A Further remarks on Bayesian Bits

A.1 Relationship to Ly norm regularization

It is interesting to see that the overall objective that we arrive at is similar to the stochastic version of
the Ly regularizer of [25]. By using the fact that

j<i j<i
S I aezin =1 =Eqym | D] Tz #01| (18)
i€BjEB i€BjEB

we can rewrite Eq.[I6]as follows:

<1
F(0,) :=Eq,(a.0) lN logpe(Dlz1xc) = X' D>] Uzin # 0]]

k i€eBjeB

Now by assuming that the parameters will not be quantized, i.e. 24 = 23 = 216 = 232 = 1 the
objective becomes

1
Eq,(22.1.%) [N log po(D|z2.1.x) — N'| B ZH[Z% #* 0]] , (19)
k

which corresponds to regularizing with a specific strength the expected Ly norm of the vector that
determines the group of parameters that will be included in the model.

A.2 Optimizing the Bayesian bits objective

For optimization, we can exploit the alternative formulation of the Bayesian bits objective, presented
at Eq.[19] to use the hard-concrete relaxation of [25]]. More specifically, the hard concrete distribution

has the following sampling process:
L y Sjk =0 <gjk + ¢jk)
1—ujp

Ujk NU[O7 1]7 gijk = 1Og -

zjr = min(1, max(0, s;x({ —v) + 7)) (20)

where o(-) corresponds to the sigmoid function, 7 is a temperature hyperparameter and ¢,y are
hyperaparameters that ensure z has support for exact 0, 1. Essentially, it corresponds to a mixture
distribution that has three components: one that corresponds to zero, one that corresponds to one and
one that produces values in (0, 1). Under this relaxation, the objective in Eq.[19|will be converted to

1<t

F(0,9) = r¢(21 K) [log po(D|z1.x] - /\/ZZ H R¢ Zjk > 0).

k i€BjeEB

where Ry4(-) corresponds to complementary cumulative distribution function, i.e. 1 — Ry(-) is
the cumulative distribution function (CDF), of the density r4(z) induced by the sampling process
described at Eq. E The Ry (2;, > 0) now corresponds to the probability of activating the gate z;y,
and has the following simple form

Ry(z; >0) =0 (gb — 7log ?) . 21

For the configuration of the gates at test time we use the following expression which results into

z€{0,1}
z:ﬂ{a <7’10g <—Z> —¢>) <t}, (22)

where we set t = 0.34. This threshold value corresponds to the case when the probability of the
mixture component corresponding to exact zero is higher than the other two.

13

Table 2: Results of experiments on Bayesian Bits with deterministic gates. For the first phase
of training we lowered the learning rate of the gate parameters to 10~%, and initialized the gate
parameters to 2, which is much closer to the saturation point of the HardSigmoid function, and kept
the other hyperparameters the same. Pre-FT results of the deterministic gate experiments and post-FT
Bayesian Bits results are included for comparison.

Experiment Gating type Acc. (%) Rel. GBOPs (%) CE Loss
CIFARI10, VGG, ¢ = 0.01 Stochastic 93.2340.10 0.51+0.03 0.00+£0.00
CIFAR10, VGG, 1 = 0.01 Deterministic 92.82 0.42 0.00
ImageNet, ResNet18, . = 0.03 Stochastic 69.36+0.11 1.934+0.05 1.2640.00
ImageNet, ResNetl8, ;. = 0.2 Stochastic 63.76+0.36 0.68+0.03 1.64+0.03
ImageNet, ResNet18, i = 0.03 (Pre-FT) Deterministic 0.24 0.30 1.88
ImageNet, ResNet18, 1 = 0.03 Deterministic 56.81 0.30 1.88
ImageNet, ResNet18, i = 0.03 (Pre-FT) Deterministic 6.74 24.09 1.49
ImageNet, ResNet18, 1 = 0.03 Deterministic 68.03 24.09 1.49
ImageNet, ResNet18, i = 0.03 (Pre-FT) Deterministic 54.61 0.48 1.96
ImageNet, ResNet18, 1 = 0.03 Deterministic 60.18 0.48 1.96

A.3 Alternative gating approaches

We experimented with several other gating approaches. In this section we describe these approaches,
their downsides when compared to the approach described in section 2, and results to support our
claims where possible.

Deterministic gates We experimented with deterministic gates. Results of preliminary experiments
with deterministic gates can be found in Table[2. Here we can see that while deterministic gates do
not significantly hurt results on the CIFAR 10 experiments, ImageNet experiments do not fare so well.
We attribute this to the following observations: 1) Gates getting “stuck”: once a deterministic gate
parameter assumes a value in the saturated O part of the hardsigmoid function, it no longer receives
any gradients from the cross-entropy loss. Due to the stochasticity in our gates there is always a
nonzero probability that a gate will be (partially) on and receive a gradient from the loss. 2) The
model can learn to keep deterministic gates fixed at a value between 0 and 1 during training, and
essentially use it as a free parameter to reduce the cross-entropy loss, while simulatenously lowering
the regularization loss. This creates a disconnect between the training and the inference models, as
during inference we fix the gates to either O or 1, as described in Section 2. This effect can be seen in
Table 2} for the ResNet experiments we see (pre fine-tuning) training loss values usually associated
with much higher validation accuracies. The model can compensate for this through additional
fine-tuning, but we note that for the deterministic gate experiments the same hyperparameters gave
strongly differing results, which we did not observe for the stochastic gates. We experienced the same
issues for deterministic non-saturating sigmoid gates.

REINFORCE We experimented with vanilla REINFORCE, and REINFORCE enhanced with
several standard baselines, but found that the high variance of the estimated gradients posed difficulties
for optimization of our networks, and abandoned this route.

A.4 Bayesian Bits algorithm

At Figure [l we provide the algorithm for the forward pass with a Bayesian Bits quantizer.

A.5 Decomposed quantization for non-doubling bit widths

Consider the general case of moving from bit width a to bit width b, where 0 < a < b, for a given
range [a, 3]. Using the equation of section 2.1, i.e. s, = 5,/2°7% — 1 yields a value of (3 — /N,
where N = 2 + 2% — 20=¢ _ 1 TIf b = 2q then this simplifies to N = 2° — 1, which is the desired
result. However, if b # 2a then there are two cases to distinguish:

1. b > 2a, in this case we can write N = 22¢+¢ 4 920 _ 2a+¢ _ 1 where ¢ = b — 2a. There
are 247¢ — 29 bins more than desired in the range.

14

Algorithm 1 Forward pass with Bayesian bits ~ Algorithm 2 Getting the gate during training and
inference

Require: Input z, o, 3, ¢ - .
clip(x, min = @, max =) Require: Input ¢, (,~, 5, t, training

B—a z if training then
So < o7_1s L2 < SQL?—‘ “
z9 + get_gate(¢2), x4 il 29T Z);))U[O’ 1, g« logg. s < o((g+
for bin {4,8,16,32} do | z < min(1, max(0,s(¢ —) + 7))
K else
Sb ¢ goraags 2 < get-gate(¢p)
1o (p1og(-2) - 0) <1
1*($2+Zj<b Ej) z . g ﬂ og ¢ ¢
€ < Sp P end if
return z

Tq — Tq+ 2p (Hj<b Zj) €
end for
return r,

Figure 4: Pseudo-code for the forward pass of the Bayesian Bits quantizer.

2. b < 2a, in this case we can write N = 22¢—¢ 4 2¢ _ 2¢—¢ _ 1 where ¢ = 2a — b. There
are 2% — 2%~ ¢ fewer bins than desired.

In these cases « and 5 must be scaled according to the difference between the expected and the true
number of bins.

B Experimental details

B.1 Experimental setup

The LeNet-5 model is realized as 32C5 - MP2 - 64C5 - MP2 - 512FC - Softmax, whereas the VGG
is realized as 2x(128C3) - MP2 - 2x(256C3) - MP2 - 2x(512C3) - MP2 - 1024FC - Softmax. The
notations is as follows: 128C3 corresponds to a convolutional layer of 128 feature maps with 3x3
kernels, MP2 corresponds to max-pooling with 2x2 kernels and a stride of 2, 1024FC corresponds to a
fully connected layer with 1024 hidden units and Softmax corresponds to the classifier. Both models
used ReLU nonlinearities, whereas for the VGG we also employed Batch-normalization for every
layer except the last one. The weights, biases, gates, and ranges were optimized with Adam [[16]
using the default hyper-parameters for 100 epochs with a batch size of 128 on MNIST, 300 epochs
with a batch size of 128 on CIFAR 10 and during the last 1/3 epochs we linearly decayed the learning
rate to zero. For CIFAR 10, we also performed standard data augmentation: random horizontal flips,
random crops of 4 pixel padded images, and channel standardization. For the test images, we only
performed channel standardization. We do not perform additional fine-tuning with fixed gates for the
MNIST and CIFAR 10 epxeriments, as we found this did not improve results.

For the ResNet18 we used SGD with a learning rate of 3e-3 and Nesterov momentum of 0.9 for the
network parameters and used Adam with the default hyperparameters for the optimization of the gate
parameters and ranges. The learning rates for all of the optimizers were decayed by a factor of 10
after every 10 epochs. We did not employ any weight decay and used a batch-size of 384 distributed
across four Tesla V100 GPUs. After training we fixed the gates using the thresholding described in
Eq|A.2| and fine-tuned the weights and scale parameter /3 for 10 epochs. In this stage we used SGD
Nesterov momentum of 0.9 for the weights, and Adam for the scales, both starting at a learning rate
of 10~* and annealed to 0 using cosine learning rate annealing at each iteration.

B.2 BOP and MAC count

The BOP count of a layer [is computed as:
BOPs (1) = MACs(1)by,ba, (23)
where b,, is the bit width of the weights and b, is the bit width of the (input) activations.

15

B.2.1 BOP-aware regularization

We set the regularization strength for each gate z;;, to be ,u)\;- > Where /\;- & 1s proportional to the BOP

count corresponding to the bit width j and the MAC count of the layer [; that the quantizer k operates
on. Specifically, we set A} = b; MACs(ly)/ max([MACs(1), ..., MACs(L)]), where b; is the bit
width that gate j controls and L corresponds to the total number of layers.

In practical applications, one would experiment with a range of regularization strengths to generate a
Pareto curve, and pick a model that achieves a suitable tradeoff between target task performance and
BOP. We leave targeting a specific BOP count for future work.

B.2.2 BOP and MAC count under sparsity

Since the sparsification only affects a layer’s MAC count and not its bit width, Eq holds for
sparsified networks as well. However, it is insightful to see how sparsity affects a layer’s BOP count
through its effect on the layer’s MAC count.

The MAC count of a convolutional layer can be derived as follows. For each output pixel in a feature
map we know that Wy x W}, x B computations were performed, where W, and W), are the filter
width and height, and B is the convulational block size (e.g. for dense convolutions B is equal to
the number of input channels, for depthwise separable convolutions B is equal to 1). There are
C, x W x H output pixels, where C,, is the number of output channels, and W and H are the width
and height of the output map. Henceforth we only consider dense convolutional layers, i.e. layers
where B = C; where C} is the number of input channels. Thus, the MAC count of a convolutional
layer [can be computed as MACs(l) = C, x W x H x C; x Wy x Hy. Note that in this formulation,
no special care needs to be taken in considering padding, stride, or dilations.

As stated earlier, pruning output channels of layer [— 1 corresponds to pruning the associated
activations, which in turn corresponds to pruning input channels of layer [. If we assume that C}
output channels are maintained in layer [— 1, and C,/ output channels are maintained in layer [, the
pruned MAC count can be computed as:

MACSpruned(l) = picipoco WHWf Hf (24)
= pipoMACs() (25)

where p; = Cy//C;,po = Co /C,, and MACs(1) is used to denote the MAC count of the unpruned
layer. As a result, if we know the input and output pruning ratios p; and p,, the BOP count can be
computed without recomputing the MAC count for the pruned layers with a slight modification of

equation

BOPspruned (1) = MACSpruned (1) bwba (26)
= pipoMACs(1)by, b, 27

B.2.3 ResNet18 MAC count computation

To compute the BOP count for ResNet18 models, we need to be careful with our application of
equation 27, due to the presence of residual connections: to turn off an input channel at the input
of a residual block, it must be turned off both in the output of the previous block as well as in the
residual connection. We circumenvent this issue by only considering p; for the inputs of the second
convolutional layer in each of the residual blocks, where there is no residual connection. Elsewhere,
p; is always assumed to be 1. Output pruning is treated as in any other network, since the removal of
output channels always leads to reduced MAC count. Thus, the BOP counts reported for ResNet18
models must be interpreted as an upper bound; the real BOP count may be lower.

B.2.4 ResNetl8 regularization

In ResNet architectures, the presence of downsample layers means that certain quantized activation
tensors feed into two multiple convolution operations, i.e. the downsample layer and the input layer of
the corresponding block. As a result, we need to slightly modify the computation of /\;- & as introduced

16

in Section 4 for these activation quantizers. For an activation quantizer k for which this is the case,
we compute)\; ;. as follows:

ik = Vi s (IMACs(1)...,MACs(L)]) ~

where [4 and [, denote the downsample layer and the first convolutional layer in the corresponding
block respectively.

C Baselines

C.1 Differences between baselines and our experimental setup

Table 3: Differences in experimental setup between the LSQ [8]] and PACT[S] baselines and ours

Experiment ResNetl18 type BN Actquant Grad scaling FP32 acc
LSQ [8] Pre Not folded Input Yes 70.5%
PACT [5] Pre ? Input No 70.2%
LSQ (our impl) Post Folded [18] Output No 69.7%
Bayesian Bits Post Folded [18] Output No 69.7%

In Table[3|we show the differences in experimental setup between our experiments and the experimen-
tal setup as used in LSQ and PACT. In Table[3]we compare along the following axes: usage of pre- or
post-activation ResNet18; pre-activation ResNet18 gives higher baseline accuracy. Handling of batch
normalization layers; not folding BN parameters into the associated weight tensors is identical to
using per-channel quantization, instead of per tensor quantization. Per-channel quantization gives
higher accuracy than per-tensor quantization. Input or output quantization: Using input quantization
implies that activation tensors are not quantized until they are used as input to an operation. This in
turn implies that high-precision activation tensors need to be stored and thus transported between
operations. This does not affect network BOP count but might yield increased latency for hardware
deployment. FP32 accuracy: higher FP accuracy on the same architecture is likely to yield higher
quantized accuracy. Gradient scaling: this is a technique introduced by [8]].

There are several works of note to which we cannot directly compare our results. [36] only present
ImageNet results on ResNet50 [[10] and MobileNet [33]] architectures. Furthermore, the authors
do not provide BOP counts for their models, making direct comparison to our results impossible.
[[7; 6] and [38] do present Imagenet results on ResNet18, but do not provide the mixed precision
configuration for their reported results. While [38]] provide the BOP count of the resulting ResNet18
network, it is not mentioned whether the fact that the first and last layers are in full precision is taken
into account in determining the compute reduction. Furthermore, they include a 3-bit configuration in
their search space, which is not efficiently implemented in hardware. This makes it hard to compute
the BOP count using Eq. Furthermore, their models are optimized for weight size reduction, not
compute reduction.

LSQ Experimental Details A fair comparison between the published results of [§] and our results
is not possible due to the differences in experimental setup highlighted in Table|3| To ensure that we
would still do the baseline method of [8] justice, we ran an extensive suite of experiments to optimize
the experimental hyperparameters. The results presented in Figure [2a)and Table [are obtained as
follows: we trained the network parameters and scales with Adam optimizers, with the same learning
rate for the parameters and the scales. We performed grid search over the learning rate. The best
learning rates were 103 for the w8a8 experiment, 10~ for w4a8, 10~ for w4a4 with 8 bit inputs
and outputs, and 3 - 10~° for full w4a4. We experimented with using SGD for the network parameters
while using Adam with a lower learning rate for the scales, but found that using Adam for both
consistently yielded better performance. We trained for 40 epochs, and decayed all learning rates
using cosine decay to 10~2 times the original learning rate, except for the w8a8 experiment where
we trained for 20 epochs and annealed to 102 times the original learning rate. In experiments with
8 bit weights we initialized the weight quantization ranges using the minimum and maximum of

17

the weight tensor. For 8 bit activations we initialized the quantization ranges using an exponential
moving average of the per-tensor minimum and maximum over a small number of batches. For 4 bit
quantization we performed grid search over ranges to find the range that minimizes the mean squared
error between the FP32 and quantized values of the weight and activation tensors. We applied a
weight decay of 10~ in all our experiments.1 We folded Batch normalization parameters into the
preceding weight tensors prior to training. We did not use gradient scaling as we did not use it in our
own experiments.

D Further Results

D.1 Updated ImageNet results

The ResNet18 model used in the experiments of Figure 2a and Table] quantized the activations that
feed into residual connections. Since the bit-widths of these quantizers do not affect the BOP count,
the quantizers were effectively over-regularized. To assess what the effect of over-regularization on
these quantizers was, we ran a new set of experiments in which these activations were not quantized.
The results of these experiments are plotted in[5 and included in & (experiments labeled Updated).
This change only affects the Bayesian Bits and BB Quant only results. Note that for this arguably
more realistic scenario, our method more clearly outperforms the baselines.

PACT w4a4 (32 in/out) W DQ*

PACT w2a2 (32 in/out) ¥ DQ - restricted*
PACT w4a4 (hypothetical)

PACT w2a2 (hypothetical)

—— Bayesian Bits VvV LSQ w4a4g*

== BB quantization only » LSQ w4a8*

—+ BB fixed w4a8, pruning only A LSQ w4a4 (8 in/out)*
- BB fixed w8a8, pruning only <« LSQ w4ad*

4> AV

Updated ResNet18 results on ImageNet

70

69

68

67

66

65

64

63

0 1 2 3 4 5 6

Figure 5: Bayesian Bits ResNet18 ImageNet results. In these experiments the activations feeding into
a residual connection were not quantized, contrary to the results presented in @

D.2 MNIST and CIFAR 10

Figure [6]shows the learned bit width and sparsity per quantizer. Note that structural sparsity is only
applied to weight quantizers, which implicitly applies it to activation tensors as well.

D.3 Effect of fine-tuning

The effects of fine-tuning on final model accuracy are presented in Figure[7]and in Table]

18

8 16

N Bitwidth
= Sparsity

= Bitwidth 16 mm gitwidih
= Sparsity mm Sparsity

Bitwidth

E
3
2
@

Bitwidth

T

p

8

, I I o [™ llllllllll
Eg 02

o Illlllllll I = oa

0.1

N N AR A R AR TP LELD
b > 7 INEVENINENG S & alo! 7 Al NN NS
$SS5ES68

Quantized tensors Quantized tensors Quantized tensors
(a) (b) (©

Figure 6: Learned LeNet-5 and VGG architectures. (a) [llustrates the bit-allocation and sparsity
levels for the LeNet-5 whereas (b) illustrates the bit-allocation and sparsity levels for the best perform-
ing VGG, accuracy wise. (c) Illustrates a VGG model trained with more aggressive regularization,
resulting into less BOPs and more quantization / sparsity. With the dashed lines we show the implied
sparsity on the activations due to the sparsity in the (preceding) weight tensors.

Effect of Fine-tuning, ResNet18 Effect of Fine-tuning, ResNet18 (Detail)

% Top-1 accuracy
% Top-1 accuracy

15 20
% BOP of 32 bit model

3 4
% BOP of 32 bit model
(a) (b)

Figure 7: Bayesian Bits Imagenet validation accuracy on ResNet18 before and after final 10 epochs
of fine-tuning for 1 € {0.03,0.05,0.07,0.2}. Means and individual runs of 3 training runs for each
1. Plot (b) contains a close-up of results of the full Bayesian Bits, quantization only, w4a8 prune only
experiments.

D.4 ImageNet

Full results for Bayesian Bits are provided in table [, Figure [§] the corresponding plot, whereas
Figures 15, [16}[T7 and[I8] provide the learned ResNet18 architectures using various regularization
strengths. It is interesting to see that the learned architectures tend to have higher bit precision for the
first and last layers as well as on the weights that correspond to some of the shortcut connections.

D.4.1 ImageNet ResNetl8 gate evolution

The evolution of the gates for three experiments, with ;¢ = 0.05 are plotted in Figure [I0}

D.4.2 ImageNet post-training

Full results from the post-training quantization experiment are provided in Table[5 as well as in the
updated plot in Figure D] In the baseline experiment we first measured quantization sensitivity for
each quantizer in the network by keeping the network in INT16, while setting the target quantizer to a
lower bit-width. We then sorted all quantizers in order of increasing sensitivity, and set the quantizer
to the lower bit width cumulatively, measuring the accuracy after each step. Figure[7]shows the Pareto
front of these results, as results do not monotonically decrease with more quantizers turned on.

19

Mean and covariance of Bayesian Bits Experiments, ResNetl18

70 ——@— Bayesian Bits

=% BB quantization only
—%-- BB fixed w4a8, pruning only
A LSQwd4a4 (8in/outyx T ==
< LSQ wdas* -
4 PACT w2a2 (paper, 32 in/out) | | -
68 A PACT w2a2 (hypothetical, 8 in/out) /',-"
Vv PACT w4a4 (hypothetical, 8 in/out) kT)-‘./-"
m DQ* - PR
> e
e
@ ‘e
o v
> 7
() s
O 66 /(
© .
o e
g 4
= /'/
xX K
© <
64
. B
'/' i
iy ¢
/
/
/
. 7
62 ¥
*
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

% BOP of 32 bit model

Figure 8: Bayesian Bits Imagenet validation accuracy on ResNet18 for . € {0.03,0.05,0.07,0.2}.
Means and individual runs of 3 training runs for each p. The PACT [5]] marked with “hypothetical” are
hypothetical results, in which the BOP count was computed using 8 bit input and output layers, instead
of the full precision input and output layers used in [3]], and we make the optimistic assumption that
this would not produce different results.

20 Post-training mixed precision on ResNet18

®

68
66
>
Q
© 64
>
i3
Q
<
62
Q
o
|_
X
60
—8— Bayesian Bits Post-training, gates only
—8— Bayesian Bits Post-training, gates and scales
58 Baseline Mixed 16/8/4
Baseline Mixed 16/8
Baseline Mixed 16/4
56 * Baseline Fixed 8/8
FP32 Baseline
1 2 3 4 5 6 7 8 9 10

% BOP of 32 bit model

Figure 9: Bayesian Bits Imagenet validation accuracy on ResNet18 for . € {0.03,0.05,0.07,0.2}.
Means and individual runs of 3 training runs for each .

20

Table 4: Results on the Imagenet task with the ResNet18 architecture. We compare against methods
from the previous experiments as well as PACT [3]], [14]] and DQ [35]]. * indicates first and last
layers in full precision. ** first and last layers in 8 bits. NB: for [5] these results are hypothetical
and based on the assumption that changing the first and last layers in 8 bits does not harm accuracy.
LSQ [8] results are run by us. QO, PO48 and POS8 indicate ablation study results. The experiments
labeled ‘Updated’ indicate experiments in which activations feeding into residual connections are not
quantized. See section D.1 for details.

Method #bits W/A Top-1 Acc. (%) Rel. GBOPs (%)
Full precision 32/32 69.68 100

QT [14] 8/8 70.38 6.25
TWN [20] 2/32 61.80 5.95
LR-Net [34]* 1/32 59.90 4.58
RQ [23] 5/5 65.10 2.54
PACT [5] 4/4%* 69.20 3.12
PACT [5] 2/2% 64.40 2.02
PACT [5] 4/4%%* 69.20 1.87
PACT [5] 2/2%% 64.40 0.77
LSQ [8] 8/8 70.48 6.25
LSQ [8] 4/8 3.13 69.7
LSQ [8] 4/4%%* 1.87 68.87
LSQ [8] 4/4 1.56 68.38
DQ [35] Mixed 68.40 2.10
DQ - restricted [35] Mixed 68.40 3.09
Bayesian Bits ;o = 0.01 (Pre-FT) Mixed 69.70+0.03 2.8540.04
Bayesian Bits ¢ = 0.01 Mixed 69.84+0.02 2.85+0.04
Bayesian Bits ;1 = 0.03 (Pre-FT) Mixed 69.16+0.10 1.934+0.05
Bayesian Bits ;4 = 0.03 Mixed 69.394+0.05 1.934+0.05
Bayesian Bits ;4 = 0.05 (Pre-FT) Mixed 67.96+0.22 1.4440.05
Bayesian Bits 1 = 0.05 Mixed 68.21£0.23 1.4440.05
Bayesian Bits j = 0.07 (Pre-FT) Mixed 66.271+0.15 1.0640.02
Bayesian Bits u = 0.07 Mixed 66.81£0.13 1.0610.02
Bayesian Bits y = 0.2 (Pre-FT) Mixed 62.32+0.71 0.68+0.03
Bayesian Bits ;. = 0.2 Mixed 63.76£0.34 0.68+0.03
Bayesian Bits, QO; u = 0.01 Mixed 69.85 £+ 0.06 3.00 £ 0.03
Bayesian Bits, QO; u = 0.03 Mixed 68.80 = 0.37 1.78 £0.11
Bayesian Bits, QO; u = 0.05 Mixed 67.70 + 0.53 1.42 +£0.10
Bayesian Bits, QO; p = 0.07 Mixed 67.59 + 0.02 1.19 £ 0.01
Bayesian Bits, Updated; p = 0.01 Mixed 69.82 £+ 0.07 241 £0.03
Bayesian Bits, Updated; p = 0.02 Mixed 69.61 £ 0.08 1.99 £ 0.00
Bayesian Bits, Updated; ;x = 0.03 Mixed 69.18 £+ 0.08 1.70 £0.03
Bayesian Bits, Updated; 1 = 0.05 Mixed 68.17 £ 0.18 1.38 £0.03
Bayesian Bits, Updated; ;x = 0.07 Mixed 66.85 £ 0.17 1.07 £0.01
Bayesian Bits, Updated; ¢ = 0.1 Mixed 65.89 £ 0.13 0.81 £ 0.00
Bayesian Bits, Updated; jx = 0.2 Mixed 62.73 + 0.10 0.52 £0.00
Bayesian Bits, Updated, QO; . = 0.01 Mixed 69.88 + 0.03 2.51 +£0.04
Bayesian Bits, Updated, QO; p = 0.02 Mixed 69.62 + 0.04 2.11 £0.05
Bayesian Bits, Updated, QO; 1 = 0.03 Mixed 69.16 + 0.11 1.80 £ 0.01
Bayesian Bits, Updated, QO; 1 = 0.05 Mixed 68.21 + 0.07 1.44 £0.01
Bayesian Bits, Updated, QO; px = 0.07 Mixed 67.09 £ 0.16 1.02 £ 0.01
Bayesian Bits, Updated, QO; pn = 0.2 Mixed 63.56 +0.17 0.62 + 0.00
Bayesian Bits, PO48; 1 = 0.01 Mixed 69.79 £ 0.02 3.10 + 0.00
Bayesian Bits, PO48; = 0.2 Mixed 69.69 + 0.04 2.86 +0.01
Bayesian Bits, PO48; n = 0.5 Mixed 67.72 £ 0.05 1.86 £ 0.00
Bayesian Bits, PO48; u = 0.7 Mixed 66.08 + 0.01 1.51 £0.00
Bayesian Bits, PO48; ;n = 1.0 Mixed 63.09 £ 0.06 1.17 £ 0.00
Bayesian Bits, POS; = 0.01 Mixed 70.54 £+ 0.02 6.20 4+ 0.00
Bayesian Bits, PO8; ;1 = 0.2 Mixed 70.28 £ 0.05 5.65 £ 0.01
Bayesian Bits, POS8; 1 = 0.5 Mixed 68.37 £ 0.05 3.68 £0.01
Bayesian Bits, PO8; 1 = 0.7 Mixed 67.02 £ 0.02 3.00 + 0.01
Bayesian Bits, PO8; ;1 = 1.0 Mixed 64.34 £ 0.05 2.29 £0.01

21

Regularization

Gates only

Top-1 Acc. (%)

Rel. GBOPs (%)

Gates and scales

Top-1 Acc. (%)

Rel. GBOPs (%)

1 = 0.0001
1 = 0.0005

69.73 £ 0.06
69.69 £ 0.03

69.63 £ 0.04
69.46 £ 0.09
69.14 £ 0.11
67.98 £ 0.47
64.32 £0.95
51.31£1.93

©=0.001
@ = 0.0025
©=0.005
u=0.01
p=10.02

@ =0.05

12.05 £ 0.68
7.34 £ 0.34
6.57 £ 0.14
6.14 + 0.05
545+ 0.12
4.55 £0.15
3.74 £ 0.10
2.90 +0.02

69.72 £ 0.05
69.67 £ 0.03
69.57 £ 0.02
69.47 £0.12
69.28 £ 0.04
68.31 £0.16
65.44 £ 0.68
60.20 £ 1.49

10.87 £+ 0.40
6.97 £0.12
6.43 +0.13
5.87+£0.21
4.76 £ 0.06
3.96 + 0.00
2.78 £ 0.15
1.84 £ 0.06

Table 5: Results on learning only the gates (left) and both the gates and the scales (right) on a small
dataset for various regularization strengths. Means and standard errors are computed over 3 training

runs for each value of p.

0.weight_quantizer O.activation_quantizer
s s

2.0.0.weight_quantizer

o 10 20 30 o 10 2 30
2.1.0.weight_quantizer 2.1.0.activation quantizer

0. 10 20 3
2.1.1.weight_quantizer

2.0.0.activation_quantizer

0

0 10020
2.1.activation_quantizer

s s 5
4 4 4 4 4
23 23 FoE) 23 23 =
4 “ s < o g
82 32 82 82 82 g
1 1 1 1 1
0 o 0 0 3

0

2.0.1.weight_quantizer 2.0.activation_quantizer

[

o

o 10 20 30 "o 10 20 3

3.0.0.weight_quantizer 3.0.downsample.0.weight_quantizer
5

5 s s s s

4 4 4 . . 4 ~
23 23 23 23 23 23
4 & 4 4 g 4
82 g2 g2 g2 82 g2

1 1 1 1 1 1

0 o o 3 0 o

) 020 30
3.0.0.activation_quantizer

o 10 20 30 _ 0 10 20 30
3.0.1.weight_quantizer 3.0.activation_quantizer

o 10 20 30
3.1.0.weight_quantizer

o 10 20 30
3.1.0.activation_quantizer

0 10 20 30
3.1.1.weight_quantizer

s s s s s s
B 4 s s 4 4
23 23 s 23 23
w % % % % %
g, g g2 g2 g g2
1 1 1 N 1 1
3 3 0 0 ° 3
o 20 20 3 o 10 20 3 0 20 30 "o 10 20 30 o 10 20 3 ‘o 10 20 30
3.1.activation_quantizer 4,0.0.weight_quantizer 4.0.downsample.0.weight_quantize#.0.0.activation ‘quantizer 4.0.1.weight quantizer ~ 4.0.activation_quantizer
s s s s s s
4 4 4 4 . 4
23 23 23 23 23 23
& & g o “ &
g, g, g, g, g, g,
1 1 1 1 1 1
o 3 0 o 3 o
o 10 20 3 "o 10 20 30 o 1o 20 30 ‘0 10 2 3 "o 10 20 3 ‘o 10 20 3
41.0.weight quantizer . 4.1.0.activation quantizer 4.1.1.weight_quantizer 4.1.ctivation_quantizer 5.0.0.weight_quantizer 5.0.downsample.0.weight_quantizer
s s s s s s
4 4 s s 4 ~
23 23 23 %3 23
4 g g g g
£, g g2 g2 g2
1 1 1 1 1
3 3 0 0 o
3

o 1020 30 o 10 20 0
5.0.0.activation_quantizer 5.0.1.weight_quantizer

0 10 20 30
5.0.activation_quantizer

o 10 20 30
5.1.0.weight_quantizer

o 10 20 30
5.1.0.activation_quantizer

0 10 20 30
5.1.1.weight_quantizer

s s s B 5 s
4 4 4 4 4 4
23 23 23 23 23 25
W % % W % %
g2 g2 &2 82 g2 82
1 1 1 1 1 1
0 0 0 0 0 0
0o 20 20 30 "o 10 2 3 0 220 30 o 10 0 0 10 2 3 o0 10 20 320
5.1.activation_quantizer " fc.weight_quantizer
5 5
4 \ 4
E 25
]]
82 g2
1 1
0 0
o 1 2 3 "o 10 2 3

Figure 10: The evolution of gates for three ResNet18 ImageNet experiments with ;1 = 0.05

22

Accuracy per epoch CE loss per epoch

zzzzzzzzzz

Figure 11: Evolution of validation accuracy and (per epoch average) cross-entropy loss during training
of ResNet18 on ImageNet, first run for 4 € {0.03,0.05,0.07,0.2}

Pareto front of final models, and evolution during training Gate loss vs CE loss per epoch

aaaaaaaa

Figure 12: Left plot: Pareto front of final model efficiency vs accuracy trade-offs, including evolution
towards final trade-offs. Right plot: Co-evolution of cross-entropy and gate loss per epoch. Both
plots show results of training ResNet18 on Imagenet, first run for 1 € {0.03,0.05,0.07,0.2}

Gate evolution for experiment with =003 L Gate evolution for experiment with =0.05

Figure 13: Evolution of training of ResNet18 ImageNet experiments, first run for 1 € {0.03,0.05}.
Mean gate probability with shaded area indicating 1 standard deviation.

23

Gate evolution for experiment with u=0.07 Gate evolution for experiment with =02

3 g T s B - 1] H o - E] E)

Figure 14: Evolution of training of ResNet18 ImageNet experiments, first run for 1 € {0.07,0.2}.
Mean gate probability with shaded area indicating 1 standard deviation.

BN Bitwidth

s Sparsity
fc.weight_quantizer
features.5.1.activation_quantizer
features.5.1.features.1.weight_quantizer
features.5.1.features.0.activation_quantizer
features.5.1.features.0.weight_quantizer
features.5.0.activation_quantizer
features.5.0.features.1.weight_quantizer
features.5.0.features.0.activation_quantizer
features.5.0.downsample.0.weight_quantizer
features.5.0.features.0.weight_quantizer
features.4.1.activation_quantizer
features.4.1.features.1.weight_quantizer
features.4.1.features.0.activation_quantizer
features.4.1.features.0.weight_quantizer
features.4.0.activation_quantizer
features.4.0.features.1.weight_quantizer
features.4.0.features.0.activation_quantizer
features.4.0.downsample.0.weight_quantizer
features.4.0.features.0.weight_quantizer

features.3.1.activation_quantizer

Quantized tensors

features.3.1.features.1.weight_quantizer
features.3.1.features.0.activation_quantizer
features.3.1.features.0.weight_quantizer
features.3.0.activation_quantizer
features.3.0.features.1.weight_quantizer
features.3.0.features.0.activation_quantizer
features.3.0.downsample.0.weight_quantizer
features.3.0.features.0.weight_quantizer
features.2.1.activation_quantizer
features.2.1.features.1.weight_quantizer
features.2.1.features.0.activation_quantizer
features.2.1.features.0.weight_quantizer
features.2.0.activation_quantizer
features.2.0.features.1.weight_quantizer
features.2.0.features.0.activation_quantizer
features.2.0.features.0.weight_quantizer
features.0.activation_quantizer

features.0.weight_quantizer

0.4 0.2

o
o
N
IS
©

pruned Bitwidth

Figure 15: Learned ResNet18 architecture for first run with p = 0.03.

Quantized tensors

B Bitwidth

B Sparsity
fc.weight_quantizer
features.5.1.activation_quantizer
features.5.1.features.1.weight_quantizer
features.5.1.features.0.activation_quantizer
features.5.1.features.0.weight_quantizer
features.5.0.activation_quantizer
features.5.0.features.1.weight_quantizer
features.5.0.features.0.activation_quantizer
features.5.0.downsample.0.weight_quantizer
features.5.0.features.0.weight_quantizer
features.4.1.activation_quantizer
features.4.1.features.1.weight_quantizer
features.4.1.features.0.activation_quantizer
features.4.1.features.0.weight_quantizer
features.4.0.activation_quantizer
features.4.0.features.1.weight_quantizer
features.4.0.features.0.activation_quantizer
features.4.0.downsample.0.weight_quantizer
features.4.0.features.0.weight_quantizer
features.3.1.activation_quantizer
features.3.1.features.1.weight_quantizer
features.3.1.features.0.activation_quantizer
features.3.1.features.0.weight_quantizer
features.3.0.activation_quantizer
features.3.0.features.1.weight_quantizer
features.3.0.features.0.activation_quantizer
features.3.0.downsample.0.weight_quantizer
features.3.0.features.0.weight_quantizer
features.2.1.activation_quantizer
features.2.1.features.1.weight_quantizer
features.2.1.features.0.activation_quantizer
features.2.1.features.0.weight_quantizer
features.2.0.activation_quantizer
features.2.0.features.1.weight_quantizer
features.2.0.features.0.activation_quantizer
features.2.0.features.0.weight_quantizer

features.0.activation_quantizer

features.0.weight_quantizer

0.4 0.2

o
o
N
IS
®

pruned

e Bitwidth

Figure 16: Learned ResNet18 architecture for first run with p = 0.05.

25

Quantized tensors

B Bitwidth

B Sparsity
fc.weight_quantizer
features.5.1.activation_quantizer
features.5.1.features.1.weight_quantizer
features.5.1.features.0.activation_quantizer
features.5.1.features.0.weight_quantizer
features.5.0.activation_quantizer
features.5.0.features.1.weight_quantizer
features.5.0.features.0.activation_quantizer
features.5.0.downsample.0.weight_quantizer
features.5.0.features.0.weight_quantizer
features.4.1.activation_quantizer
features.4.1.features.1.weight_quantizer
features.4.1.features.0.activation_quantizer
features.4.1.features.0.weight_quantizer
features.4.0.activation_quantizer
features.4.0.features.1.weight_quantizer
features.4.0.features.0.activation_quantizer
features.4.0.downsample.0.weight_quantizer
features.4.0.features.0.weight_quantizer
features.3.1.activation_quantizer
features.3.1.features.1.weight_quantizer
features.3.1.features.0.activation_quantizer
features.3.1.features.0.weight_quantizer
features.3.0.activation_quantizer
features.3.0.features.1.weight_quantizer
features.3.0.features.0.activation_quantizer
features.3.0.downsample.0.weight_quantizer
features.3.0.features.0.weight_quantizer
features.2.1.activation_quantizer
features.2.1.features.1.weight_quantizer
features.2.1.features.0.activation_quantizer
features.2.1.features.0.weight_quantizer

features.2.0.activation_quantizer

features.2.0.features.1.weight_quantizer

features.2.0.features.0.activation_quantizer
features.2.0.features.0.weight_quantizer

features.0.activation_quantizer

features.0.weight_quantizer

0.4 0.2

o
o
N
~
®

pruned

e Bitwidth

Figure 17: Learned ResNet18 architecture for first run with p = 0.07.

26

B Bitwidth

B Sparsity
fc.weight_quantizer
features.5.1.activation_quantizer
features.5.1.features.1.weight_quantizer
features.5.1.features.0.activation_quantizer
features.5.1.features.0.weight_quantizer
features.5.0.activation_quantizer
features.5.0.features.1.weight_quantizer
features.5.0.features.0.activation_quantizer
features.5.0.downsample.0.weight_quantizer
features.5.0.features.0.weight_quantizer
features.4.1.activation_quantizer
features.4.1.features.1.weight_quantizer
features.4.1.features.0.activation_quantizer
features.4.1.features.0.weight_quantizer
features.4.0.activation_quantizer
features.4.0.features.1.weight_quantizer
features.4.0.features.0.activation_quantizer
features.4.0.downsample.0.weight_quantizer
features.4.0.features.0.weight_quantizer
features.3.1.activation_quantizer

features.3.1.features.1.weight_quantizer

Quantized tensors

features.3.1.features.0.activation_quantizer
features.3.1.features.0.weight_quantizer
features.3.0.activation_quantizer
features.3.0.features.1.weight_quantizer
features.3.0.features.0.activation_quantizer
features.3.0.downsample.0.weight_quantizer
features.3.0.features.0.weight_quantizer

features.2.1.activation_quantizer

features.2.1.features.1.weight_quantizer

features.2.1.features.0.activation_quantizer ‘_

features.2.1.features.0.weight_quantizer

features.2.0.activation_quantizer _

features.2.0.features.1.weight_quantizer
features.2.0.features.0.activation_quantizer L—
features.2.0.features.0.weight_quantizer

features.0.activation_quanizer Ee—F

features.0.weight_quantizer

0.4 0.2

=)
o
N
IS
®

pruned

e Bitwidth

Figure 18: Learned ResNet18 architecture for first run with p = 0.2.

27

