often derived from a continuous relaxation of a combinatorial
objective based on these indicators [52]. Thus, we are once again interpreting the eigenvectors
entry-wise, and `2→∞ error is a more sensible metric than `2 error, This fact has been used to analyze
random graph models with cluster structure [35].

In the same manner as the eigenvector centrality experiment, we compare the ratio of iteration counts:
tcomp over tnaive, as defined in Equation (13) (Figure 3, right). In this case, we see even larger savings.
For ε around 10−2, our stopping criterion results in 70–80% savings in computation time. While this
approximation level may seem crude at first, we can measure the performance of the algorithms in
terms of the normalized cut metric, for which spectral clustering is a continuous relaxation [52]. We
find that by the time we reach residual level ε = 10−2, the cut value found using the approximate
subspace is essentially the same as the one using the subspace computed to numerical precision.
Further details about the experiment are provided in the supplementary material.

Spectral bipartitioning and sweep cuts. Another spectral method for finding clusters in graphs is
spectral bipartitioning, which aims to find a single cluster of nodes S with small conductance φ(S):

φ(S) :=

∑
i∈S,j /∈S Aij

min(A(S), A(Sc))
, A(S) :=

∑
i∈S

∑
j∈V

Aij .

The conductance objective is a standard measure for identifying a good cluster of nodes [48, 33]: if
φ(S) is small, there are not many edges leaving S and there are many edges contained in S.

Minimizing φ(S) is NP-hard, but a spectral method using the eigenvector v2 corresponding to the
second largest eigenvalue of the normalized adjacency matrix, often called the Fiedler vector [21],
provides guarantees. To find the a set with small conductance, the method uses the so-called “sweep
cut”. After scaling v2 by the inverse square root of degrees, we sort the nodes by their value in the
eigenvector, and then consider the top-k nodes as a candidate set S for all values of k. The value of k
that gives the smallest conductance produces a set S satisfying φ(S) ≤ 2

√
minS′ φ(S′), which is

the celebrated Cheeger inequality [13].

As in the case of eigenvector centrality, what matters is the ordering induced by the eigenvector,
making a `2→∞ stopping criterion more appropriate. As a heuristic, one might consider just making
`2 tolerance larger (by the norm equivalence factor) using a level of ε for the `2→∞ distance and
ε · √n for the `2 distance. However, this can substantially reduce the solution quality. This is
illustrated in Figure 4, where we plot the conductance values obtained in the sweep cut as a function
of the size of the set on COM-DBLP. This is a sweep cut approximation of a network community
profile plot [7, 33], which visualizes cluster structure at different scales. Using the naive `2 stopping
criterion provides the same solution quality but requires more iterations. In the case of ε = 10−4 in
Figure 4, our methods produce 20% computational savings. Finally, the heuristic ε · √n tolerance for
the `2 stopping criterion produces a cruder solution and finds a set with larger conductance.

5 Conclusions

The broad applicability of spectral methods, coupled with the prevalence of entry-wise / row-
wise interpretations of eigenspaces strongly motivates imbuing our computational methods with
appropriate stopping criteria. Our theoretical results demonstrate just how much smaller the ‖·‖2→∞
subspace distance can be than traditional measures, an observation supported by experiment. In fact,
the accuracy with which we compute eigenvectors can have a non-trivial impact on downstream
applications — if we would like use fewer iterations to save time we must do so carefully, and our
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Figure 4: Sweep cut profile (cut conductance
vs. cardinality) for COM-DBLP. For a fixed ε,
our `2→∞ stopping criterion leads to faster
convergence. Increasing the tolerance for
`2 by the norm equivalence factor produces
lower-quality solutions. Here tcomp = 1135
vs. tnaive = 1378 iterations.

new stopping criterion provides an easy to implement way to do this that comes at essentially no cost
and with strong guarantees.

From a theoretical perspective, it may seem sufficient to use norm equivalence and simply appeal
to spectral norm convergence, which can incur an extra O(log n) factor at most when computing
subspaces. However, such reasoning only applies to the very-high-accuracy regime. As demonstrated
by our experiments, moderate levels of accuracy often suffice for downstream applications, in which
case our stopping criterion allows for highly nontrivial computational savings (up to 70% fewer
iterations).

Broader impact

Due to the pervasiveness of spectral methods in machine learning and data mining, our results may
be embedded in applications having a wide range of ethical and societal consequences. Indeed,
given the fact that eigensolvers are typically used as linear algebra primitives, our work “inherits”
the ethical and societal consequences of the context in which its results are applied, as well as the
potential implications of “failure” (e.g., if our stopping criterion severely underestimates the true
approximation error).
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Rosiński, editors, High Dimensional Probability VII, pages 397–423, Cham, 2016. Springer
International Publishing.

[29] RB Lehoucq, DC Sorensen, and C Yang. Arpack users’ guide: Solution of large scale eigenvalue
problems with implicitly restarted arnoldi methods. Software Environ. Tools, 6, 1997.

[30] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods, volume 6. Siam,
1998.

[31] Lihua Lei. Unified `2→∞ Eigenspace Perturbation Theory for Symmetric Random Matrices.
arXiv e-prints, page arXiv:1909.04798, 2019.

[32] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pages 177–187, 2005.

[33] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Statistical properties
of community structure in large social and information networks. In Proceedings of the 17th
international conference on World Wide Web, pages 695–704, 2008.

[34] Vince Lyzinski, Daniel L. Sussman, Minh Tang, Avanti Athreya, and Carey E. Priebe. Perfect
clustering for stochastic blockmodel graphs via adjacency spectral embedding. Electronic
Journal of Statistics, 8(2):2905–2922, 2014.

[35] Vince Lyzinski, Daniel L Sussman, Minh Tang, Avanti Athreya, Carey E Priebe, et al. Perfect
clustering for stochastic blockmodel graphs via adjacency spectral embedding. Electronic
Journal of Statistics, 8(2):2905–2922, 2014.

[36] Michael W Mahoney, Lorenzo Orecchia, and Nisheeth K Vishnoi. A local spectral method
for graphs: With applications to improving graph partitions and exploring data graphs locally.
Journal of Machine Learning Research, 13(Aug):2339–2365, 2012.

[37] Per-Gunnar Martinsson and Joel Tropp. Randomized numerical linear algebra: Foundations &
algorithms. arXiv preprint arXiv:2002.01387, 2020.

[38] Lucas Maystre and Matthias Grossglauser. Fast and accurate inference of plackett–luce models.
In Advances in neural information processing systems, pages 172–180, 2015.

[39] Francesco Mezzadri. How to generate random matrices from the classical compact groups.
Notices of the AMS, 54, 2007.

[40] Eisha Nathan, Geoffrey Sanders, James Fairbanks, Van E. Henson, and David A. Bader. Graph
ranking guarantees for numerical approximations to katz centrality. Procedia Computer Science,
2017. International Conference on Computational Science.

[41] Mark EJ Newman. The mathematics of networks. The new palgrave encyclopedia of economics,
2(2008):1–12, 2008.

[42] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
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