Note: we use the same notations in the Appendix as that in the main paper.

A. Training Algorithm of MulMON

We refer to Algorithm [T]and [2]for the training algorithm of MulMON.

Algorithm 1: MulMON Training Algorithm
1:T

Data a set of N scenes as {(images 2T, viewpoints v''T )} n
begin
Initialize rrainable parameters ®©), §(°) step count s = 0;
repeat
Sample mini batch {(z* T, v¥T)} pp ~ {(2¥T, 01 7T)} 5, where M < N;
/* The below loop can go parallel as tensor operations */
for (Q?l:T,’Ul:T) in {(xl:T,’Ul:T)}M do
| L., « SingleSampleELBO((z!7,v17), () §(*));
L= ﬁ E%ﬂ Lm;
/* gradient update */
®(+D) « optimizer(L, &) ;
0(s+1) « optimizer(L, ));
s+ s+1;
until ®, 0 converge;

B. Data Configurations

We show samples of the used datasets in Figure[§] CLEVR-MultiView & CLEVR-Augmented We
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Figure 1: Examples of the four dataset used in this work.

adapt the Blender environment of the original CLEVR datasets[4] to render both datasets. We make
a scene by randomly sampling 3 ~ 6 rigid shapes as well as their properties like poses, materials,
colors etc.. For the CLEVR-MultiView (CLE-MV) dataset, we sample shapes from three categories:
cubes, spheres, and cylinders, which are the same as the original CLEVR dataset. For the CLEVR-
Augmented (CLE-Aug), we add more shape categories into the pool: mugs, teapots, ducks, owls, and
horses. We render 10 image observations for each scene and save the 10 camera poses as 10 viewpoint
vectors. We use resolution 64 x 64 for the CLE-MV images and 128 x 128 for the CLE-Aug images.
All viewpoints are at the same horizontal level but different azimuth with their focuses locked at the



Algorithm 2: SingleSampleELBO

Input: A single scene sample (images z
Hyperparameters K, 02, L
begin
T = {(a",v)}, Q = {(a%, v%)} LI (T 1T
Initialize \° = {\}} < {(ur = 0,0, =1)};
/* The outer loop for scene learning */
fort =11t |T|do
Access a scene observation (zt,vt);
A\prior — )\t(O) — )\t—l;
/* The inner loop for observation aggregation */
forl=0t0 L —1do
2tV ~ N (2t D; ATD);
{uiﬁi,mk)} ¢ gox (for (2", 01)):
{(m} softmax({mg)})
po(a' 2V 0) & S mPN (g i, 0?0
ifl==0 then
‘ ﬁ%l—) — —log p(xt|zt®), vt);
else
| LY« D W (@ O3 NOY N (2 O; Arrior)] — log pg a2V, v);

A X0 ¢y (10,0t o, ()
At X&(H-l);

2042 ®.
| L o 2Ly
* Viewpoint-queried prediction */
or (z%,v?) in Q do
zt ~ N (zt; AY);
{,ugkv mZ} < go2 (f91 (Zta vq));
{ml} + softmax({m]});
po(z?|zt,v?) « >, mpN(zfs; pd, 0?1 ;
| LG« —logpy(x¥|z",v7);
/* Compute the MulMON ELBO */
_ 1 1
| L= e L7+ 151 220 Lo
Qutput: L

LT 'viewpoints v1:T), trainable parameters ®, 0

I~

scene center. We thus parametrize a viewpoint 3-D viewpoint vector as (cos «, sin «, 1), where « is
the azimuth angle and r is the distance to the scene center. In addition, we save the object properties
(e.g. shape categories, materials, and colors etc.) and generate objects’ segmentation masks for
quantitative evaluations. CLEVR-MultiView (CLE-MV) contains 1500 training scenes, 200 testing
images. CLEVR-Augmented (CLE-Aug) contains 2434 training scenes and 500 testing scenes.

GQN-Jaco We use a mini subset of the original GQN-Jaco dataset[2] in our paper. The original
GQN-Jaco contains 4 million scenes, each of them contains 20 image observations (resolution:
64 x 64) and 20 corresponding viewpoint vectors (7D). To reduce the storage memory and accelerate
the training, we randomly sample 2, 000 scenes for training and 500 scenes for testing. Also, for each
scene, we use only 11 observations (viewpoints) that are randomly sampled from the 20 observations
of the original dataset.

GQN-Shepard-Metzler7 Same as the GQN-Jaco dataset, we make a mini GQN-Shepard-Metzler7
dataset[2] (Shep7) by randomly selecting 3000 scenes for training and 200 for testing. Each scene
contains 15 images observations (resolution: 64 x 64) with 15 corresponding viewpoint vectors (7D).
We use Shep7 to study the effect of K on our model.



C. Implementation Details

Training configurations See Table [I|for our training configurations.

Table 1: Training Configurations

TYPE THE TRAININGS OF MULMON, IODINE, GQN
OPTIMIZER ADAM

INITIAL LEARNING RATE 19 3e™?

LEARNING RATE AT STEP s max{0.11 4 0.970 - (1.0 — s/6¢°),0.1n0}

TOTAL GRADIENT STEPS 300k

BATCH SIZE 8 FOR CLE-MYV, CLE-AUG, 16 FOR GQN-JACO, 12 FOR SHEP7

* THE SAME SCHEDULER AS THE ORIGINAL GQN EXCEPT FOR FASTER ATTENUATION

Table 2: Model State Space Specifications

TYPE CLE-MV CLE-AuG GQN-JACO SHEP7

Z_DIMS 16 16 32 16
V_DIMS 3 3 7 7
7Z_DIMS: THE DIMENSION OF A LATENT REPRESENTATION
V_DIMS: THE DIMENSION OF A VIEWPOINT VECTOR

Model architecture We show our model configurations in Table 2] 3| and 4]
Table 3: MulMON Refinement Network with Trainable Parameters ®

Parameters \ Type Channels (out) Activations. Descriptions
Input 17 * Auxiliary inputs a(z")
P Conv 3 x 3 32 Relu
Conv 3 x 3 32 Relu
Conv 3 x 3 64 Relu
Conv 3 x 3 64 Relu
Flatten
Linear 256 Relu
Linear 128 Linear
Concat 128+4*z_dims
LSTMCell 128
Linear 128 Linear output A\

z_dims: the dimension of a latent representation
v_dims: the dimension of a viewpoint vector

Stride= 1 set for all Convs.

* see IODINE[3] for details

LSTMCell channels: the dimensions of the hidden states

Decoder-output processing For a single view of a scene, our decoder gy outputs K 3 x H x W
RGB values (i.e. {zx} as in equation 2 of the main paper) along with K 1 x H x W mask logits
(denoted as {7y }). H and W are the same as the image sizes, i.e. height and width. In this section,
we detail the computation of rendering K individual scene components’ images, segmentation masks,
and reconstructed scene images. We compute the individual scene objects’ images as:

T & sigmoid(my) - zk.

As shown in Figure[2] this overcomes mutual occlusions of the objects since the sigmoid functions
do not impose any dependence on K objects. We compute the segmentation masks as:

my, & softmaxy ().



Table 4: MulMON Decoder with Trainable Parameters 6

Parameters | Type Channels (out)  Activations. Descriptions
Input 7_dims+ v_dims 21 ~ N (2 M), v
' (view transformer) Linear 512 Relu
Linear z_dims Linear Zk = fo,(2k,0)
Input z_dims Zk = fo,(2k,0)
6? (Generator) Broadcast z_dims+2 * Broadcast to grid
Conv 3 X 3 32 Relu
Conv 3 X 3 32 Relu
Conv 3 X 3 32 Relu
Conv 3 x 3 32 Relu
Conv 3 x 3 4 Linear rgb mean (p,;) + mask logits (1)

z_dims: the dimension of a latent representation
v_dims: the dimension of a viewpoint vector

*: see spatial broadcast decoder [3]

Stride= 1 set for all Convs.

Obs Rec/Pred Generated K Scene Components
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Figure 2: Example of images of post-processed decoder outputs: (left to right) (predicted) scene
reconstruction, generated K individual scene components (white background for visual clarity),
segmentation map. The generated scene components overcome/impute occlusions (e.g. the purple
glossy sphere).

To generate binary segmentation masks, we take argmax operation over the K / at every pixel
location and encode the maximum indicator (indices) using one-hot codes. We render a scene image
using a composition of all scene objects as:

T = Zsoftmaxk(mk) - Tk
= ka Tk
k

D. Additional Results

Models | Disent. Compl. Inform.

GON N/A N/A N/A
IODINE | 0.54 0.48 0.21
MulMON | 0.63 0.54 0.58

Table 5: Disentanglement Analysis (CLE-Aug)

D.1 Disentanglement Analysis

To compare quantitatively the intra-object disentanglement achieved by MulMON and IODINE, we
employ the framework and metrics (DCI) of Eastwood and Williams[1]]. Specifically, let y be the
ground-truth generative factors for a single-view of a single object in a single scene, and let z be
the corresponding learned representation. Following [1l], we learn a mapping from Z = (z1, 2a, . . .)
toY = (y1,y2,...) with random forests in order to quantify the disentanglement, completeness
and informativeness of the learned object representations. Section 5.3 presented the results on
the CLE-MV dataset, and here we present the results on the CLE-Aug dataset. As shown in
Table[5] MuIMON again outperforms IODINE, learning representations that are more disentangled,



complete and informative (about ground-truth factor values). It is worth noting the significant gap in
informativeness (1 — NRM SE) in Table [3] This strongly indicates that the object representations
learned by MulMON are more accurate, i.e. they better-capture object properties.

D.2 Generalization Results

To evaluate MulMON’s generalization ability, we trained MulIMON, IODINE and GQN on CLE-Aug.
Then, we compared their performance on CLE-MV and 2 new datasets—Black-Aug and UnseenShape
(see Figure[3). Black-Aug contains the CLE-Aug objects but only in single, unseen colour (black).
This tests the models’ ability perform segmentation with-

out colour differences/cues. UnseenShape contains only Black-Au UnseenShape
novel objects that are not in the CLE-Aug dataset—cups, * *
cars, spheres, and diamonds. This directly tests gener-
alization capabilities. Both datasets contain 30 scenes,
each with 10 views. Table 1 shows that 1) all mod-
els generalize well to novel scenes, 2) MulMON still
performs best for all tasks but observation prediction—
where GQN does slightly better due to its more direct
prediction procedure (features — layout vs. features
— objects — layout), 3) MulMON can indeed under-
stand the composition of novel objects in novel scenes—
impressive novel-view predictions (observations and seg-
mentations) and disentanglement. Despite the excellent quantitative performance achieved by Mul-
MON in generalization, we discovered that MulMON tended to decompose some objects, e.g. cars,
into pieces (see Figure ). Future investigations are thus needed in order to enable MulMON to
generalize to more complex objects.

o a

Figure 3:
datasets.

Samples from novel-scene

Table 6: MulMON’s generalization performance.

Tasks | Models | CLE-Aug (train) | CLE-MV Black-Aug UnseenShape
Seg. IODINE 0.51 £0.001 0.61 £ 0.002 0.50 £ 0.006 0.51 &+ 0.004
(mIoU) MulMON | 0.714+0.000 | 0.71+0.004 0.67 + 0.002 0.64 +0.004
Pred.Obs GOQN 0.15 £ 0.000 0.15+0.001 0.24 +0.003 0.17 £ 0.002
(RMSE) MulMON | 0.07+0.000 | 0.16 £0.002 0.26 = 0.002 0.21 £+ 0.006
Disent. IODINE 0.54,0.48,0.21 | 0.14,0.12,0.26 0.2,0.26,0.27 0.13,0.12,0.26
(D,C.J) MulMON | 0.63,0.54,0.68 | 0.52,0.48,0.63 0.55,0.55,0.66 0.5,0.47,0.67
Pred.Seg (mloU) ‘ MulMON ‘ 0.69 + 0.001 ‘ 0.71 4+ 0.004 0.68 + 0.005 0.60 £+ 0.005

D.3 Ablation Study

Prediction performance vs. the number of observations T In Section 5.4 of the main paper, we
show that the spatial uncertainty MulMON learns decrease as more observations (71") are acquired.
Here we study the effect of 7' on MulMON’s task performance, i.e. novel-viewpoint prediction.
We employ mloU (mean intersection-over-union) and RMSE (root-mean-square error) to measure
MulMON’s performance on observation prediction and segmentation prediction respectively. In
Figure 5] we show that the spatial uncertainty reduction (Left) suggests boosts of task performance
(Right). This means MulMON does leverage multi-view exploration to learn more accurate scene
representations (than a single-view configuration), this also explains the performance gap (see Section
5.1 in the main paper) between IODINE and MulMON. To further demonstrate the advantage
that MulMON has over both IODINE and GQN, we compare their performance in terms of both
segmentation and novel-view appearance prediction, as a function of the number of observations
given to the models. Figure [6] shows that; 1) MulMON significantly outperforms IODINE even
with a single view, likely due to a superior 3D scene understanding gained during training (figures
on the left), 2) Despite the more difficult task of achieving object-level segmentation, MulMON
closely mirrors the performance of GQN in predicting the appearance of the scene from unobserved
viewpoints (figures on the right), 3) MulMON achieves similar performance in scene segmentation
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Figure 4: Failure cases of MulMON in generalization: splitting an car into pieces. Here the MulMON
is trained on the CLE-MV dataset and test on the UnseenShape data.
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Figure 5: Effect of T: as more observations are acquired, (Top) the spatial uncertainty reduces and the
performance of novel-viewpoint prediction on observation (Bottom left) and segmentation (Bottom
right) prediction boosts.

from observed and unobserved viewpoints, with any difference diminishes as the number of views
increase (see dashed lines vs. solid lines in the left-hand figures).

Effect the number of object slots K Although explicit assumption about the number of objects in
a scene is not required for MulMON, selecting a appropriate K (i.e. the number of object slots)
is crucial to have MulMON work correctly. In the main paper, we discussed that “K needs to be
sufficiently larger than the number of scene objects” and we show the experimental support here. We
train our model on CLE-MV, where each scene contains 4 to 7 objects including the background,
using K = 9 and run tests on novel-viewpoint prediction tasks using various K. Figure [7]shows
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Figure 6: Performance comparison w.r.t. a different number of observations 7". (Top left) Segmenta-
tion performance vs. number of observations 7" on CLE-MV dataset. Note that “obs” means that
MulMON reconstructs the observed images (scene appearances) and “unobs” means that MuIMON
predicts the appearance of the scene from unoberserved viewpoints. (Top right) Novel-viewpoint
oberservation prediction performance vs. number of observations given to the models on CLE-
MV dataset. (Bottom left) Segmentation performance vs. number of observations 7' on CLE-MV
dataset. (Bottom right) RMSE of appearance predictions for unobserved viewpoints vs. number of
observations on CLE-Aug dataset.

that, for both observation prediction and segmentation prediction tasks, the model’s performance
improves as K increases until reaching a critical point at K = 7, which is the maximum quantity
of scene objects in the dataset. Therefore, one should select a K that is always greater or equal to
the maximum number of objects in a scene. When this condition is satisfied, further increase K will
mostly not affect MulMON’s performance.

Subtle cases in terms of K’s selection do exist. As shown in Figure, instead of treating the Shep7
scene a combination of a single object and the background, MulMON performs as a part segmenter
that discovers the small cubes and their spatial composition. This is because, in the training phase
of MulMON, the amortized parameters ¢ and 6 are trained to capture the object features (possibly
disentangled) shared across all the objects in the whole dataset instead of each scene with specific
objects. These shared object features are what drives the segmentation process of MulMON. In
Shep7, what is being shared are the cubes, the object itself is a spatial composition of the cubes. The
results on Shep7 along with the results shown in Figure @] illustrate the subjectiveness of perceptual
grouping and leaves much space for us to study in the future.

Effect of the IG coefficient in scene learning In the MuIMON ELBO, we fix the coefficient of
the information gain at 1. In testing, we consider this coefficient controls the scene learning rate
(uncertainty reduction rate). We denote the coefficient as oy hereafter. According to the MulMON
ELBO (to maximize), the negative sign of the IG term suggests that greater value of the coefficient
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Figure 7: Effect of K: (Left) the spatial uncertainty decreases and (Middle & Right) the task
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Figure 8: MulMON on Shep7. MulMON treats an Shep7 object as composition of parts (cubes)
instead of one object.

leads to less information gain (spatial exploration). To verify this, we try four different azg (0.1,
1.0, 10.0 and 100.0) and track the prediction uncertainty as observations are acquired (same as our
ablation study of T). The results in Figure 9] verifies our assumption the scene learning rate: larger
arc leads to slower scene learning and vice versa.

D.4 Random Scene Generation

As a generative model, MulMON can generate random scenes by composing independently-sampled
objects. However, to focus on forming accurate, disentangled representations of multi-object scenes,
we must assume objects are i.i.d. and thus ignore inter-object correlations—e.g. two objects can
appear at the same location. Figure[I0|shows some random scene examples generated by MulMON
(trained on the CLE-MV dataset). We can see that MulMON generates mostly good object samples by
randomly composing different features but does not take into account the objects’ spatial correlations.
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Figure 9: Scene learning rate vs. IG coefficient (denoted as arg). (Left) Uncertainty reduction gets
slower when increase increase ayc. (Right) The computed uncertainty change rate or scene learning
rate (lower means slower) shows larger ayg slows the scene learning.

Figure 10: Random scene generation samples.
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