Appendix

A Proofs for Section
Proof of Lemma 2.1]

Proof. We construct a "ghost" point:

1 ~ 1 -
0 =Py (2= 5V els b)) 0 =Py (y+ﬂv el W)
From (z,y) to (z1,y1) is just one step of extra-gradient with step31ze . According to [34] or

Section 4.5 of [4], we have ~
ocf([ 16, [Wls) " ([2]s — &) = Vy f([]s, lyle) " ([W)s — 9)
[(Ilw—w||2+||y glI?) = (lzr = 21* + lya — 9l1*)], VZeXx,gel. (10)

1. Denote z*(y) = arg min,cx f(ac7 y) and y* (x) = arg max,cy f(;v, y). By convexity-concavity
of f, we have

gapf([2]s) =/([2]s [v]5) — min f (2, [y]5) + max F((2)s,y) — F(2]s [yls)

N> \

<Vaf(l2ls, Wls)" ([2]s — " ([W]6)) — Vi f([2]gs yrsry2)" (ls — " ([2]5))
Sg[(llx—x*([y]ﬁ)\\QJr ly = y* ([21p)1I*) = (o1 — 2" () I* + llyn — v ([2]6)]*)]
<Bllle =" + llo* = =" (o) I* + ly — v II* + lly* — v ([]p)1I*] (11)

%12 *(12 622 * (|2 * (|2
<Bllle = =*1" + lly — y"I”] + e Wzls — 21" + lllyls — y"II°]

ﬁQ

2662

<(8+ 2] — 2l + lllyls — wl%), (12)

where in the second 1nequa11ty we apply (I0) , in the thlrd and last inequalities we use Young’s
inequality, and in the fourth inequality we use ||z* — z*([y]g)|| = llz*(v*) — z*([y]p)|| < éH[y]ﬁ -

y*|| (and similarly for ||y* — y*([z]3)]], see Lemma B.2 in [23]]). From Lemma 3.1 and Proposition
3.2 in [48]], we have

2 2 1 * 12 * (12
lz]s==[I"+llyls—yllI” < W[Hx 1| +Hly—yi %] < m[llw*w 1"+ lly—y (IIB])-

Combining with (12), we have

> [llz =217 + [y — " II°] +

2302 4302
gap([z]s) < (5 + . + RO

Then again from (T0), for any arbitrary § € ) we have

Vo ([2ls. [)s)" (1215 — 2" ([Wls) — Vi F (2], [W]) " (] — 9)

)3> [l =21 + lly =y~ ] (14)

<Dl —* () + lly = 71%) — (s — 2 (I + s — 31)]
<Dl 2 @) I” + 21y 71 ~ s — 7]
<Dl —a* 2+ 2y~ wallly 5+ 1 —
2622 4522 k2 k12 gk ok
§<ﬁ+ - +ﬂ2(1_g/5)3>[x 22 4y~ 72+ 8Dyl — v+l — 7]
28302 4B0? \ . . .
< <6+ 2 +,12(1_z7/5)3> e —2*[1* + [ly — y*|I*] + 26Dy [llz — 2*|| + [ly — "],
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where in the fourth inequality, we bound ||z — z*([y]5)||? the same way as we did from (11} to
and in the last inequality we use ||z — z*|| < ||z1 — z*|| (Proposition 3.2 in [48])). By notlng that

Vo (2]s, Wle)" ([2]s — 2" ([y)s)) > 0,

we reach our conclusion.

2. Theorem 3.1 of [41] shows the relationship between ||z —x*||+||y—y*| and ||z—[z]s]|+]|y—[v] 5]
in the case 5 = 1. The proof can be extended to the following general case:

B+L
ToB

|z —x

[z = [2]sll + lly = [ylsll]-

The last relationship we want to show is just equation (T3). O

B Proofs for Section

Proof of Theorem [3.1]

Proof. Because @, (y) := fy(zs,y) = f(z,y) — Zlly — 2||? is T-strongly-concave, we have

1 -
o, (1) = D () = 57lly = vl + Vo (@90 (0 = 9), Yy €.
With stopping criterion of the subproblem (3), we have
1 T T
f(ze,ye) — f(2e,y) > 57'”@/ - yt||2 + §||yt - ZtH2 - §Hy - Zt||2 — ), (16)
Choose y = o § + (1 — a)y;—1 in (16), where § is an arbitrary vector in ), then

f(@e, §)—f(2e,y:) < (1*04t)[f(9€t7g)*f(wtayt—l)]*%%2(”%*17“2*||’Ut—1*”§/|\2)*%||yt*2t||2+€(t)~

)
Note that
f@e,9) — fe, yi—1) =f(@i—1,9) = f(@e—1,ye—1) + (@1, ye—-1) = f(@e,90-1) + f(20,9) — f(20=1,79)
<f@i-1,9) = f@e—1,ye-1) + F(@,§) — Flremr, §) + 7, (18)

where the inequality follows because f(z;, ;) — mingex f(2,y:) < €. Plugging this back to
and rearranging,

@) = F Gy + Sl = 1P <A @e1,9) = f@ee -] + Sl - g||2+

1—Oét 1-— Qg

-t ) — i =1 ®
Oé% [f(l‘h y) f(.]?tf]_, y)] + at + :
(19)
Using the update rule for sequence {a }+, for t > 1 we have
1 - T - . T -
?[f(xt,y) — flze,y0)] + §||Ut — gl < [f(ze-1,9) = f(@e—1,3e-1)] + §||Utf1 — g+
t t—1
1 1 1
[f(@e§) = fae, §)] + ——e7D + =0
af_y ai 4 aj
(20
Iterating this inequality results in
1 . T 1 - T -
— (e, 9) = f(@e,y0)] + slloe — 917 <=5 [f(21,9) — flz,y0)] + sllor — 9017+
oy 2 af 2
G G 1
=1 —®
Zagil[f(xt’y) (@e-1,9 +Zag X ZagE
t=2 =2
=f(21,9) = f(z1,91) + §\|Ul — P+
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t—1 t
Zagil[f(xtay) xt la +ZO&? ) ( )+Za7t2€()a
=2 t=2
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where we use o; = 1. Applying with t = 1 (note a; = 1), we have

~ T ~ T ~
f@1,9) = f@ny) + Slor =317 < S llyo = g1 + €. (22)
Combining with (21)),
1 - T -
— f(@r,9) = flr,yr)] + 5llor = §l”
aT
|
z _ 72 1) — @)
— ||y0 yH xta .'L't 1,Y +ZO{% +Zat€

1
T d KT
<llyo — 7l + flar, g Z f(@i-1,9 +Z ™ 1)—1—2
T—1 =2 O‘t—l i—2 at—l t
where in the last inequality we use —5 — 31 - = .- Rearranging,

*Ilyo—y||2+z €= 1)+Z 26“

> [f(@r,§) - for,yr)] + Slvr - 51 -

f(ze,9) — a%f(-xTayT)

T

) 1/C¥t ~ _i
f (Z Zk 11/ak y) a%f(fﬂT,yT)

vV
EM’% qgw"—‘
2l

[M]=

t=1

" 1/a 1
f (Z : y) oz /@) = LD, viex,
1 t=1 Zk e %

where in the third inequality we use the convexity of f(-,¢), and in the last inequality we use
f(x1, 1) — mingex f(z,y:) < eV). Note that

t

1 1 1 1 1 1 1 1 1
Yo —=—t (S-S )+ (m-S)+tH -5 )= @
—1 %m Qi Qs o as  a; Qg Qi Qg

m=1
Therefore

3
Il

[M]=
§\H £l-

>

3
I

T
_ - T _ 1 - _
f(r.9) = (@ yr) < af [2||yo —il*+2) a&”] , VieXgey, @

which directly implies

T
- 2 | T2 1 (t)
gap (T, yr) < o [2% +2 ; 2| (25)
By choosing (¥ = %,
T
1 3D 1 D
e — YNT - Y 26
D ) D I (26)
t=1 t=1
therefore,
gapy(Zr,yr) < apD3. 27)
O]
Proof of Proposition 3.1]

Proof. First, we show that the initial point (z;_1, z;) will not be infinitely far from the saddle
point (x},y;) of the subproblem (E[) at t-th iteration of outer loop. Since ) is bounded, we have
|zt — y7 |l < Dy. Denote z*(y) = argmin,, f(x,y). Since f(-,y) is u-strongly convex, we have

2% (yr—1) — 2" ()| < ;Hyt — g1l < Mas (28)
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where we use Lemma B.2 in [25]. Further with the strong convexity of f(-,y:—1), we have

* * [ % * [ % * /% 46@71) l ?
s = ol < 2oy — 2" P + 2o 0) — 2 GNP < 2 +2(M) Dy.

Therefore, the distance from the initial point to the saddle point of the subproblem is bounded. From
now, we use subscript to index the iteration of the inner-loop and (g, yo) denotes the initial point we
specified above. We separate the discussion into deterministic and stochastic settings.

Deterministic setting. We apply a deterministic algorithm M to solve the subproblem and M has
a linear rate described by (). By Lemma [2.1] after K iterations of algorithm M,

2 * *
lese = lexlsll* + lyx — lyx]sll? SW[H%K — 2| + lyx — o]

2
< _
A=

(1=2/8)%(lzo — =*1* + llyo — y*II*)
2¢ ’

we have ||z — [zx]s]® + |lyx — [yx]sl* < e. To satisfy condition (6, it suffices to set
2

| { ﬂQe(t) ( [Le(t) ) }
€ = min =, = 5
2A(B+10)2 \4BDy(B+ 1)

and we reach our conclusion.

1 K
*||12 * |12
)3 (1_ AM,T> o =77+ o =71

Choosing

K = A./\/l;r log

Stochastic setting. We apply a stochastic algorithm M to solve the subproblem and M has a linear
rate described by (5)). With the same reasoning as in deterministic setting and applying Appendix B.4
of [23]], we have

(L=4/B)3(llxo — =*[I* + llyo — v*11)
280 €

K(E) < AM,T log +1,

and the conclusion follows directly.

Proof of Corollary3.2]

Proof. Because 2/(t+2)% < a? < 4/(t+1)2, by Theorem[3.1] Algorithm[1|finds e-saddle point after
T=0 (\/ /e - Dy) outer-loop iterations. Note that the accuracy we want for solving subproblem
is

3rDya? 67D 67D ‘
W=V T s TV (@ 'Dy?), Ve [T (29)

2mt2 T w2 (t42)2 T wT2(T +2)2
By Proposition [3.1] it takes at most

/Dy
K = A 1 _
O( sy log (min{w,f}e))

gradient oracle calls for M to solve the subproblem. The total complexity is then K - T

C Proofs for Sectiond
Proof of Theorem 4.1

Proof. First we define v as the extended-value function of g: ¥(z) = g(z) if z € X and ¥(x) = oo
if z ¢ X. Note that g(z) = maxycy f(x,y) is {-weakly convex [Lemma 3, [47]]. It directly follows
from the definition of v that v is also ¢-weakly convex. Define the proximal point of x by

. 1 .
prox,,(r) = argmin, {w(z) + ;Hz — xz} = argmin_c y 91/, (2; 2).
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By [Lemma 4.3 in [11]], as 7, > ¢,
2

277
[ 2 = 72— pros s, (22 o [gr, (s ) — g, (ros, . (2): )]
272
_:,; g[grm (zt;24) — gr, (Te1324) + €
27 Tz o] | -
=T {g(we) = [g(@er) + S llaer — 2] + )
272 _
< T g(w) — glee) + ) 60)

where in the first inequality we use (7, — £)-strong convexity of g, (+; x+), and the second inequality
follows from gr, (Try152) < minmex gr, (x; 24) + € Summing from 0 to T' — 1, we get

72 1Vebr, ()| < T [9(3«"0)—9(»’%) _|_€] < 277 {9(900)—9* _'_6] 31)

—/ T Ty — ¥ T
t=0
O
Proof of Corollary 4.2]
Proof. According to Theorem with 7, = 2/, it takes at most T' = ((Tg(_ K;e ) — 1649 (f;’ )=9")

outer-loops to find e-stationary point. The auxiliary problem min,ecx g-, (z; ;) is then ¢-SC-C
and (3¢)-smooth. By Corollary [3.2] and discussion in Section Algorithm [1] combined with

EG/OGDA/GDA can solve such auxiliary problem with complexity O(+/¢/&) = O(¢/¢) as € = %
specified in Theorem So the total complexity is O(¢2/¢?). O

Proof of Corollary[d.3]

Proof. As we assume each f; has (-Lipschitz gradient, f(z,y) = 2 37" | fi(z,y) has {-Lipschitz

gradient. According to Theorem with 7, = 2/, it takes at most T = w =

(To—4)€?
M outer-loops to find e-stationary point. The resulting auxiliary problem is ¢-SC-C

and (3€) smooth. By Corollary. Algorlthmlcombmed with EG/OGDA can solve such auxiliary

problem with complexity
7 2
Of(n+ (?M) .
min{¢, 7, } €

Choosing 7, = ¢/\/n and € = Algorlthmhas complexity of O (n4€ / e) to solve the auxiliary

o2
problem. The total complexity is therefore O (nMQe_?’).

When we further assume f has ¢;-cocoercive gradient, Algorithm[I]combined with SVRE can solve
such auxiliary problem with complexity

(v e V)

Choosing 7, = {/nand € = Algorlthmhas complexity of O (n2 l/e ) to solve the auxiliary

g s
problem. The total complexity is therefore o (nz e *3> O
D Additional Experiments

In this section, we provide additional experiments on SC-C minimax problems to illustrate the
performance of Catalyst framework. Here we focus on the comparison between the performance of
EG, Catalyst-EG and DIAG [47]. We implement these algorithms in the same way as in Section 5]
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|—EG w/ stepsize .2
—Catalyst-EG w/ stepsize .2
- EG w/ stepsize .3
- Catalyst-EG w/ stepsize .3
=7-EG w/ stepsize .4
Catalyst-EG w/ stepsize .4

e = 2| + llye = v°1
2= 2 + lye —y*

0 0.5 1 1.5 2 0 0.5 1 15 2 0 0.5 1 15 2
Gradient Count x10* Gradient Count x10* Gradient Count x10*

(a) Distance to limit point (b) Comparion of EG and Catalyst- (c) Norm of gradient mapping
EG

Figure 4: SC-C experiment on distributionally robust logistic regression
D.1 Distributionally robust logistic regression

We consider the distributionally robust logistic regression problem [32]]. This results in a minimax
problem:

min max Z —p; [yilog (§ (X;)) + (1 — yi) log (1 — g (X;))] such that [|[p — 1/n| < p, (32)
i=1

0 peEA, —

TI
where 6 parametrizes the classifier §(-), and (y, X) is classification data. When §(z) = liﬁ’ it
can be formulated as the following SC-C minimax problem:

= A
nbinmaXZpi log(1 + exp(—u:0 " X;)) + §||t9\|2 such that ||p — 1/n|| < p, (33)
2

i=1
where ) is a regularization parameter.
We conduct experiments on the Wisconsin breast cancer dataset [[13]], which has 30 attributes and
569 samples. We separate 80% of the data as our training set. We compare the performance of EG,
Catalyst-EG and DIAG. We compare EG and Catalyst-EG under same stepsizes in Figure [4(a)l We
also report two different error measures under the best-tuned stepsizes in Figure 4(b){and 4(c)l We
observe that Catalyst-EG performs consistently well. As algorithms designed for SC-C setting, both
DIAG and Catalyst-EG converge faster than EG.
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