
We thank the reviewers for their feedback. We address their comments in the order of R2&R5, R2, R3, and R5.1

REVIEWER #2 AND REVIEWER #52

#2 3.2, #5 3. Insight in classification in relation to [37]: Our main contribution of the paper is a framework for3

thinking about meta-augmentation. Although the importance of label shuffling is known in few-shot classification, we4

show that these results are consistent with being a special case of our meta-augmentation framework. Also, on top of5

[37], we go on to show differences between intra-shuffling and inter-shuffling, and that memorization overfitting and6

learner overfitting are both possible, but not guaranteed to occur for non-mutually-exclusive tasks.7

REVIEWER #28

3.1.(i). Better linking CE-increasing augmentations to few-shot classification: In our few shot classification9

benchmarks, ε is a random variable for a uniformly sampled permutation from SN , and y′ = g(ε, y) is the application of10

the permutation. This augmentation increases the conditional entropy H(Y ′
q |Xq) as the amount of information required11

to describe Y ′ given X has now increased due to the unknown ε. This can be viewed as an encryption key because12

given just y′ we cannot infer y, but y′, ε recovers y exactly. We will make this link clear and add it in the camera ready13

version of the paper.14

3.1.(ii). Mechanics of CE-increasing augmentation in MAML and CNP: We will add an explanation of the actual15

mechanics in MAML and CNP to the camera ready version of the paper. In general, CE-increasing augmentations force16

high loss if the meta-learner does not learn to adapt using the support set.17

REVIEWER #318

3.A.1. Experimental setup of the Sinusoidal regression task: There was a mistake in our experiment description. In19

our experiments, x is always sampled from the disjoint intervals [−5,−4.5], [−4,−3.5], . . . , [4, 4.5], not uniformly20

from [−5, 5] as mentioned in the paper. So x will never be sampled from (−4.5,−4). The gaps between intervals21

means there is a continuous function over [−5, 5] that exactly matches the piecewise function over the sub-intervals22

where the piecewise function is defined. The value of the continuous function outside those intervals can be arbitrary.23

We will correct this in the camera ready version.24

3.A.2. Quantifying the effect of increase in conditional entropy on generalization Figure 8a in Appendix B displays25

test loss as a function of the number of discrete noise values added to y. Since we always use augmentations that satisfy26

the conditions in line 127, this quantifies the H(Y |X) increase as log2 n bits, where n is the number of discrete noise27

values used. All the three methods (CNP, MAML and MR-MAML) follow a U -shaped curve with best performance at28

an intermediate amount of added noise, not too low and not too high. As noted, CE-increasing augmentation is not a29

sufficient condition for generalization.30

3.A.3. Inner-loop optimization and memorization overfitting: Yes, we intended memorization overfitting to mean31

the base learner relying too little on the support set. We will update the wording to clarify this.32

3.B.[1,3]. wording comments: We agree with the reviewer. We will make β’s meaning more explicit, and also update33

lines 68-69 as recommended.34

3.B.2. H(ε) proof: We will add a proof to the Appendix. We noticed our original statement was not as precise as it35

should have been. The updated statement follows: Let ε be a noise variable independent from X,Y , let g : ε, Y → Y36

be the augmentation function. Define gε(y) and gy(ε) as g(ε, y) with ε or y fixed. If gε and gy are one-to-one for all ε, y,37

then H(Y ′|X) = min(H(Y |X) +H(ε), H(uniform)). In other words, the CE increases by H(ε), but H(Y ′|X) is38

upper-bounded by the max entropy distribution, the uniform distribution over the codomain. Proof: Ignoring the above39

edge case, H(Y ′|X) = H(Y, ε|X), and independence gives H(Y, ε|X) = H(Y |X) +H(ε|X) = H(Y |X) +H(ε).40

3.B.4 Shuffle CE-increase proof: We will add this to the appendix. A brief proof sketch follows: let ε be a ran-41

dom variable for a uniformly sampled permutation from SN . Given any initial label distribution, augmenting with42

Y ′ = g(ε, Y ) gives a uniform Y ′|X , and since H(Y ′|X) is the highest possible conditional entropy, CE must increase43

unless Y |X was already uniform.44

3.C.[1-4], 6.F.1.: We agree with all the reviewer’s suggestions under "minor concerns", and will also make sure to45

mention the augmentations used in Omniglot in the camera-ready version.46

REVIEWER #547

3. Multiple instantiations of proposed framework We proposed and evaluated two different augmentation methods48

for pose regression: discrete noise and uniform noise (see Appendix B). We also found 8 different augmentations49

(shifting, scaling, sign flipping, etc.) to work well on the sinusoid regression task, although we did not include these50

results for compactness sake, and did not try all 8 on the pose regression task. We believe that the primary contribution51

of our work lies not in the specific augmentations we used for regression tasks, but in the general information-theoretic52

framework for meta-augmentation. We demonstrate this framework to be consistent across multiple datasets, models,53

classification and regression problems, and augmentation strategies.54


