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Guide to the appendix

The appendix is organized as follows.

In Appendix A, we present a matrix representation of system (4) describing aggregated observations
y1:t in terms of past inputs and noise. We also restate our matrix representation of the Kalman
predictive model.

In Appendix B, we provide upper bounds on the matrix coefficients used in the aggregated system
representation as well as a high probability upper bound on the norm of observations ‖y1:t‖2. We
also discuss our assumption on the 2-norm of the Kalman coefficient matrices (control matrix Ct
and observation matrix Ot) and present two examples providing bounds on the 2-norm of these
coefficients.

In Appendix C, we first analyze the error of approximating µ(λ) by spectral methods, considering
the spectrum of the Hankel covariance matrix. A proof of Theorem 2 is presented in Appendix C.2.

In Appendix D, we analyze convex relaxation approximation error and show that the convex relaxation
bias is small with high probability, provided that the number of filters k &M log2(T ).

In Appendix E, we write a bound on regret decomposed into least squares error, improper learning
bias, regularization error, and innovation error. We further extract the term ‖Z−1/2

t−1 ft‖22 making the
bound ready for analysis in subsequent sections.

In Appendix F, we provide our regret analysis. In Appendix F.1, we present a high probability bound
on det(Zt) that appears multiple times throughout our analysis. In Appendix F.2, we derive a result
on self-normalizing vector martingales that assists bounding several terms. In Appendix F.3, we
provide a bound on ‖Z−1/2

t−1 ft‖22 using sub-Gaussian tail properties, a block-martingale small-ball
condition, and a filter quadratic function condition. The proof of Lemma 1 is given in Appendix
F.4. The regularization term and innovation error are analyzed in Appendix F.5 and Appendix F.6,
respectively. The proof of the regret theorem is presented in Appendix F.7.

A few technical lemmas are presented in Appendix G. Additional experiments are presented in
Appendix H. In Appendix I, a discussion on systems with long forecast memory is provided.
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A Aggregated representations

We start by introducing an aggregated notation for representing linear dynamical systems and the
Kalman predictive model.

A.1 Linear dynamical systems

For the linear dynamical system of (4), define the following matrices

Tt =




C 0 0 . . . 0
CA C 0 . . . 0
CA2 CA C . . . 0

...
...

...
. . .

...
CAt−1 CAt−2 CAt−3 . . . C







AP 1/2 0 0 . . . 0
0 Q1/2 0 . . . 0
0 0 Q1/2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Q1/2



,

It =




D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
...

...
. . .

...
CAt−2B CAt−3B CAt−4B . . . D



,

Rt =




R1/2 0 0 . . . 0
0 R1/2 0 . . . 0
0 0 R1/2 . . . 0
...

...
...

. . .
...

0 0 0 . . . R1/2



.

(14)

Let KtK>t = TtT >t + RtR>t , where Kt is the unique solution to Cholesky decomposition. The
system observations y1:t can be written as

y1:t = Ktξ1:t + Itx1:t, (15)

where ξi ∈ Rm is a Gaussian random vector with covariance Im.

A.2 Kalman filter

For convenience, we restate our notation of the Kalman predictive model from Section 3. Define the
following matrices

Ot =
[
CGt−1K CGt−3K . . . CK

]
,

Ct =
[
CGt−1(B −KD) CGt−2(B −KD) . . . C(B −KD)

]
.

(16)

We refer to Ot and Ct as observation matrix and control matrix, respectively. Using the above
notation, the Kalman prediction mt+1 is given by

mt+1 = Oty1:t + Ctx1:t +Dxt+1.

B Norm bounds

As a preliminary step, we compute a few bounds that will be used later in the regret analysis of the
SLIP algorithm. In particular, we compute upper bounds on the norms of parameter matrices defined
in (14) and discuss upper bounds on the norms of observation and control matrix of the Kalman
predictive model. Further, we derive a high probability upper bound on the observation norm.

B.1 Bounds on parameters

The following lemma provides upper bounds on the norm of matrices that describe a linear dynamic
system.
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Lemma B.1. (LDS parameter bounds) Consider system (4). Let RP = max{‖B‖2, ‖C‖2, ‖D‖2}
and RC = max{‖P‖2, ‖Q‖2, ‖R‖2}. Suppose that ‖At‖2 ≤ γtlog(γ) for a bounded constant γ ≥ 1.
For Tt, It, and Kt defined in (14), the following operator norm bounds hold:

(i) ‖Tt‖2 ≤ R1/2
C RP γ(1 + γ)tlog(γ)+1,

(ii) ‖It‖2 ≤ RP [1 + tγtlog(γ)],

(iii) ‖Kt‖2 ≤
√
RC +RCR2

P (1 + γ)4t2 log(γ)+2.

Proof. By Lemma G.1,

‖Tt‖2 ≤ (‖A‖2 + 1)R
1/2
C ‖C‖2

t∑

i=1

‖Ai‖2 ≤ R1/2
C RP γ(1 + γ)tlog(γ)+1.

Similarly,

‖It‖2 ≤ ‖D‖2 + ‖C‖2‖B‖2
t∑

i=1

‖Ai‖2 ≤ RP +R2
P γt

log(γ)+1.

It follows by the sub-additive property of matrix operator norm that

‖KtK>t ‖2 = ‖Kt‖22 ≤ ‖Tt‖22 + ‖Rt‖22 ⇒ ‖Kt‖2 ≤
√
RC +RCR2

P (1 + γ)4t2 log(γ)+2.

In the regret analysis, we assume that ‖Ot‖2 ≤ ROtβ for a finite β ≥ 0. We justify this assumption
in the examples below. The following example shows that β = 0 when the system is single-input
single-output (SISO).
Example B.1. (Observation matrix norm bound in SISO systems) For a SISO linear dynamical
system, the following equation holds

KC =
AΣ+C2

Σ+C2 +R
⇒ 0 ≤ KC ≤ A.

We have G = A−KC. Applying the above constraint gives

G ≤ A
The squared norm of vector Ot is given by

‖Ot‖22 =

t−1∑

i=0

(KCGi)2 =

t−1∑

i=0

(A−G)2G2i.

Under the constraint G ≤ A ≤ 1, the maximum of ‖Ot‖22 is 1 obtained when G = 0 and A = 1.

In the following example, we compute a loose upper bound on ‖Ot‖2.
Example B.2. (Observation matrix norm bound in MIMO systems with d = m) Consider an
LDS with d = m. We begin by computing an upper bound on the norm of the Kalman gain. Let
K = AK ′. By the recursive updates of a stationary Kalman gain, we write

CK ′ = CΣ+C>[CΣ+C> +Q]−1 � I ⇒ ‖CK ′‖2 ≤ 1.

Lower bounding ‖CK‖2 yields

‖K ′‖2σmin(C) ≤ ‖CK ′‖2 ≤ 1⇒ ‖K ′‖2 ≤
1

σmin(C)
.

Let κC = σmax(C)/σmin(C) to be the condition number of C. Assume ‖Gt‖2 ≤ γgt
log(γg). We

have

‖Ot‖2 ≤
t∑

i=1

‖C‖2‖Gi‖2‖K ′‖2 ≤ κCγgtlog(γg)+1.
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B.2 Bound on observation norm

One of the quantities that appear in the regret analysis of our algorithm is the squared norm of y1:t.
The following lemma provides a high probability upper bound for ‖y1:t‖22.
Lemma B.2. (Observation norm bound) Consider system (4). Let RP =
max{‖B‖2, ‖C‖2, ‖D‖2}, RC = max{‖P‖2, ‖Q‖2, ‖R‖2}, and ‖xt‖2 ≤ Rx. Suppose
that ‖At‖2 ≤ γtlog(γ) for a bounded constant γ ≥ 1. For any δ > 0 and all t ≥ 0,

P
[
‖y1:t‖22 ≥ 6(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ δ)t2+2 log(γ)

]
≤ e−δ.

Proof. From (15), we see that

‖y1:t‖22 ≤ 2‖It‖22‖x1:t‖22 + 2‖Kt‖22‖ξ1:t‖22
Using Gaussian upper tail bounds [5], we have

P
[
‖ξ1:t‖22 > 2mt+ 3δ

]
≤ P

[
‖ξ1:t‖22 > mt+ 2

√
mtδ + 2δ

]
≤ e−δ.

Using the bounds computed in Lemma B.1, the following holds with probability at least 1− e−δ

‖y1:t‖22 ≤2‖It‖22‖x1:t‖22 + 2‖Kt‖22‖ξ1:t‖22
≤6(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ δ)t2+2 log(γ).

(17)

C Filter approximation and width analysis

In this section we first provide a series of lemmas characterizing the reconstruction error of applying
PCA to approximate the vector function µ(λ) = [1, λ, . . . , λT−1]. These lemmas are later used to
prove Theorem 2.

C.1 Bounds on PCA approximation error

The goal of this section is to establish a uniform bound on the norm of the reconstruction error of
approximating µ(λ) with µ̃(λ). The following lemma states a standard result on the average PCA
reconstruction error, presented here for completeness.
Lemma C.1. (Average reconstruction error bound) Let µ(λ) ∈ RT be a vector function parame-
terized by λ ∈ A. Define the following matrix with respect to probability measure p

Z =

∫

A
µ(λ)µ>(λ)p(dλ).

Let {(σj , φj)}Tj=1 be the eigenpairs of Z. Let µ̃(λ) be the projection of µ(λ) to the linear subspace
spanned by {φ1, . . . , φk}. Then,

∫

A
‖µ(λ)− µ̃(λ)‖22p(dλ) =

T∑

j=k+1

σj .

Proof. Define Uk to be a T × k matrix with columns φ1, . . . φk, the eigenvectors of matrix Z. The
reconstruction error can be written as

r(λ) = µ(λ)− UkU>k µ(λ) = (I − UkU>k )µ(λ) = Πkµ(λ).

The average squared norm of reconstruction error is given by
∫

A
‖r(λ)‖22p(dλ) =

∫

A
tr[r(λ)r(λ)>]p(dλ) =

∫

A
tr[Πkµ(λ)µ(λ)>Π>k ]p(dλ)

= tr[Πk

∫

A
µ(λ)µ(λ)>p(dλ)Π>k ] = tr[ΠkZΠ>k ] =

T∑

j=k+1

σj .
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We then use Lipschitz continuity of µ(λ) over the interval [−1, 1] to establish a uniform bound on
the reconstruction error.
Lemma C.2. Let µ(λ) = [1, λ, λ2, . . . , λT−1]> for λ ∈ [−1, 1] and define

H =

∫ 1

−1

1

2
µ(λ)µ(λ)>dλ.

Let {(σj , φj)}Tj=1 be the eigenpairs ofH , where σj are in decreasing order. Let µ̃(λ) be the projection
of µ(λ) to the linear subspace spanned by {φ1, . . . , φk}. Then, for any λ ∈ [−1, 1] and T ≥ 1,

‖µ(λ)− µ̃(λ)‖22 ≤ T

√√√√2

T∑

j=k+1

σj .

Proof. Let us first compute an upper bound on the Lipschitz constant of µ(λ) over λ ∈ [−1, 1].
The Lipschitz constant of µ(λ) is bounded by the norm of Jacobian J(µ(λ)) = [0, 1, 2λ, . . . , (T −
1)λT−2]. Thus,

‖µ(λ2)− µ(λ1)‖2
|λ2 − λ1|

≤ ‖J(µ(λ))‖2 ≤

√√√√
T−1∑

t=1

t2 ≤
√
T 3/3.

Define Uk to be a matrix with columns φ1, . . . φk. The reconstruction error can be written as
r(λ) = (I − UkU>k )µ(λ) = Πkµ(λ). A Lipschitz constant for reconstruction error norm is given by

‖r(λ2)‖2 − ‖r(λ1)‖2 ≤ ‖r(λ2)− r(λ1)‖2 (inverse triangle inequality)
= ‖Πk(µ(λ2)− µ(λ1))‖2
≤ ‖Πk‖2‖(µ(λ2)− µ(λ1))‖2 (multiplicative property of norm)
≤ ‖(µ(λ2)− µ(λ1))‖2 (Πk is contractive)

≤
√
T 3/3|λ2 − λ1| (Lipschitz continuity of µ(λ))

Thus, an upper bound on the Lipschitz constant of ‖r(λ)‖22 can be computed

‖r(λ2)‖22 − ‖r(λ1)‖22 = (‖r(λ2)‖2 − ‖r(λ1)‖2)(‖r(λ2)‖2 + ‖r(λ1)‖2)

≤
(√

T 3/3|λ2 − λ1|
)(

2 max
λ
‖r(λ)‖2

)

≤ 2
√
T 3/3‖Πk‖2 max

λ
‖µ(λ)‖2|λ2 − λ1|

≤ 2T 2|λ2 − λ1|.
Let Rr = max

λ
‖r(λ)‖22. On the account of Lemma C.1, ‖r(λ)‖22 has a bounded average over the

interval [−1, 1]. A bounded and (2T 2)-Lipschitz function that achieves the maximum Rr has a
triangular shape. It follows that

R2
r

2T 2
≥

T∑

j=k+1

σj ⇒ ‖r(λ)‖22 ≤ Rr ≤ T

√√√√2

T∑

j=k+1

σj .

In the following lemma, we prove that the PCA reconstruction error is small due to the exponential
decay of the spectrum of the Hankel covariance matrix H .
Lemma C.3. (Uniform bound on reconstruction error) Under the assumptions of Lemma C.2 and
for any T ≥ 10

‖µ(λ)− µ̃(λ)‖22 ≤ C0T
√

log Tc−k/ log T ,

where c = exp(π2/8) and C0 = 43.

Proof. We appeal to the following, which appears as Corollary 5.4 in Beckermann and Townsend [3].
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Lemma C.4. Let Hn ∈ Rn×n be a positive semi-definite Hankel matrix. Then,

σj+2k ≤ 16
[

exp
( π2

4 log(8bn/2c/π)

)]−2k+2

σj(Hn), for 1 ≤ j + 2k ≤ n. (18)

Setting j = 1 in (18) with the assumption T ≥ 10 yields

σ2+2k ≤ σ1+2k ≤ 16σ1 exp
( π2

4 log T

)−2k+2

≤ 1168σ1 exp
( π2

4 log T

)−2k

.

Let c = exp(π2/8). It follows that

σj ≤ 1168σ1c
−2(j−2)

log T ≤ 10512σ1c
−2j
log T .

The largest singular value of Hankel matrix H is bounded by

σ1 ≤ tr(H) ≤
T∑

k=1

1

2k + 1
≤

T∑

k=1

1

k
− 1 ≤ log T,

where the last inequality is due to a classic bound on the T -th harmonic number. We conclude from
Lemma C.2 that

‖µ(λ)− µ̃(λ)‖22 ≤ T

√√√√21024σ1

T∑

j=k+1

c−2j/ log T

≤ T
√

21024 log T
c−2k/ log T

c2 − 1
≤ 43T

√
log Tc−k/ log T .

C.2 Generalized Kolmogorov width analysis: Proof of Theorem 2

Proof of Theorem 2. We first prove the second claim. Let λ1, . . . λd ∈ [−1, 1] denote the eigenvalues
of G. Let vi be the right eigenvectors of G and w>i be the left eigenvectors of G. Eigendecomposition
of Gt implies Gt =

∑d
i=1 viw

>
i λi. Therefore, matrix µ(G) = [I,G, . . . , GT−1] can be written as

µ(G) =

d∑

i=1

viw
>
i ([1, λi, . . . , λ

T−1
i ]⊗ Id) =

d∑

i=1

viw
>
i (µ(λi)⊗ Id),

where µ(λi) = [1, λi, . . . , λ
T−1
i ] is a row vector. We approximate µ(λ) for any λ ∈ [−1, 1] using

principal component analysis (PCA). The covariance matrix of µ(λ) with respect to a uniform
measure is given by

H =

∫ 1

λ=−1

1

2
µ(λ)>µ(λ)dλ ⇒ Hij =

∫ 1

−1

1

2
λi−1λj−1dλ =

(−1)i+j + 1

2(i+ j − 1)
.

Let {φj}kj=1 be the top k eigenvectors of H . We approximate µ(λ) by µ̃(λ) =
∑k
j=1〈µ>(λ), φj〉φ>j :

µ(G) ≈ µ̃(G) =

d∑

i=1

viw
>
i (

k∑

j=1

〈µ>(λ), φj〉φ>j ⊗ Id)

=

k∑

j=1

[ d∑

i=1

〈µ>(λi), φj〉viw>i
]
(φ>j ⊗ Id) =

k∑

j=1

ajuj .

Check that a1, . . . , ak ∈ Rd×d and u1, . . . , uk ∈ Rd×dT . We have

dk(W ) = ‖µ(G)− µ̃(G)‖2 = ‖
d∑

i=1

viw
>
i (µ(λi)− µ̃(λi))⊗ Id‖2

≤
d∑

i=1

‖µ(λi)− µ̃(λi)‖2

≤ d sup
λ
‖µ(λ)− µ̃(λ)‖2.
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The first inequality uses subadditive and submultiplicative properties of norm and that ‖viw>i ‖2 ≤
1, ‖Id‖2 = 1. By Lemma C.3,

dk(W ) ≤ d
√

43T (log T )1/4
(

exp(π2/16)
)−k/ log T

.

Now we prove the first claim by showing that the lower bound is realized for a particular set W .
Since the case of d = 2 can be embedded as a subset for general d ≥ 2 as the left top block, it suffices
to show it for d = 2. We further constrain the set W and only consider those G with representation

G =

[
a b
−b a

]
,

where a, b ∈ R. The eigenvalues of this matrix are complex numbers a− jb and a+ jb, which satisfy
ρ(G) ≤ 1 if a2 + b2 ≤ 1, where ρ(G) is the spectral radius of G. The nice property of this type of
matrices is that there exists an explicit expression of Gi for integer i ≥ 2. Define complex number
z = a+ jb, then for integer i ≥ 0:

Gi =

[
<(zi) =(zi)
−=(zi) <(zi)

]
,

where <(z) represents the real part of complex number z, and =(z) represents the imaginary part of
z.

We want to approximate µ(G) ∈ R2×2T by
∑k
i=1 aiui, where ai ∈ R2×2 and ui ∈ R2×2T . Let

W1 be the subset of row vectors realized by the first row of µ(G) for all G ∈ R2×2 with ρ(G) ≤ 1.
We use the following property: the 2-norm of a matrix is lower bounded by the 2-norm of one of
its rows. Based on this property, the 2-norm of error in approximating µ(G) is lower bounded by
the 2-norm of error in approximating only one row of µ(G). Therefore, the generalized k-width of
approximating µ(G) in 2-norm is lower bounded by the error of approximating the first row of µ(G)
by a linear combination of 2k row vectors with dimension 2T . In other words,

d2k(W1) ≤ dk(W ). (19)

To see this, denote by ui(1), ui(2) ∈ R2T the first and second row of matrix ui, respectively. The
first row of µ(G) can be written as

∑k
i=1 ai(1, 1)ui(1) + ai(1, 2)ui(2), a linear comibination of 2k

row vectors, where ai(1, 1), ai(1, 2) are the elements of the first row of matrix ai.

To lower bound the generalized Kolmogorov width of the constrained set W1, we consider a relaxed
weighted version of the width. Precisely, let p be a probability measure on the set W1, then the
weighted squared deviation of W1 from U under weight p is defined as

d2
2k(W1; p) , inf

U∈U2k
Ex∼p inf

y∈U
‖x− y‖2 ≤ inf

U∈U2k
sup
x∈W1

inf
y∈U
‖x− y‖2 = d2

2k(W1). (20)

We observe that d2
2k(W1; p) in general can be computed using spectral methods. Indeed, for the

subset U , the y that achieves infy∈U ‖x−y‖2 can be computed via a projection matrix ŷ = U2kU
>
2kx,

where U2k consists of 2k columns of orthonormal vectors. We now have

Ex∼p inf
y∈Q
‖x− y‖2 = Ex∼p‖x− U2kU

>
2kx‖2

= Ex∼p[x>x− x>U2kU
>
2kx]

= tr((I − U2kU
>
2k)Ex∼p[xx>]).

The minimizer U2k of tr((I − U2kU
>
2k)Ex∼p[xx>]) is the same as the maximizer of

tr(U2kU
>
2kEx∼p[xx>]), which is given by the first 2k eigenvectors of Ex∼p[xx>], and the value

of the weighted squared generalized k-width is given by the sum of all eigenvalues of Ex∼p[xx>]
except for the first largest 2k eigenvalues (Lemma C.1).

We compute the weighted squared generalized k-width of the constrained set W1, and it would
serve as a lower bound of the squared generalized k-width. We choose the probability measure
of (a, b)> ∈ R2 as the uniform measure on the unit circle. We compute the matrix Ex∼p[xx>],
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which is E[µ1(G)>µ1(G)], where µ1(G) is the first row of µ(G). Concretely, we write µ1(G) =
[ν0; ν1; . . . ; νT−1] for νl ∈ R2 and equal to

νl = [<(zl),=(zl)],

where z = a+ jb and for all l ∈ {0, 1, . . . , T − 1}.
We claim that E[νlν

>
m] = 0 whenever l 6= m. Indeed, when l 6= m, each of the 4 entries of matrix

E[νlν
>
m] are of the form either <(zl)<(zm),=(zl)=(zm), or <(zl)=(zm) for some l 6= m. For

the complex number z = rejθ, we know zl = rlejlθ which implies that <(zl) = rl cos(lθ) and
=(zl) = rl sin(lθ). We now compute E[rl cos(lθ)rm sin(mθ)] for l 6= m, l ≥ 0,m ≥ 0 and other
cases can be computed analogously. Since we are considering a uniform distribution on the unit
circle, r ≡ 1. We have

∫

θ∈[0,2π]

cos(kθ) sin(mθ)
1

2π
dθ

=
1

2π

∫ 2π

0

1

2
(sin((k +m)θ) + sin((k −m)θ))dθ

= 0.

Hence, it suffices to only compute E[νlν
>
l ]

E[νlν
>
l ] =

1

2

[
1 0
0 1

]
. (21)

Therefore, E[µ1(G)>µ1(G)] = 0.5I2T . Using Lemma C.1 d2
2k(W1; p = U) is equal to the sum of

bottom 2T − 2k eigenvalues: d2
2k(W1; p = U) = (2T − 2k)/2 = T − k. By (19) and (20)

dk(W ) ≥ d2k(W1) ≥ d2k(W1; p = U) =
√
T − k.

�

D Convex relaxation analysis

The approximation technique used in Theorem 2 can be applied to approximate the coefficients of the
Kalman predictive model by

Õt =

k∑

j=1

[ d∑

i=1

〈µ(λi)
>, φj〉Cviw>i K

]
(φ>j (t : 1)⊗ Im),

C̃t =

k∑

j=1

[ d∑

i=1

〈µ(λi)
>, φj〉Cviw>i (B −KD)

]
(φ>j (t : 1)⊗ In),

where we used the fact that [λt−1
i , . . . , λi, 1] can be approximated by truncated eigenvectors {φj(t :

1)}kj=1. The relaxed model m̃t , Õty1:t−1 + C̃tx1:t−1 +Dxt can be written in the form m̃t = Θ̃ft.
The feature vector ft is defined in (9) and the parameter matrix Θ̃ is obtained by concatenating the
corresponding coefficient matrices as described below

Θ̃ =

[ [ d∑

i=1

〈µ(λi)
>, φj〉Cviw>i K

]k
j=1

︸ ︷︷ ︸
∈Rm×mk

for output features

∣∣∣∣∣
[ d∑

i=1

〈µ(λi)
>, φj〉Cviw>i (B −KD)

]k
j=1

︸ ︷︷ ︸
∈Rm×nk

for input features

∣∣∣∣∣ D

︸︷︷︸
∈Rm×n

for xt

]

m×l

(22)

The following theorem provides a detailed derivation of convex relaxation as well as an analysis for
approximation error.
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Theorem 3. (Convex relaxation error bound) Denote by mt, the one-step-ahead predictions made
by the best linear predictor (Kalman filter) for system (4). Let RP = max{‖B‖2, ‖C‖2, ‖D‖2},
RC = max{‖P‖2, ‖Q‖2, ‖R‖2, ‖K‖2}, and ‖xt‖2 ≤ Rx. Suppose that ‖At‖2 ≤ γtlog(γ) for a
bounded constant γ ≥ 1. Let C0 = 43, C1 = 520. For any ε, δ > 0, if the number of filters k satisfies

k ≥ π2

8
log(T ) log

(12C0d
2(1 +R2

P )3(2R2
x +RC)(1 +R2

C)(1 + γ)4(mT + log(1/δ))T 3+2 log(γ)

ε

)
,

then the following holds for Θ̃

P
[
‖Θ̃ft −mt‖22 ≥ ε

]
≤ δ. (23)

Proof. Denote by G = UΛU−1 the eigendecomposition of matrix G, where Λ = diag(λ1, . . . λd)
are eigenvalues of G. Let vl be the columns of U and w>l be rows of U−1. Write

mt =

t−1∑
i=1

CGt−i−1Kyi +

t−1∑
i=1

CGt−i−1(B −KD)xi +Dxt

=

t−1∑
i=1

CUΛt−i−1U−1Kyi +

t−1∑
i=1

CUΛt−i−1U−1(B −KD)xi +Dxt

=

t−1∑
i=1

CU
[ d∑
l=1

(λt−i−1
l )el ⊗ el

]
U−1Kyi +

t−1∑
i=1

CU
[ d∑
l=1

(λt−i−1
l )el ⊗ el

]
U−1(B −KD)xi +Dxt

=

d∑
l=1

CUel ⊗ elU−1K

t−1∑
i=1

λt−i−1
l yi +

d∑
l=1

CUel ⊗ elU−1(B −KD)

t−1∑
i=1

λt−i−1
l xi +Dxt

=

d∑
l=1

Cvlw
>
l K

t−1∑
i=1

λt−i−1
l yi +

d∑
l=1

Cvlw
>
l (B −KD)

t−1∑
i=1

λt−i−1
l xi +Dxt.

Let Yt = [y1, . . . , yt] ∈ Rm×t and Xt = [x1, . . . , xt] ∈ Rn×t. We can write mt and m̃t as

mt =

d∑

l=1

Cvlw
>
l KYt−1µt−1:1(λl) +

d∑

l=1

Cvlw
>
l (B −KD)Xt−1µt−1:1(λl) +Dxt,

m̃t =

d∑

l=1

Cvlw
>
l KYt−1µ̃t−1:1(λl) +

d∑

l=1

Cvlw
>
l (B −KD)Xt−1µ̃t−1:1(λl) +Dxt.

We write bt = mt − m̃t using the PCA reconstruction error rt = µt − µ̃t

bt = mt − m̃t =

d∑

i=1

Cviw
>
i KYt−1rt−1:1(λi) + Cviw

>
i (B −KD)Xt−1rt−1:1(λi).

The Euclidean norm of bias is bounded by

‖bt‖2 ≤
( d∑
i=1

‖C‖2‖viw>i ‖2‖K‖2‖Yt−1‖2 + ‖C‖2‖viw>i ‖2(‖B‖2 + ‖K‖2‖D‖2)‖Xt−1‖2
)

sup
λ
‖r(λ)‖2

≤
(
dRPRC‖Yt−1‖2 + dR2

P (1 +RC)‖Xt−1‖2
)

sup
λ
‖r(λ)‖2

≤
(
dRPRC‖Yt−1‖2 + dR2

P (1 +RC)
√
tRx

)(
C0T

√
log Tc−k/ log T

)1/2
.

The first inequality uses simple properties such as sub-multiplicative and sub-additive properties of
norm. The second inequality uses the upper bound assumptions on parameters. The third inequality is
due to Lemma C.3 where c = exp(π2/8) and C0 = 43. The squared approximation error is given by

‖bt‖22 ≤ 2d2(1 +R2
C)(1 +R2

P )2
(
‖Yt−1‖22 + tR2

x

)
C0T

√
log Tc−k/ log T .

Observe that ‖Y1:t‖22 ≤ ‖Y1:t‖2F = ‖y1:t‖22. By (17), the following holds with probability greater
than 1− δ
‖bt‖22 ≤ 12d2(1 +R2

P )3(2R2
x +RC)(1 +R2

C)(1 + γ)4(mT + log(1/δ))T 3+2 log(γ)c−k/ log T .
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We finish the proof by setting the number of filters k such that the error is smaller than ε, i.e.

k ≥ log T

log c
log
(12C0d

2(1 +R2
P )3(2R2

x +RC)(1 +R2
C)(1 + γ)4(mT + log(1/δ))T 3+2 log(γ)

ε

)
.

E Regret decomposition

Recall the definitions of innovation et and model bias bt
et = yt − E[yt|y1:t−1, x1:t] = yt −mt and bt = Θ̃ft −mt = m̃t −mt, (24)

where mt is the predictions made by the Kalman filter in hindsight and Θ̃ is defined in (22). Let m̂t

be the predictions made by the algorithm and define

L(T ) ,
T∑

t=1

‖m̂t −mt‖22 (25)

to be the squared error between the Kalman filter predictions and algorithm predictions. Regret can
be written as

Regret(T ) =

T∑

t=1

‖yt − m̂t‖22 − ‖yt −mt‖22

=

T∑

t=1

‖mt + et − m̂t‖22 − ‖et‖22

=

T∑

t=1

‖m̂t −mt‖22 −
T∑

t=1

2e>t (m̂t −mt)

= L(T )−
T∑

t=1

2e>t (m̂t −mt).

Recall the following notation

Zt , αI +

t∑

i=1

fif
>
i , Et ,

t∑

i=1

eif
>
i , Bt ,

t∑

i=1

bif
>
i . (26)

The error between the predictions made by our algorithm and Kalman filter can be written as

m̂t −mt = Θ̂(t)ft − Θ̃ft + bt =
( t−1∑

i=1

yif
>
i

)
Z−1
t−1ft − Θ̃ft + bt,

The second equation uses the update rule of Θ̂(t) given in (10). Simple algebraic manipulations give( t−1∑
i=1

yif
>
i

)
Z−1
t−1ft − Θ̃ft + bt

=
( t−1∑
i=1

[Θ̃fi + bi + ei]f
>
i

)
Z−1
t−1ft − Θ̃ft + bt

=
( t−1∑
i=1

[Θ̃fif
>
i + bif

>
i + eif

>
i ]
)
Z−1
t−1ft − Θ̃ft + bt

=
( t−1∑
i=1

[Θ̃(fif
>
i +

α

t− 1
I − α

t− 1
I) + bif

>
i + eif

>
i ]
)
Z−1
t−1ft − Θ̃ft + bt

= Θ̃
(
αI +

t−1∑
i=1

fif
>
i

)
Z−1
t−1ft − αΘ̃Z−1

t−1ft +
( t−1∑
i=1

bif
>
i

)
Z−1
t−1ft +

( t−1∑
i=1

eif
>
i

)
Z−1
t−1ft − Θ̃ft + bt

= Θ̃Zt−1Z
−1
t−1ft − αΘ̃Z−1

t−1ft +Bt−1Z
−1
t−1ft + Et−1Z

−1
t−1ft − Θ̃ft + bt

= Et−1Z
−1
t−1ft +Bt−1Z

−1
t−1ft + bt − αΘ̃Z−1

t−1ft.

11



We apply the RMS-AM inequality to obtain an upper bound on L(T )

L(T ) =

T∑

t=1

‖m̂t −mt‖22

=

T∑

t=1

‖Et−1Z
−1
t−1ft +Bt−1Z

−1
t−1ft + bt − αΘ̃Z−1

t−1ft‖22

≤
T∑

t=1

3‖Et−1Z
−1
t−1ft‖22 + 3‖Bt−1Z

−1
t−1ft + bt‖22 + 3‖αΘ̃Z−1

t−1ft‖22.

Regret can thus be decomposed to the following terms

Regret(T ) ≤
T∑

t=1

3‖Et−1Z
−1
t−1ft‖22 (least squares error)

+

T∑

t=1

3‖Bt−1Z
−1
t−1ft + bt‖22 (improper learning bias)

+

T∑

t=1

3‖αΘ̃Z−1
t−1ft‖22 (regularization error)

−
T∑

t=1

2e>t (m̂t −mt) (innovation error)

We bound each of the first three terms by extracting a ‖Z−1/2
t−1 ft‖22, i.e. we write

‖Et−1Z
−1
t−1ft‖22 ≤ sup

1≤t≤T
‖Et−1Z

−1/2
t−1 ‖22

T∑

t=1

‖Z−1/2
t−1 ft‖22,

‖Bt−1Z
−1
t−1ft + bt‖22 ≤ sup

1≤t≤T
‖Bt−1Z

−1/2
t−1 ‖22

T∑

t=1

‖Z−1/2
t−1 ft‖22 +

T∑

t=1

‖bt‖22,

‖αΘ̃Z−1
t−1ft‖22 ≤ sup

1≤t≤T
‖αΘ̃Z

−1/2
t−1 ‖22

T∑

t=1

‖Z−1/2
t−1 ft‖22.

In subsequent sections, we compute a high probability upper bound on
∑T
t=1 ‖Z

−1/2
t−1 ft‖22 as well as

the specific terms in the above decomposition that affect least squares error, improper learning bias,
regularization error, and innovation error, proving that regret is bounded by polylog(T ).

F Regret analysis

PAC bound parameters notation. We define M = (RΘ,m, γ, κ, β, γ, δ) to be a shorthand for
the PAC bound parameters (defined in Theorem 1). Given a function f : N → R, we write
x .M f(T ), x �M f(T ) to specify the dependency only on the horizon T .

F.1 High probability bound on det(Zt)

We start by deriving an upper bound on log(det(Zt)) as this quantity appears multiple times when
analyzing regret. The following lemma provides a high probability bound on det(Zt) for features
defined in (9).
Lemma F.1. (High probability upper bounds on det(Zt)) Assume as in Lemma B.2 and let
Zt = αI +

∑t
i=1 ftf

>
t . Then, for any δ ≥ 0

P
(

log(det(Zt)) ≥ l log
[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ log

(1

δ

)
))t3+2 log(γ)

])
≤ δ.
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Proof. Let l be the feature vector dimension. We have

Zt = αI +

t∑

i=1

ftf
>
t � αI +

t∑

i=1

(f>i fi)I ⇒ det(Zt) ≤
(
α2 +

t∑

i=1

‖fi‖22
)l
.

Recall the definition Ψt = [ψt, . . . , ψ1] from Algorithm 1 and the compact representation for input
features x̃t = (Ψt ⊗ In)x1:t and output features ỹt = (Ψt ⊗ In)y1:t. Observe that ‖Ψt‖2 ≤ 1 since
Ψt is a block of eigenvector matrix of hankel matrix H . Thus the feature norm is bounded by

‖ft‖22 = ‖ỹt−1‖22 + ‖x̃t−1‖22 + ‖xt‖22
≤ k‖y1:t−1‖22 + k‖x1:t−1‖22 +R2

x

≤ k‖y1:t‖22 + 2ktR2
x.

From Lemma B.2, with probability at least 1− δ

‖ft‖22 ≤ 6k(R2
P + 1)(R2

x +RC)(1 + γ)4(mt+ log
(1

δ

)
)t2+2 log(γ) + 2ktR2

x

≤ 8k(R2
P + 1)(R2

x +RC)(1 + γ)4(mt+ log
(1

δ

)
)t2+2 log(γ).

The above bound is increasing in t, therefore

P
(

det(Zt) ≥
[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ log

(1

δ

)
)t3+2 log(γ)

]l)
≤ δ.

Given the PAC bound parameters M , if k �M polylog(T ) (and hence l = (m + n)k + n �M
polylog(T )), then the above lemma states that log(det(Zt)) .M polylog(T ).

F.2 Self-normalizing vector martingales

We now prove a key result on vector self-normalizing martingales that is used multiple times
throughout our regret analysis. The result is inspired by Theorem 1 of Abbasi-Yadkori et al. [1],
which provides a bound for self-normalizing martingales with scalar sub-Gaussian noise, and extend
it to vector-valued sub-Gaussian noise with arbitrary covariance.
Theorem F.1. (Bound on self-normalized vector martingale) Let {Ft}∞t=0 be a filtration. Let
et ∈ Rm be Ft measurable and et|Ft−1 to be conditionally RV -sub-Gaussian. In other words, for
all t ≥ 0 and ω ∈ Rm

E[exp(ω>et) | Ft−1] ≤ exp(R2
V ‖ω‖22/2).

Let ft ∈ Rl be an Ft−1-measurable stochastic process. Assume that Z is an l × l positive definite
matrix. For any t ≥ 0, define

Zt = Z0 +

t∑

i=1

ftf
>
t and Et =

t∑

i=1

eif
>
i .

Then, for any δ > 0 and for all t ≥ 0

P
[
‖EtZ−1/2

t ‖2 ≤ 8R2
Vm+ 4R2

V log
(det(Zt)

1/2 det(Z0)−1/2

δ

)]
≥ 1− δ.

Proof. We use an ε-net argument. First, we establish control over ‖ωᵀEtZ
−1/2
t ‖2 for all vectors ω

in unit sphere Sm−1. We will discretize the sphere using a net and finish by taking a union bound
over all ω in the net.

Let N be an ε-net of unit sphere Sm−1 and set ε = 1/2. Corollary 4.2.13 in [13] states that the
covering number for unit sphere Sm−1 is given by

|N | ≤
(2

ε
+ 1
)m

= 5m.
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ω>ei is RV -sub-Gaussian for any ω ∈ N . Therefore, for any ω ∈ N and any u ≥ 0, Theorem 1 in
[1] yields

P
[
‖ω>EtZ−1/2

t ‖2 ≥ u
]
≤ det(Zt)

1/2 det(Z0)−1/2 exp
(
− u

2R2
V

)
.

Using Lemma 4.4.1 in [13], we have

‖EtZ−1/2
t ‖2 ≤ 2 sup

ω∈N
‖ω>EtZ−1/2

t ‖2.

Taking a union bound over N , we conclude that

P
[
‖EtZ−1/2

t ‖2 ≥ u
]
≤ P

[
sup
ω∈N
‖ω>EtZ−1/2

t ‖2 ≥
u

2

]

≤
∑

ω∈N
P
[
‖ω>EtZ−1/2

t ‖2 ≥
u

2

]

≤ det(Zt)
1/2 det(Z0)−1/2 exp

(
2m− u

4R2
V

)
.

The above theorem combined with the result of Lemma F.1 immediately implies that for k �M
polylog(T ), we have ‖EtZ−1/2

t ‖2 .M polylog(T ) and ‖BtZ−1/2
t ‖2 .M polylog(T ) with high

probability.

F.3 High probability bound on ‖Z−1/2
t−1 ft‖22

In this section, we show that
∑T
t=1 ‖Z

−1/2
t−1 ft‖22 .M polylog(T ). The proof steps are summarized

below.

Step 1. We show a high probability Löwner upper bound on ftf>t in terms of α0I + E[ftf
>
t ].

Step 2. We state the block-martingale small-ball condition and show that the process {ft} satisfies
this condition. We prove a high probability lower bound on Zt in terms of the conditional
covariance cov(fs+i | Fi) for large enough s.

Step 3. We define a filter quadratic function condition and prove that under this condition, there
exists cT �M polylog(T ) such that Zt − 1

cT
ft+1f

>
t+1 � 0. By Schur complement lemma,

this is equivalent to ‖Z−1/2
t ft+1‖2 ≤ cT �M polylog(T ).

Step 1. The following lemma establishes a high probability upper bound on ftf>t based on the
covariance of feature vector ft.
Lemma F.2. (High probability upper bound on ftf

>
t ) Let ft be a zero-mean Gaussian random

vector in Rl and let Σt = α0I + E[ftf
>
t ] for a real α0 > 0. Then, for any δ > 0 and α0 > 0

P
(
ftf
>
t � [2l + 4 log(1/δ)]Σt

)
≥ 1− δ,

and if Σt is invertible, the results holds for α0 = 0.

Proof. Consider the random vector Σ
−1/2
t ft. Jensen’s inequality gives

E ‖Σ−1/2
t ft‖2 ≤

√
E[f>t Σ−1

t ft] =

√
tr(Σ−1

t E[ftf>t ]) ≤
√
l.

By standard bounds on tails of sub-gaussian random variables (for example, see Exercise 6.3.5 in
[13]), for any δ > 0

P
(
‖Σ−1/2

t ft‖2 >
√
l +

√
2 log

1

δ

)
≤ δ
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Let c = 2l + 4 log 1
δ . Then, the above bound implies

P(f>t Σ−1
t ft ≤ c) ≥ 1− δ.

Using Schur complement method, c− f>t Σ−1
t ft ≥ 0 if and only if the following matrix is positive

semi-definite
[

Σt ft
f>t c

]
� 0.

Using the other Schur complement, this is only true if and only if Σt − 1
cftf

>
t � 0, which concludes

the proof.

Step 2. To capture the excitation behavior of features, we use the martingale small-ball condition
[8, 10].
Definition 1. (Martingale small-ball) Let {ft}t≥1 be an Ft-adapted random processes taking
values in Rl. We say that {ft}t≥1 satisfies the (s,Γsb, p)-block martingale small-ball (BMSB)
condition for Γsb � 0 if for any t ≥ 1 and for any fixed ω in unit sphere Sl−1

1

s

s∑

i=1

P(|w>ft+i| ≥
√
w>Γsbw | Ft) ≥ p.

To show the process {ft}t≥1 satisfy a BMSB condition, we first show that the conditional covariance
of features is increasing in the positive semi-definite cone.
Lemma F.3. (Monotonicity of conditional covariance of features) Let φ1, . . . , φk for k ≤ T be a
set of T -dimensional orthogonal vectors and let ψi = [φ1(i), . . . , φk(i)]> be a k-dimensional vector.
Consider system (4) and define the following for all t ≥ 2

ft = ψ1 ⊗ yt−1 + · · ·+ ψt−1 ⊗ y1. (27)

Let Ft = σ{η0, . . . , ηt−1, ζ1, . . . , ζt}. Then, cov(ft+i|Ft) is independent of t and increases with i
in the positive semi-definite cone.

Proof. Expanding yi in definition of ft in (27) based on system (4), we have

ft+i − E[ft+i | Ft] = (ψ1 ⊗ C)ηt+i−2

+ (ψ2 ⊗ C + ψ1 ⊗ CA)ηt+i−3

+ . . .

+ (ψi−1 ⊗ C + · · ·+ ψ1 ⊗ CAi−2)ηt
+ ψ1 ⊗ ζt+i−1 + · · ·+ ψi−1 ⊗ ζt+1

Recall that E[ηtη
>
t ] = Q,E[ζtζ

>
t ] = R and that the process noise and the observation noise are i.i.d.

Therefore,

cov(ft+i|Ft) = (ψ1 ⊗ C)Q(ψ1 ⊗ C)>

+ (ψ2 ⊗ C + ψ1 ⊗ CA)Q(ψ2 ⊗ C + ψ1 ⊗ CA)>

+ . . .

+ (ψi−1 ⊗ C + · · ·+ ψ1 ⊗ CAi−2)Q(ψi−1 ⊗ C + · · ·+ ψ1 ⊗ CAi−2)>

+ ψ1 ⊗Rψ>1 ⊗ Im + · · ·+ ψi−1 ⊗Rψ>i−1 ⊗ Im.

(28)

Observe that the conditional covariance is independent of t. Furthermore, all terms in the above
sum are positive semi-definite; increasing i only adds two additional positive semi-definite terms. It
follows that

cov(ft+i+1|Ft) � cov(ft+i|Ft).

Equipped with the result of the above lemma, we now show that {ft}t≥1 satisfy a BMSB condition.
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Lemma F.4. (BMSB condition) Consider the process {ft}t≥1 defined in Lemma F.3 and let Γi =
cov(ft+i|Ft). For any 1 ≤ s ≤ T , the process {ft}t≥1 satisfies the (s,Γs/2, 3/20)-BMSB condition.

Proof. Note that ω>ft+i | Ft has a Gaussian distribution with variance
√
ω>Γiω. By an application

of Paley-Zygmund inequality, one has

P(|w>ft+i| ≥
√
w>Γiw | Ft) ≥ P(|w>ft+i − E[w>ft+i | Ft]| ≥

√
w>Γiw | Ft) ≥

3

10

Let 1 ≤ s′ ≤ s. By Lemma F.3, Γi is increasing in i. Therefore,

1

s

s∑

i=1

P(|w>ft+i| ≥
√
w>Γs′w|Ft) ≥

1

s

s∑

i=s′

P(|w>ft+i| ≥
√
w>Γs′w|Ft)

≥ 1

s

s∑

i=s′

P(|w>ft+i| ≥
√
w>Γiw|Ft) (Γi increasing)

≥ 3

10

s− s′ + 1

s
. (Paley-Zygmund)

Choosing s′ = s/2 shows that ft satisfies (s,Γs/2, 3/20) small-ball condition.

The small-ball condition can be used to establish high probability lower bound on σmin(Zt), as shown
by the following lemma.
Lemma F.5. (Lower bound on Zt) Consider the process {ft}t≥1 defined in Lemma F.3 and let
Zt = αI +

∑t
i=1 fif

>
i for regularization parameter α > 0. For δ, α0 > 0 let

Γi = cov(ft+i|Fi), Γmax = t[2l + 4 log(2/δ)][α0I + Γt].

For any δ > 0 if s satisfies the following

s ≤ tp2/10

log det(Γmax)− l log(α)− log(2/δ)
,

then

P
(
Zt �

α

2
I +

sbt/scp2Γs/2

16

)
≥ 1− δ.

Proof. According to Lemma F.4, {ft}t≥1 satisfies the (s,Γs/2, p = 3/20)-BMSB condition. The
following lemma from [10] gives tail probabilities for real-valued processes that satisfy a small-ball
condition. Note that our notation for small ball condition in real-valued processes slightly differs
from [10] which results in a slight difference in the statement of the lemma below.
Lemma F.6. (Tail bounds for small-ball processes) If a real-valued process {zt}t≥1 satisfies the
(s, σ, p)-BMSB condition, then

P(

t∑

i=1

z2
i ≤

p2σ

8
sbt/sc) ≤ exp

(
− bt/scp

2

8

)
.

For a fixed ω ∈ Sl−1, the process {ω>ft}t≥1 satisfies (s, ω>Γs/2ω, p). Using the above lemma, we
have

P
(
ω>
( t∑

i=1

fif
>
i

)
ω ≤ p2ω>Γs/2ω

8
sbt/sc

)
≤ exp

(
− bt/scp

2

8

)
.

For large enough t, we can convert this high probability bound to obtain a uniform Löwner lower
bound on Zt by a discretization argument.

Given a regularization parameter α > 0, define

Γmin = αI +
sbt/scp2Γs/2

8
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Define the following events

E1 =
{
Zt �

Γmin

2

}
and E2 =

{
Zt � Γmax

}
.

We have P(Ec1) ≤ P(Ec1 ∩ E2) + P(Ec2), where P(Ec2) is bounded by δ/2 according to Lemma F.2.
Let SΓsb = {ω : ω>Γsbω = 1} and let T be a 1/4-net of SΓsb in the norm ‖Γ1/2

max(.)‖2. By Lemma
4.1 and Lemma D.1 in [10], we can write

P(Ec1 ∩ E2) = P
({
Zt �

Γmin

2

}
∩
{
Zt � Γmax

})

≤ P
({
∃ω ∈ T : ‖Ztω‖2 < ω>Γminω

}
∩
{
Zt � Γmax

})

≤ exp
(
− bt/scp

2

8
+ log det(ΓmaxΓ−1

min)
)

≤ exp
(
− tp2

10s
+ log

det(Γmax)

αl

)

Setting s such that the above probability is bounded by δ/2

s ≤ tp2/10

log det(Γmax)− l log(α) + log(2/δ)
,

we conclude that P(Ec1) ≤ δ/2 + δ/2 = δ.

Step 3. So far we have computed a lower bound on Zt and an upper bound on ftf>t and our goal
is to show that there exists cT �M polylog(T ) such that Zt−1 − 1

cT
ftf
>
t � 0. This inequality,

however, does not hold for any set of orthonormal filters φ1, . . . , φk. We identify an assumption
connecting filters with transition matrix A that ensures Zt−1 − 1

cT
ftf
>
t � 0. This assumption is

based on a filter quadratic function, which we restate below.
Definition 2. (Filter quadratic function) Let φ1, . . . , φk for k ≤ T be a set of T -dimensional
vectors, let ψi = [φ1(i), . . . , φk(i)]> be a k-dimensional vector, and let ψ(d)

i = ψi ⊗ Id, for any
d ≥ 1. For any matrix A ∈ Rd×d, the following matrix is called the filter quadratic function of ψ
with respect to A

Ωt(A;ψ) = (ψ
(d)
1 )(ψ

(d)
1 )> + (ψ

(d)
2 + ψ

(d)
1 A)(ψ

(d)
2 + ψ

(d)
1 A)> + . . .

+ (ψ
(d)
t−1 + · · ·+ ψ

(d)
1 At−2)(ψ

(d)
t−1 + · · ·+ ψ

(d)
1 At−2)>.

In the following lemma, we show that a condition on filter quadratic function implies tΓs/2 −
Γt+1/c0 � 0 for a constant c0.
Lemma F.7. (Filter quadratic condition) Assume as in Lemma F.3 and let κ be the maximum
condition number of Q and R. For any A, if there exists t0 ≥ 1 for which there exists s such that

tΩs/2(A;ψ)− Ωt+1(A;ψ) � 0, ∀t ≥ t0,
then tΓs/2 − Γt+1/c0 � 0, where c0 ≥ κ.

Proof. Let ψ(m)
i = ψi ⊗ Im. Recall the expression of the conditional covariance of ft given in (28):

Γt = (ψ
(m)
1 C)Q(ψ

(m)
1 C)>

+ (ψ
(m)
2 C + ψ

(m)
1 CA)Q(ψ

(m)
2 C + ψ

(m)
1 CA)>

+ . . .

+ (ψ
(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)Q(ψ

(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)>

+ ψ
(m)
1 R(ψ

(m)
1 )> + · · ·+ ψ

(m)
t−1R(ψ

(m)
t−1)>

Define the following terms

Γ
(Q)
t , (ψ

(m)
1 C)Q(ψ

(m)
1 C)> + · · ·+ (ψ

(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)Q(ψ

(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)>,

Γ
(R)
t , ψ(m)

1 R(ψ
(m)
1 )> + · · ·+ ψ

(m)
t−1R(ψ

(m)
t−1)>,
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where Γt = Γ
(Q)
t + Γ

(R)
t . In order to show tΓs/2 − Γt+1/c0 � 0, it is sufficient to show

tΓ
(Q)
s/2 −

1

c0
Γ

(Q)
t+1 � 0 and tΓ

(R)
s/2 −

1

c0
Γ

(R)
t+1 � 0.

Let RC = max{‖R‖2, ‖Q‖2} and σr = min{σmin(Q), σmin(R)}. For tΓ(R)
s/2 − 1

c0
Γ

(R)
t+1, we have

σr[ψ
(m)
1 (ψ

(m)
1 )> + · · ·+ ψ

(m)
t (ψ

(m)
t )>]

�ψ(m)
1 R(ψ

(m)
1 )> + · · ·+ ψ

(m)
t R(ψ

(m)
t )>

�RC [ψ
(m)
1 (ψ

(m)
1 )> + · · ·+ ψ

(m)
t (ψ

(m)
t )>].

Setting c0 = RC/σr, gives

tΓ
(R)
s/2 −

1

c0
Γ

(R)
t+1

�σrt[ψ(m)
1 (ψ

(m)
1 )> + · · ·+ ψ

(m)
s/2−1(ψ

(m)
s/2−1)>]− σr[ψ(m)

1 (ψ
(m)
1 )> + · · ·+ ψ

(m)
t (ψ

(m)
t )>] � 0.

The last matrix is positive semi-definite based on assumption (29) when A = 0. For tΓ(Q)
s/2 − 1

c0
Γ

(Q)
t+1,

write

ψ
(m)
i C =




φ1
iC
φ2
iC
...

φkiC




km×d

=




C 0 . . . 0
0 C . . . 0
...
0 0 . . . C




km×kd




φ1
i Id
φ2
i Id
...

φki Id




kd×d

= Cψ
(d)
i .

We have
Γ

(Q)
t+1 = C

[
ψ

(d)
1 Q(ψ

(d)
1 )> + · · ·+ (ψ

(d)
t + · · ·+ ψ

(d)
1 At−1)Q(ψ

(d)
t + · · ·+ ψ

(d)
1 At−1)>

]
C>

By a similar argument and given assumption (29), we have tΓ(Q)
s/2 − 1

c0
Γ

(Q)
t+1 � 0.

Remark 3. When A is symmetric (A = UDU>), the positive semi-definite condition filter quadratic
function can be further simplified to tΩs/2(D;ψ) − Ωt+1(D;ψ) � 0 for all diagonal matrices D
with |Dii| ≤ 1.

In the following lemma, we show a high probability upper bound on ‖Z−1/2
t ft+1‖2.

Lemma F.8. (‖Z−1/2t ft+1‖2 upper bound) Assume as in Lemma F.3 and let κ be the maximum
condition number of Q and R. Define the following for all t ≥ 1, regularization parameter α > 0,
p = 3/20, and fix 0 < α0 ≤ 200α and δ > 0

Zt = αI +

t∑

i=1

fif
>
i , Γmax = t[2km+ 4 log(4/δ)][α0I + Γt], Γmin = αI +

sbt/scp2Γs/2

8

For any A, suppose that there exists t0 ≥ 1 for which there exists s such that

s ≤ tp2/10

log det(Γmax)− l log(α) + log(4/δ)
, tΩs/2(A;ψ)− Ωt+1(A;ψ) � 0. (29)

Then, for all t ≥ t0 with probability at least 1− δ
‖Z−1/2

t−1 ft‖22 ≤10κ(2mk + 4 log(2/δ))/p2.

Proof. Let cT = 10κ(2mk + 4 log(2/δ))/p2. With probability at least 1 − δ, we lower bound∑t
i=1 fif

>
i by Lemma F.5 and upper bound 1

cT
ft+1f

>
t+1 by Lemma F.2

Zt −
1

cT
ft+1f

>
t+1 = αI +

t∑

i=1

fif
>
i −

1

c
ft+1f

>
t+1

� α

2
I +

p2

10
tΓs/2 −

p2

10
α0I −

p2

10

1

c0
Γt+1

(1)

� +
p2

10
tΓs/2 −

p2

10

1

c0
Γt+1

(2)

� 0
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where inequality (1) is due to the assumption α0 ≤ 200α and (2) uses the result of Lemma F.7.

Using Schur complement lemma, Zt − 1
cT
ft+1f

>
t+1 is positive semi-definite if and only if the

following matrix is positive semi-definite
[
Zt ft+1

f>t+1 cT .

]
.

Using the other Schur complement, this is true if and only if cT − f>t+1Z
−1
t ft ≥ 0. Equivalently,

Zt −
1

cT
ft+1f

>
t+1 � 0 ⇔ ‖Z−1/2

t ft+1‖2 ≤ cT ,

which concludes the proof.

The above lemma states that if k �M polylog(T ) then ‖Z−1/2
t−1 ft‖22 .M polylog(T ) with high

probability.

F.4 Proof of Lemma 1

We now prove that ‖Z−1/2
t−1 ft‖22 .M polylog(T ) implies

∑T
t=1 ‖Z

−1/2
t−1 ft‖22 .M polylog(T ). We

first present a lemma inspired by Lemma 2 in [7].
Lemma F.9. (Upper bound on

∑t
i=1 ‖Z

−1/2
i fi‖22) Let f1, . . . , ft be l-dimensional vectors and Z0

an l × l positive definite matrix. Define Zt = Z0 +
∑t
i=1 fif

>
i . Then,

t∑

i=1

f>i Z
−1
i fi ≤ log

( det(Zt)

det(Z0)

)
.

Proof. First, note that Zt is positive definite and has a positive determinant for all t ≥ 1. Using
matrix determinant lemma, we have

det(Zt−1) = det(Zt − ftf>t ) = det(Zt)(1− f>t Z−1
t ft)⇒ f>t Z

−1
t ft =

det(Zt)− det(Zt−1)

det(Zt)

Since Zi � Zi−1, we have det(Zi) ≥ det(Zi−1). We write

t∑

i=1

f>i Z
−1
i fi =

t∑

i=1

1− det(Zi−1)

det(Zi)
≤

t∑

i=1

log
( det(Zi)

det(Zi−1)

)
= log

( det(Zt)

det(Z0)

)
,

where we used the fact that 1− x ≤ log(1/x) for x ≤ 1.

We are now ready to prove Lemma 1.

Proof of Lemma 1. The first claim is already proved in Lemma F.4. We focus on proving the second
claim. Recall the result of Lemma F.9, which states that

T∑

t=1

f>t Z
−1
t ft ≤ log

(det(ZT )

det(αI)

)
.

Using matrix determinant lemma, the above is equivalent to

T∑

t=1

f>t Z
−1
t−1ft

1 + f>t Z
−1
t−1ft

≤ log
(det(ZT )

det(αI)

)
.

By Lemma F.1, log det(Zt) is bounded by polylog(T ) with high probability since k �M polylog(T ).
Furthermore, by Lemma F.8, ‖Z−1/2

t−1 ft‖22 .M polylog(T ) with high probability. Concretely,

P(‖Z−1/2
t−1 ft‖22 ≤ 10κ(2mk + 4 log(2/δ))/p2) ≥ 1− δ,

P
(

log(det(Zt)) ≤ mk log
[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mt− log(δ))t3+2 log(γ)

])
≥ 1− δ.

19



Therefore, we can apply Lemma G.2 by combining the two bounds and taking a union bound

RZ(T ) , mk log
[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mT − log(δ))T 3+2 log(γ)

]
,

P
{ T∑

t=1

‖Z−1/2
t−1 ft‖22 ≤

(
1 +

10κ(2mk + 4 log(4/δ)

p2

)(
RZ(T )−mk log(α)

)}
≥ 1− δ.

�

F.5 Regularization term

The following lemma computes an upper bound on the 2-norm of the relaxed model parameters Θ̃.
Lemma F.10. (Model parameter bound) Consider system (4) and let k be the number of spectral
filters and Θ̃ be the parameters defined in (22). If ‖Ot‖2, ‖Ct‖2 ≤ RK and ‖D‖2 ≤ RP then,

‖Θ̃‖2 ≤ 2kRK +RP .

Proof. Parameter matrix Θ̃ is the concatenation of coefficients of features ỹt−1, x̃t−1, xt. By matrix
norm properties,

‖Θ̃‖2 ≤ ‖D‖2 +

k∑

j=1

‖
d∑

i=1

Cviw
>
i K〈µ(λi), φj〉‖2 + ‖

d∑

i=1

Cviw
>
i (B −KD)〈µ(λi), φj〉‖2.

Recall that {λi}ki=1, {vi}ki=1, and {w>i }ki=1 are the top k eigenvalues, right eigenvectors, and left
eigenvectors of G, respectively. Write

‖
d∑

i=1

Cviw
>
i K〈µ(λi), φj〉‖2 = ‖

T∑

t=1

CGT−tKφj(t)‖2 = ‖OTφj‖2 ≤ RK ,

and similarly,

‖
d∑

i=1

Cviw
>
i (B −KD)〈µ(λi), φj〉‖2 = ‖CTφj‖2 ≤ RK .

Summing all terms gives the final bound.

Lemma F.11. (Regularization term bound) Assume as in Lemma F.10 and let Zt = αI + ftf
>
t . If

α ≤ 1/‖Θ̃‖22, then

‖αΘ̃Z
−1/2
t−1 ‖22 ≤ 1.

Proof. The regularization term implies Zt � αI and thus ‖Z−1/2
t ‖22 ≤ 1/α. By norm properties

‖αΘ̃Z
−1/2
t−1 ‖22 ≤ α2‖Θ̃‖22‖Z−1/2

t−1 ‖22 ≤ 1.

F.6 Innovation error

The following lemma, based on the analysis given by Tsiamis and Pappas [11], shows that the
innovation error is bounded by

√
L(T ) (defined in (25)).

Lemma F.12. (Innovation error bound) Let L(T ) =
∑T
t=1 ‖m̂t − mt‖22 be the squared error

between Kalman predictions in hindsight and predictions by Algorithm 1. Assume that the innovation
covariance matrix has a bounded norm ‖V ‖2 ≤ RV . For all δ > 0, the following holds with
probability greater than 1− δ:

T∑

t=1

2e>t (m̂t −mt) ≤ 8R2
V

(
L(T ) + 1

)1/2[
2 + log

(L(T ) + 1

δ

)]
.
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Proof. Write

T∑

t=1

e>t (m̂t −mt) =

T∑

t=1

m∑

i=1

et,i(m̂t,i −mt,i).

Let s = mbs/mc+ r and define the following filtration

Fs = {e1,1, . . . , ebs/mc,r}.
A scalar version of Theorem F.1 states that the following holds with probability at least 1− δ
( T∑

t=1

‖m̂t −mt‖22 + 1
)−1/2 T∑

t=1

e>t (m̂t −mt) ≤ 4R2
V

[
2 + log

(1

δ

)
+ log

( T∑

t=1

‖m̂t −mt‖22 + 1
)]
.

Therefore, with probability at least 1− δ
T∑

t=1

2e>t (m̂t −mt) ≤ 8R2
V

(
L(T ) + 1

)1/2[
2 + log

(L(T ) + 1

δ

)]
.

F.7 Proof of Theorem 1

Proof of Theorem 1. Recall the regret decomposition given in Appendix E:

Regret(T ) ≤ sup
1≤t≤T

(
‖Et−1Z

−1/2
t−1 ‖22 + ‖Bt−1Z

−1/2
t−1 ‖22 + ‖αΘ̃Z

−1/2
t−1 ‖22

)( T∑

t=1

‖Z−1/2
t−1 ft‖22

)

+ T sup
1≤t≤T

‖bt‖22 −
T∑

t=1

2e>t (m̂t −mt).

Let δ1 = δ/8. We describe bounds on each term in the above regret bound. All lemmas and theorems
used in this proof contain explicit dependencies on horizon T as well as PAC bound parameters. While
one can combine these results to write a regret bound with explicit dependencies on all parameters,
we refrain from writing in such detail here for a clear presentation.

Bounding ‖Et−1Z
−1/2
t−1 ‖22. According to Theorem F.1, with probability at least 1− δ1, the term

‖Et−1Z
−1/2
t−1 ‖22 is bounded by

‖Et−1Z
−1/2
t−1 ‖2 . poly(RΘ,m)

[
log(1/δ1) + log(det(Zt))− l log(α)

]
,

l = (m+ n)k + n is the feature vector dimension. We substitute the regularization parameter α and
the number of filters k according to Theorem 1 assumption (iii). Given the values for k, α and by
Lemma F.1, with probability at least 1− δ1 we have

log(det(Zt)) . poly(RΘ,m, β) polylog(γ,
1

δ1
) log3(T ).

Taking a union bound gives

P
[
‖Et−1Z

−1/2
t−1 ‖22 . poly(RΘ,m, β) polylog(γ,

1

δ1
) log6(T )

]
≥ 1− 2δ1. (30)

Bounding ‖Bt−1Z
−1/2
t−1 ‖22. Recall the definitions Bt =

∑t
i=1 bif

>
i from (26) and bi = Θ̃ft−mt

from (24). We choose the number of filters k to satisfy (23) with failure probability δ1 > 0 and
ε = 1/T ,1 which results in k &M log2(T ) satisfied by assumption (iii). Therefore, we can apply

1Setting ε = 1/T is later used for a uniform bound on ‖bt‖22 and is not critical in this part of the proof.
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Theorem 3 which states that ‖bt‖22 ≤ 1/T with probability at least 1− δ1. Combining this result with
the result of Theorem F.1 with a union bound yields

P
[
‖
( t−1∑

i=1

bif
>
i

)
Z
−1/2
t−1 ‖2 ≤

4

T
(2m+ log

(det(Zt)
1/2 det(αIl)

−1/2

δ1

)
)
]
≥ 1− 2δ1.

With a similar argument used in bounding ‖Et−1Z
−1/2
t−1 ‖22, we have

P
[
‖Bt−1Z

−1/2
t−1 ‖22 . poly(RΘ,m, β) polylog(γ,

1

δ1
)
log6(T )

T

]
≥ 1− 3δ1. (31)

Bounding ‖αΘ̃Z
−1/2
t−1 ‖22. By assumption (iii) and as a result of Lemma F.11, we have

‖αΘ̃Z
−1/2
t−1 ‖22 . 1.

Bounding
∑T

t=1 ‖Z
−1/2
t−1 ft‖22. Lemma 1 provides the following bound on the excitation term

P
[ T∑

t=1

‖Z−1/2
t−1 ft‖22 . κpoly(RΘ,m, β) polylog(γ,

1

δ1
) log5(T )

]
≥ 1− δ1, (32)

where the number filters k is substituted by assumption (iii).

Bounding T sup1≤t≤T ‖bt‖22. Applying Theorem 3 with parameters δ1 > 0, ε = 1/T , we have

P
[
T sup

1≤t≤T
‖bt‖22 ≤ Tε ≤ 1

]
≥ 1− δ1. (33)

Recall from Appendix E that L(T ) is bounded by

L(T ) ≤ sup
1≤t≤T

(
‖Et−1Z

−1/2
t−1 ‖22 + ‖Bt−1Z

−1/2
t−1 ‖22 + ‖αΘ̃Z

−1/2
t−1 ‖22

)( T∑

t=1

‖Z−1/2
t−1 ft‖22

)
+ T sup

1≤t≤T
‖bt‖22.

Lemma F.12 with δ1 states that

P
[ T∑

t=1

e>t (m̂t −mt) . poly(RΘ) polylog
( 1

δ1

)√
L(T ) + 1

]
≥ 1− δ1. (34)

Combining the bounds given in (30), (31), (32), (33), (34), taking a union probability bound, and
setting δ = 8δ1 gives

P
[
Regret(T ) ≤ κ log11(T ) poly(RΘ, β,m) polylog(γ,

1

δ
)
]
≥ 1− δ.

�

G Auxiliary lemmas

In this section, we present a few lemmas that we use throughout the theoretical analysis of our
algorithm, presented here for completeness.

The following lemma provides an upper bound on the norm of block Toeplitz matrices [12].
Lemma G.1. (Triangular Block Toeplitz Norm) Let Ti ∈ Rm1,m2 for i = 1, 2, . . . , n. Define the
following triangular block Toeplitz matrix

T =




T1 T2 T3 . . . Tn−1 Tn
0 T1 T2 . . . Tn−2 Tn−1

...
0 0 0 . . . T1 T2

0 0 0 . . . 0 T1



.

Then,

‖T ‖2 ≤
n∑

i=1

‖Ti‖2.
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The following is a simple result for upper bounding a series.
Lemma G.2. Let t ∈ N and let zt to be a non-negative sequence bounded by a non-decreasing
poly-logarithmic function g(t). Suppose that the following sum

T∑

t=1

zt
1 + zt

is bounded by h(T ), a non-decreasing poly-logarithmic function of T . Then,
∑T
t=1 zt is bounded by

a non-decreasing function poly-logarithmic in T .

Proof. Let zm = max
t∈{1,...,T}

zi. We have zm ≤ g(m) ≤ g(T ). Therefore,

T∑

t=1

zt ≤
T∑

t=1

1 + zm
1 + zt

zt ≤ (1 + g(T ))

T∑

t=1

zt
1 + zt

≤ (1 + g(T ))h(T ), (35)

which is the desired conclusion.

H Additional experiments

Comparison with the EM algorithm. We conduct an experiment in a scalar LDS to compare the
performance of our algorithm with the EM algorithm that estimates system parameters (Figure 1, left).
The parameters estimated by the EM algorithm are later used by the Kalman filter for predictions.
In this experiment, we set the horizon T = 200 due to the large computation time required by the
EM algorithm. The number of filters k is set to 5 for all other three algorithms. The experiment was
simulated 100 independent times and the average error together with the 99% confidence intervals
are presented.
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Figure 1: Left: Performance of our algorithm compared with wave filtering, truncated filtering, and
expectation maximization in a scalar system with parametersA = B = C = D = 1, noise covariance
matrices Q = R = 0.001, inputs xt ∼ N (0, 2), and horizon T = 200. Right: Hyperparameter
sensitivity of our algorithm in the same systems with inputs xt ∼ N (0, 0.5) and horizon T = 10000.

For the system considered in this experiment, EM performs poorly. System-identification-based
methods such as EM, besides being significantly slower, do not have regret guarantees and they can
fail in some examples; a similar observation was made by Hazan et al. [4].

On hyperparameters. The SLIP algorithm has two hyperparameters: the number of filters k and
the regularization parameter α. In the experiments, we set α > 0 only when the empirical feature
covariance matrix is singular, which we observe only happens in the first two time steps. For the
number of filters k, Theorem 1 provides a guideline of choosing k of order log2(T ). The right plot in
Figure 1 demonstrates the sensitivity of the SLIP algorithm with respect to the number of filters k.
The system considered for this experiment is scalar with Gaussian inputs and the horizon is set to
10000. As before, the experiment was simulated 100 independent times. We vary k from 5 to 35 and
measure the average prediction error from 5000 to 10000 (N = 5000 in the plot). We observe that
the SLIP algorithm is robust with respect to parameter k.
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I Systems with long forecast memory

As discussed in the paper, system (4) exhibits long forecast memory when ρ(G) is close to one. The
closed-loop matrix G itself is related to parameters A,C,Q, and R. In the following example, we
discuss when long forecast memory is instantiated in a scalar dynamical system.
Example I.1. Consider system (4) with d = m = 1. The following holds for a stationary Kalman
filter

KC =
AC2P+

C2P+ +R
⇒ 0 ≤ KC ≤ A for d = m = 1,

where P+ is the variance of state predictions ĥt|t−1 [6]. The above constraint yieldsG = A−KC ≤
A, which implies that the forecast memory can only be long in systems that mix slowly. We write

G = A
(
1− C2P+

C2P+ +R

)
, for d = m = 1.

The above equation suggests if R� C2P+, then G is close to A. In words, linear dynamical systems
with small observed signal to noise ratio C/

√
R have long forecast memory, provided that they mix

slowly.

Another parameter that affects the forecast memory of a system is the process noise varianceQ. When
Q is small and A is close to one, latent state ht is almost constant. In this setting, the observations in
the distant past are informative on ht and therefore should be considered when making predictions.

In multi-dimensional systems, the chance of encountering a system with long forecast memory is
much higher as it suffices for only one variable or direction to exhibit long forecast memory. Systems
represented in the discrete-time form of Equation (4) are often obtained by discretizing differential
equations and continuous dynamical systems, for which choosing a small time step results in a better
approximation. However, reducing the time step directly increases the forecast memory. These types
of issues has motivated a large body of research on alternative methods such as continuous models
[9] and adaptive time steps [2]. It is therefore desirable to have algorithms whose performance is not
affected by the choice of time step, which is one of our goals in this paper.
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