
Appendix

A Proofs for Section 2

Proof of Lemma 2.1

Proof. We construct a "ghost" point:

x1 = PX
(
x− 1

β
∇xf̃([x]β , [y]β)

)
, y1 = PY

(
y +

1

β
∇y f̃([x]β , [y]β)

)
.

From (x, y) to (x1, y1) is just one step of extra-gradient with stepsize 1
β0

. According to [34] or
Section 4.5 of [4], we have

∇xf̃([x]β , [y]β)T ([x]β − x̄)−∇y f̃([x]β , [y]β)T ([y]β − ȳ)

≤β
2

[(‖x− x̄‖2 + ‖y − ȳ‖2)− (‖x1 − x̄‖2 + ‖y1 − ȳ‖2)], ∀x̄ ∈ X , ȳ ∈ Y. (10)

1. Denote x∗(y) = arg minx∈X f̃(x, y) and y∗(x) = arg maxy∈Y f̃(x, y). By convexity-concavity
of f̃ , we have

gapf̃ ([z]β) =f̃([x]β , [y]β)−min
x∈X

f̃(x, [y]β) + max
y∈Y

f̃([x]β , y)− f̃([x]β , [y]β)

≤∇xf̃([x]β , [y]β)T ([x]β − x∗([y]β))−∇y f̃([x]β , yk+1/2)T ([y]β − y∗([x]β))

≤β
2

[(‖x− x∗([y]β)‖2 + ‖y − y∗([x]β)‖2)− (‖x1 − x∗([y]β)‖2 + ‖y1 − y∗([x]β)‖2)]

≤β[‖x− x∗‖2 + ‖x∗ − x∗([y]β)‖2 + ‖y − y∗‖2 + ‖y∗ − y∗([x]β)‖2] (11)

≤β[‖x− x∗‖2 + ‖y − y∗‖2] +
β ˜̀2

µ̃2
[‖[x]β − x∗‖2 + ‖[y]β − y∗‖2]

≤

(
β +

2β ˜̀2

µ̃2

)
[‖x− x∗‖2 + ‖y − y∗‖2] +

2β ˜̀2

µ̃2
[‖[x]β − x‖2 + ‖[y]β − y‖2], (12)

where in the second inequality we apply (10) , in the third and last inequalities we use Young’s
inequality, and in the fourth inequality we use ‖x∗ − x∗([y]β)‖ = ‖x∗(y∗)− x∗([y]β)‖ ≤ ˜̀

µ̃‖[y]β −
y∗‖ (and similarly for ‖y∗ − y∗([x]β)‖, see Lemma B.2 in [25]). From Lemma 3.1 and Proposition
3.2 in [48], we have

‖[x]β−x‖2+‖[y]β−y‖2 ≤
1

(1− ˜̀/β)2
[‖x−x1‖2+‖y−y1‖2] ≤ 2

(1− ˜̀/β)3
[‖x−x∗‖2+‖y−y∗‖2].

(13)
Combining with (12), we have

gapf̃ ([z]β) ≤

(
β +

2β ˜̀2

µ̃2
+

4β ˜̀2

µ̃2(1− ˜̀/β)3

)
[‖x− x∗‖2 + ‖y − y∗‖2]. (14)

Then again from (10), for any arbitrary ȳ ∈ Y we have
∇xf̃([x]β , [y]β)T ([x]β − x∗([y]β))−∇y f̃([x]β , [y]β)T ([y]β − y)

≤β
2

[(‖x− x∗([y]β)‖2 + ‖y − ȳ‖2)− (‖x1 − x∗([y]β)‖2 + ‖y1 − ȳ‖2)]

≤β
2
‖x− x∗([y]β)‖2 +

β

2
[‖y − ȳ‖2 − ‖y1 − ȳ‖2]

≤β
2
‖x− x∗([y]β)‖2 +

β

2
‖y − y1‖‖y − ȳ + y1 − ȳ‖

≤

(
β +

2β ˜̀2

µ̃2
+

4β ˜̀2

µ̃2(1− ˜̀/β)3

)
[‖x− x∗‖2 + ‖y − y∗‖2] + βDY [‖y − y∗‖+ ‖y1 − y∗‖]

≤

(
β +

2β ˜̀2

µ̃2
+

4β ˜̀2

µ̃2(1− ˜̀/β)3

)
[‖x− x∗‖2 + ‖y − y∗‖2] + 2βDY [‖x− x∗‖+ ‖y − y∗‖],

(15)
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where in the fourth inequality, we bound ‖x− x∗([y]β)‖2 the same way as we did from (11) to (13),
and in the last inequality we use ‖z − z∗‖ ≤ ‖z1 − z∗‖ (Proposition 3.2 in [48]). By noting that

∇xf̃([x]β , [y]β)T ([x]β − x∗([y]β)) ≥ 0,
we reach our conclusion.

2. Theorem 3.1 of [41] shows the relationship between ‖x−x∗‖+‖y−y∗‖ and ‖x−[x]β‖+‖y−[y]β‖
in the case β = 1. The proof can be extended to the following general case:

‖x− x∗‖+ ‖y − y∗‖ ≤ β + ˜̀

µ̃
[‖x− [x]β‖+ ‖y − [y]β‖].

The last relationship we want to show is just equation (13).

B Proofs for Section 3

Proof of Theorem 3.1

Proof. Because Φxt(y) := f̃t(xt, y) = f(xt, y)− τ
2‖y − zt‖

2 is τ -strongly-concave, we have

Φxt(yt)− Φxt(y) ≥ 1

2
τ‖y − yt‖2 +∇y f̃(xt, yt)

T (yt − y), ∀y ∈ Y.
With stopping criterion of the subproblem (3), we have

f(xt, yt)− f(xt, y) ≥ 1

2
τ‖y − yt‖2 +

τ

2
‖yt − zt‖2 −

τ

2
‖y − zt‖2 − ε(t). (16)

Choose y = αtỹ + (1− αt)yt−1 in (16), where ỹ is an arbitrary vector in Y , then

f(xt, ỹ)−f(xt, yt) ≤ (1−αt)[f(xt, ỹ)−f(xt, yt−1)]−τ
2
α2
t (‖vt−ỹ‖2−‖vt−1−ỹ‖2)−τ

2
‖yt−zt‖2+ε(t).

(17)
Note that
f(xt, ỹ)− f(xt, yt−1) =f(xt−1, ỹ)− f(xt−1, yt−1) + f(xt−1, yt−1)− f(xt, yt−1) + f(xt, ỹ)− f(xt−1, ỹ)

≤f(xt−1, ỹ)− f(xt−1, yt−1) + f(xt, ỹ)− f(xt−1, ỹ) + ε(t−1), (18)
where the inequality follows because f(xt, yt)−minx∈X f(x, yt) ≤ ε(t). Plugging this back to (17)
and rearranging,
1

α2
t

[f(xt, ỹ)− f(xt, yt)] +
τ

2
‖vt − ỹ‖2 ≤

1− αt
α2
t

[f(xt−1, ỹ)− f(xt−1, yt−1)] +
τ

2
‖vt−1 − ỹ‖2+

1− αt
α2
t

[f(xt, ỹ)− f(xt−1, ỹ)] +
1− αt
α2
t

ε(t−1) +
1

α2
t

ε(t).

(19)
Using the update rule for sequence {αt}t, for t > 1 we have

1

α2
t

[f(xt, ỹ)− f(xt, yt)] +
τ

2
‖vt − ỹ‖2 ≤

1

α2
t−1

[f(xt−1, ỹ)− f(xt−1, yt−1)] +
τ

2
‖vt−1 − ỹ‖2+

1

α2
t−1

[f(xt, ỹ)− f(xt−1, ỹ)] +
1

α2
t−1

ε(t−1) +
1

α2
t

ε(t).

(20)
Iterating this inequality results in
1

α2
t

[f(xt, ỹ)− f(xt, yt)] +
τ

2
‖vt − ỹ‖2 ≤

1

α2
1

[f(x1, ỹ)− f(x1, y1)] +
τ

2
‖v1 − ỹ‖2+

T∑
t=2

1

α2
t−1

[f(xt, ỹ)− f(xt−1, ỹ)] +

T∑
t=2

1

α2
t−1

ε(t−1) +

T∑
t=2

1

α2
t

ε(t)

=f(x1, ỹ)− f(x1, y1) +
τ

2
‖v1 − ỹ‖2+

T∑
t=2

1

α2
t−1

[f(xt, ỹ)− f(xt−1, ỹ)] +

T∑
t=2

1

α2
t−1

ε(t−1) +

T∑
t=2

1

α2
t

ε(t),

(21)
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where we use α1 = 1. Applying (19) with t = 1 (note α1 = 1), we have

f(x1, ỹ)− f(x1, y1) +
τ

2
‖v1 − ỹ‖2 ≤

τ

2
‖y0 − ỹ‖2 + ε(1). (22)

Combining with (21),
1

α2
T

[f(xT , ỹ)− f(xT , yT )] +
τ

2
‖vT − ỹ‖2

≤τ
2
‖y0 − ỹ‖2 +

T∑
t=2

1

α2
t−1

[f(xt, ỹ)− f(xt−1, ỹ] +

T∑
t=2

1

α2
t−1

ε(t−1) +

T∑
t=1

1

α2
t

ε(t)

≤τ
2
‖y0 − ỹ‖2 +

1

α2
T−1

f(xT , ỹ)−
T∑
t=2

1

αt−1
f(xt−1, ỹ) +

T∑
t=2

1

α2
t−1

ε(t−1) +

T∑
t=1

1

α2
t

ε(t),

where in the last inequality we use 1
α2
t
− 1

α2
t−1

= 1
αt

. Rearranging,

τ

2
‖y0 − ỹ‖2 +

T∑
t=2

1

α2
t−1

ε(t−1) +

T∑
t=1

1

α2
t

ε(t)

≥ 1

α2
T

[f(xT , ỹ)− f(xT , yT )] +
τ

2
‖vT − ỹ‖2 −

1

α2
T−1

f(xT , ỹ) +

T∑
t=2

1

αt−1
f(xt−1, ỹ)

≥
T∑
t=1

1

αt
f(xt, ỹ)− 1

α2
T

f(xT , yT )

≥
T∑

m=1

1

αm
f

(
T∑
t=1

1/αt∑T
k=1 1/αk

xt, ỹ

)
− 1

α2
T

f(xT , yT )

≥
T∑

m=1

1

αm
f

(
T∑
t=1

1/αt∑T
k=1 1/αk

xt, ỹ

)
− 1

α2
T

f(x̃, yT )− 1

α2
T

ε(T ), ∀x̃ ∈ X ,

where in the third inequality we use the convexity of f(·, ỹ), and in the last inequality we use
f(xt, yt)−minx∈X f(x, yt) ≤ ε(t). Note that

t∑
m=1

1

αm
=

1

α1
+

(
1

α2
2

− 1

α2
1

)
+

(
1

a2
3

− 1

α2
2

)
+ ...+

(
1

α2
t

− 1

α2
t−1

)
=

1

α2
t

. (23)

Therefore

f(x̄T , ỹ)− f(x̃, yT ) ≤ a2
T

[
τ

2
‖y0 − ỹ‖2 + 2

T∑
t=1

1

α2
t

ε(t)

]
, ∀x̃ ∈ X , ỹ ∈ Y, (24)

which directly implies

gapf (x̄T , yT ) ≤ α2
T

[
τ

2
D2
Y + 2

T∑
t=1

1

α2
t

ε(t)

]
. (25)

By choosing ε(t) =
3τDYα2

t

2πt2 ,
T∑
t=1

1

α2
t

ε(t) =
3τDY

2π

T∑
t=1

1

t2
≤ τDY

4
, (26)

therefore,
gapf (x̄T , yT ) ≤ α2

T τD2
Y . (27)

Proof of Proposition 3.1

Proof. First, we show that the initial point (xt−1, zt) will not be infinitely far from the saddle
point (x∗t , y

∗
t ) of the subproblem (?) at t-th iteration of outer loop. Since Y is bounded, we have

‖zt − y∗t ‖ ≤ DY . Denote x∗(y) = argminx f(x, y). Since f(·, y) is µ-strongly convex, we have

‖x∗(yt−1)− x∗(yt)‖ ≤
l

µ
‖yt − yt−1‖ ≤

l

µ
DY , (28)
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where we use Lemma B.2 in [25]. Further with the strong convexity of f(·, yt−1), we have

‖xt−1 − x∗t ‖2 ≤ 2‖xt−1 − x∗(y∗t−1)‖2 + 2‖x∗(y∗t−1)− x∗(y∗t )‖2 ≤ 4ε(t−1)

µx
+ 2

(
l

µx

)2

DY .

Therefore, the distance from the initial point to the saddle point of the subproblem is bounded. From
now, we use subscript to index the iteration of the inner-loop and (x0, y0) denotes the initial point we
specified above. We separate the discussion into deterministic and stochastic settings.

Deterministic setting. We apply a deterministic algorithmM to solve the subproblem andM has
a linear rate described by (4). By Lemma 2.1, after K iterations of algorithmM,

‖xK − [xK ]β‖2 + ‖yK − [yK ]β‖2 ≤
2

(1− ˜̀/β)3
[‖xK − x∗‖2 + ‖yK − y∗‖2]

≤ 2

(1− ˜̀/β)3

(
1− 1

∆M,τ

)K
[‖x0 − x∗‖2 + ‖y0 − y∗‖2].

Choosing

K = ∆M,τ log
(1− ˜̀/β)3(‖x0 − x∗‖2 + ‖y0 − y∗‖2)

2ε
,

we have ‖xK − [xK ]β‖2 + ‖yK − [yK ]β‖2 ≤ ε. To satisfy condition (6), it suffices to set

ε = min

{
µ̃2ε(t)

2A(β + ˜̀)2
,

(
µ̃ε(t)

4βDY(β + ˜̀)

)2}
,

and we reach our conclusion.

Stochastic setting. We apply a stochastic algorithmM to solve the subproblem andM has a linear
rate described by (5). With the same reasoning as in deterministic setting and applying Appendix B.4
of [23], we have

K(ε) ≤ ∆M,τ log
(1− ˜̀/β)3(‖x0 − x∗‖2 + ‖y0 − y∗‖2)

2∆M,τ ε
+ 1,

and the conclusion follows directly.

Proof of Corollary 3.2

Proof. Because 2/(t+2)2 ≤ α2
t ≤ 4/(t+1)2, by Theorem 3.1, Algorithm 1 finds ε-saddle point after

T = O
(√

µ/ε · DY
)

outer-loop iterations. Note that the accuracy we want for solving subproblem
(?) is

ε(t) =
3τDYα2

t

2πt2
≥ 6τDY
πt2(t+ 2)2

≥ 6τDY
πT 2(T + 2)2

= Ω(ε2µ−1D−3
Y ), ∀t ∈ [T ]. (29)

By Proposition 3.1, it takes at most

K = O
(

∆M,τ log

(
`DY

min{1, µ, τ}ε

))
gradient oracle calls forM to solve the subproblem. The total complexity is then K · T .

C Proofs for Section 4

Proof of Theorem 4.1

Proof. First we define ψ as the extended-value function of g: ψ(x) = g(x) if x ∈ X and ψ(x) =∞
if x 6∈ X . Note that g(x) = maxy∈Y f(x, y) is `-weakly convex [Lemma 3, [47]]. It directly follows
from the definition of ψ that ψ is also `-weakly convex. Define the proximal point of x by

proxτψ(x) = argminz

{
ψ(z) +

1

2τ
‖z − x‖2

}
= argminz∈X g1/τ (z;x).
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By [Lemma 4.3 in [11]], as τx > `,

‖∇ψ1/τx(xt)‖2 = τ2
x‖xt − proxψ/τx(xt)‖2 ≤

2τ2
x

τx − `
[gτx(xt;xt)− gτx(proxψ/τx(x);xt)]

≤ 2τ2
x

τx − `
[gτx(xt;xt)− gτx(xt+1;xt) + ε̄]

=
2τ2
x

τx − `
{
g(xt)−

[
g(xt+1) +

τx
2
‖xt+1 − xt‖2

]
+ ε̄
}

≤ 2τ2
x

τx − `
[g(xt)− g(xt+1) + ε̄], (30)

where in the first inequality we use (τx − `)-strong convexity of gτx(·;xt), and the second inequality
follows from gτx(xt+1;xt) ≤ minx∈X gτx(x;xt) + ε̄. Summing from 0 to T − 1, we get

1

T

T−1∑
t=0

‖∇ψτx(xt)‖2 ≤
2τ2
x

τx − `

[
g(x0)− g(xT )

T
+ ε̄

]
≤ 2τ2

x

τx − `

[
g(x0)− g∗

T
+ ε̄

]
. (31)

Proof of Corollary 4.2

Proof. According to Theorem 4.1, with τx = 2`, it takes at most T =
4τ2
x(g(x0)−g∗)
(τx−`)ε2 = 16`(g(x0)−g∗)

ε2

outer-loops to find ε-stationary point. The auxiliary problem minx∈X gτx(x;xt) is then `-SC-C
and (3`)-smooth. By Corollary 3.2 and discussion in Section 3.2, Algorithm 1 combined with
EG/OGDA/GDA can solve such auxiliary problem with complexity Õ(

√
`/ε̄) = Õ(`/ε) as ε̄ = ε2

8`

specified in Theorem 4.1. So the total complexity is Õ(`2/ε3).

Proof of Corollary 4.3

Proof. As we assume each fi has `-Lipschitz gradient, f(x, y) = 1
n

∑n
i=1 fi(x, y) has ¯̀-Lipschitz

gradient. According to Theorem 4.1, with τx = 2¯̀, it takes at most T =
4τ2
x(g(x0)−g∗)
(τx−¯̀)ε2

=

16¯̀(g(x0)−g∗)
ε2 outer-loops to find ε-stationary point. The resulting auxiliary problem is ¯̀-SC-C

and (3¯̀)-smooth. By Corollary 3.2, Algorithm 1 combined with EG/OGDA can solve such auxiliary
problem with complexity

Õ

((
n+

(
3¯̀+ τy

min{¯̀, τy}

)2
)√

τy
ε̄

)
.

Choosing τy = ¯̀/
√
n and ε̄ = ε2

8¯̀, Algorithm 1 has complexity of Õ
(
n

3
4 ¯̀/ε

)
to solve the auxiliary

problem. The total complexity is therefore Õ
(
n

3
4 ¯̀2ε−3

)
.

When we further assume f has `i-cocoercive gradient, Algorithm 1 combined with SVRE can solve
such auxiliary problem with complexity

Õ
((

n+
3¯̀+ τy

min{¯̀, τy}

)√
τy
ε̄

)
.

Choosing τy = ¯̀/n and ε̄ = ε2

8¯̀, Algorithm 1 has complexity of Õ
(
n

1
2 ¯̀/ε

)
to solve the auxiliary

problem. The total complexity is therefore Õ
(
n

1
2 ¯̀2ε−3

)
.

D Additional Experiments

In this section, we provide additional experiments on SC-C minimax problems to illustrate the
performance of Catalyst framework. Here we focus on the comparison between the performance of
EG, Catalyst-EG and DIAG [47]. We implement these algorithms in the same way as in Section 5.
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Figure 4: SC-C experiment on distributionally robust logistic regression

D.1 Distributionally robust logistic regression

We consider the distributionally robust logistic regression problem [32]. This results in a minimax
problem:

min
θ

max
p∈∆n

n∑
i=1

−pi [yi log (ŷ (Xi)) + (1− yi) log (1− ŷ (Xi))] such that ‖p− 1/n‖ ≤ ρ, (32)

where θ parametrizes the classifier ŷ(·), and (y,X) is classification data. When ŷ(x) = eθ
>x

1+eθ>x
, it

can be formulated as the following SC-C minimax problem:

min
θ

max
p

n∑
i=1

pi log(1 + exp(−yiθ>Xi)) +
λ

2
‖θ‖2 such that ‖p− 1/n‖ ≤ ρ, (33)

where λ is a regularization parameter.

We conduct experiments on the Wisconsin breast cancer dataset [13], which has 30 attributes and
569 samples. We separate 80% of the data as our training set. We compare the performance of EG,
Catalyst-EG and DIAG. We compare EG and Catalyst-EG under same stepsizes in Figure 4(a). We
also report two different error measures under the best-tuned stepsizes in Figure 4(b) and 4(c). We
observe that Catalyst-EG performs consistently well. As algorithms designed for SC-C setting, both
DIAG and Catalyst-EG converge faster than EG.
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