
On Testing of Samplers ∗†

Kuldeep S. Meel1 r© Yash Pote 1 r© Sourav Chakraborty2

1School of Computing, National University of Singapore
2Indian Statistical Institute, Kolkata

Abstract

Given a set of items F and a weight function wt : F 7→ (0, 1), the problem of sam-
pling seeks to sample an item proportional to its weight. Sampling is a fundamental
problem in machine learning. The daunting computational complexity of sampling
with formal guarantees leads designers to propose heuristics-based techniques for
which no rigorous theoretical analysis exists to quantify the quality of generated
distributions. This poses a challenge in designing a testing methodology to test
whether a sampler under test generates samples according to a given distribution.
Only recently, Chakraborty and Meel (2019) designed the first scalable verifier,
called Barbarik, for samplers in the special case when the weight function wt is
constant, that is, when the sampler is supposed to sample uniformly from F . The
techniques in Barbarik, however, fail to handle general weight functions.
The primary contribution of this paper is an affirmative answer to the above chal-
lenge: motivated by Barbarik, but using different techniques and analysis, we
design Barbarik2, an algorithm to test whether the distribution generated by a
sampler is ε-close or η-far from any target distribution. In contrast to black-
box sampling techniques that require a number of samples proportional to |F| ,
Barbarik2 requires only Õ(tilt(wt, ϕ)2/η(η− 6ε)3) samples, where the tilt is the
maximum ratio of weights of two satisfying assignments. Barbarik2 can handle
any arbitrary weight function. We present a prototype implementation of Barbarik2
and use it to test three state-of-the-art samplers.

1 Introduction

Motivated by the success of statistical techniques, automated decision-making systems are increas-
ingly employed in critical domains such as medical [19], aeronautics [33], criminal sentencing [20],
and military [2]. The potential long-term impact of the ensuing decisions has led to research in the
correct-by-construction design of AI-based decision systems. There has been a call for the design of
randomized and quantitative formal methods [35] to verify the basic building blocks of the modern
AI systems. In this work, we focus on one such core building block: constrained sampling.

Given a set of constraints ϕ over a set of variables X and a weight function wt over assignments to
X , the problem of constrained sampling is to sample a satisfying assignment σ of ϕ with probability
proportional to wt(σ). Constrained sampling is a fundamental problem that encapsulates a wide
range of sampling formulations [24, 23, 12, 30, 14]. For example, wt can be used to capture a given
∗The accompanying tool, available open source, can be found at https://github.com/meelgroup/barbarik. The

Appendix is available in the accompanying supplementary material.
†The authors decided to forgo the old convention of alphabetical ordering of authors in favor of a

randomized ordering, denoted by r©. The publicly verifiable record of the randomization is available
at https://www.aeaweb.org/journals/policies/random-author-order/search with confirmation
code: GH8VZdz4mQIh. For citation of the work, authors request that the citation guidelines by AEA for random
author ordering be followed.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/meelgroup/barbarik
https://www.aeaweb.org/journals/policies/random-author-order/search

prior distribution often represented implicitly through probabilistic models, and ϕ can be used to
capture the evidence arising from the observed data, then the problem of constrained sampling models
the problem of sampling from the resulting posterior distribution.

The problem of constrained sampling is computationally hard and has witnessed a sustained interest
from theoreticians and practitioners, resulting in the proposal of several approximation techniques. Of
these, Monte Carlo Markov Chain(MCMC)-based methods form the backbone of modern sampling
techniques [3, 7]. The runtime of these techniques depends on the length of the random walk, and the
Markov chains that require polynomial walks are called rapidly mixing Markov chains. Unfortunately,
for most distributions of practical interest, it is infeasible to design rapidly mixing Markov chains [26],
and the practical implementations of such techniques have to resort to the usage of heuristics that
violate theoretical guarantees. The developers of such techniques, often and rightly so, strive to
demonstrate their effectiveness via empirical behavior in practice [6].

The need for the usage of heuristics to achieve scalability is not restricted to just MCMC methods but
is widely observed for other methods such as simulated annealing [29], variational methods [18], and
hashing-based techniques [12, 23, 13, 32]. Consequently, a fundamental problem for the designers
of sampling techniques is: how can one efficiently test whether a given technique samples from the
desired distribution? Most of the existing approaches rely on the computations of statistical metrics
such as variation distance and KL-divergence by drawing samples and perform hypothesis testing
with a preset p-value. Sound computations of statistical metrics require a large number of samples
that is proportional to the support of the posterior distribution [4, 36], which is prohibitively large; it
is not uncommon for the distribution support to be significantly larger than 270. Consequently, the
existing approaches tend to estimate the desired quantities using a fraction of the required samples,
and such estimates are often without the required confidence. The usage of unsound metrics may
lead to unsound conclusions, as demonstrated by a recent study where the usage of unsound metric
would lead one to conclude that two samplers were indistinguishable (it is worth mentioning that the
authors of the study clearly warn the reader about the unsoundness of the underlying metrics) [21].

The researchers in the sub-field of property testing within theoretical computer science have analyzed
the sample complexity of testing under different models of samplers and computation. The resulting
frameworks have not witnessed widespread adoption to practice due to a lack of samplers that can
precisely fit the models under which results are obtained. In recent work, Chakraborty and Meel [10],
building on the concepts developed in the condition sampling model (rf. [1]), designed the first
practical algorithmic procedure, called Barbarik, that can rigorously test whether a given sampler
samples from the uniform distribution using a constant number of samples, assuming that the given
sampler is subquery-consistent (see Definition 9). Empirically, Barbarik was shown to be able to
distinguish samplers that were indistinguishable in prior studies based on unsound metrics. While
Barbarik made significant progress, it is marred by its ability to handle only the uniform distribution.
Therefore, one wonders: Can we design an algorithmic framework to test whether the distribution
generated by a given sampler is close to a desired (but arbitrary) posterior distribution of interest?

This paper’s primary contribution is the first efficient algorithmic framework, Barbarik2, to test
whether the distribution generated by a sampler is ε-close or η-far from the desired distribution
specified by the set of constraints ϕ and a weight function wt. In contrast to the statistical techniques
that require an exponential or sub-exponential number of samples for samplers whose support can
be represented by n bits, the number of samples required by Barbarik2 depends on the tilt of the
distribution, where tilt is defined as the maximum ratio of non-zero weights of two solutions of ϕ.
Like Barbarik, the key technical idea of Barbarik2 sits at the intersection of property testing and
formal methods and uses ideas from conditional sampling and employs chain formulas. However, the
key algorithmic framework of Barbarik2 differs significantly from Barbarik, and, as demonstrated,
the proof of its correctness and sample complexity requires an entirely new set of technical arguments.

Given access to an ideal sampler A, Barbarik2 accepts every sampler that is ε-close to A while
its ability to reject a sampler that is η-far from A assumes that the sampler under test is subquery
consistent. Since Barbarik2 assumes access to an ideal sampler, one might wonder if a tester
such as Barbarik2 is needed when we already have access to an ideal sampler. Since sampling is
computationally intractable, it is almost always the case that an ideal sampler A is quite slow and one
would prefer to use some other efficient sampler G instead of A, if G can be certified to be close to A.

To demonstrate the practical efficiency of Barbarik2, we developed a prototype implementation in
Python and performed an experimental evaluation with several samplers. While our framework

2

does not put a restriction on the representation of wt, we perform empirical validation with weight
distributions corresponding to log-linear models, a widely used class of distributions. Our empirical
evaluation shows that Barbarik2 returns ACCEPT for the samplers with formal guarantees but returns
REJECT for other samplers that are without formal guarantees. Our ability to reject samplers provides
evidence in support of our assumption of subquery consistency of samplers. We believe our formal-
ization of testing of samplers and the design of the algorithmic procedure, Barbarik2, contributes to
the design of randomized formal methods for verified AI, a principle argued by Seshia et al [35].

2 Notations and Preliminaries

A Boolean variable is denoted by a lowercase letter. For a Boolean formula ϕ, the set of variables
appearing in ϕ, called the support of ϕ, is denoted by Supp(ϕ). An assignment σ ∈ {0, 1}|Supp(ϕ)|

to the variables of ϕ is a satisfying assignment or witness if it makes ϕ evaluate to 1. We denote the
set of all satisfying assignments of ϕ as Rϕ. For S ⊆ Supp(ϕ), we use σ↓S to indicate the projection
of σ over the set of variables in S. And we denote by Rϕ↓S the set {σ↓S | σ ∈ Rϕ}.

Definition 1 (Weight Function). For a set S of Boolean variables, a weight function wt : {0, 1}|S| →
(0, 1) maps each assignment to some weight.

Definition 2 (Sampler). A sampler G(ϕ, S, wt, τ) is a randomized algorithm that takes in a Boolean
formula ϕ, a weight function wt, a set S ⊆ Supp(ϕ) and a positive integer τ and outputs τ
independent samples fromRϕ↓S . For brevity of notation we will omit arguments ϕ, S, wt, τ , whenever
may sometimes refer to a sampler as G(ϕ) or simply, G.

For any σ ∈ {0, 1}|S| the probability of the sampler G outputting σ is denoted by pG(ϕ, S, σ) (or
pG(ϕ, σ) when the set S in question is clear from the context).

We use DG(ϕ,S) to represent the distribution induced by G(ϕ, S) on Rϕ↓S . When the set S is
understood from the context we will denote DG(ϕ,S) by DG(ϕ).

Definition 3 (Ideal Sampler). For a weight function wt, a sampler A(ϕ, S, τ) is called an ideal
sampler w.r.t. weight function wt if for all σ ∈ Rϕ↓S : pA(ϕ, S, wt, σ) = wt(σ)∑

σ′∈Rϕ↓S
wt(σ′) . In the rest

of the paper, A(·, ·, ·, ·) denotes the ideal sampler. When wt(σ) = 1
|Rϕ| then the ideal sampler is

called a uniform sampler.

Definition 4 (Tilt). For a Boolean formula ϕ and weight function wt, we define tilt(wt, ϕ) =

max
σ1,σ2∈Rϕ

wt(σ1)
wt(σ2) .

Our goal is to design a program that can test the quality of a sampler with respect to an ideal sampler.
We use two different notions of distance of the sampler from the ideal sampler.

Definition 5 (ε-closeness and η-farness). A sampler G is ε-multiplicative-close (or simply ε-close)
to an ideal sampler A, if for all ϕ and all σ ∈ Rϕ, we have (1 − ε)pA(ϕ, σ) ≤ pG(ϕ, σ) ≤
(1 + ε)pA(ϕ, σ). For a formula ϕ, a sampler G(ϕ) is η-`1-far (or simply η-far) from the ideal
sampler A(ϕ), if

∑
σ∈Rϕ |pA(ϕ, σ)− pG(ϕ, σ)| ≥ η

It is worth emphasising that the asymmetry in the notions of ε-close and η-far stems from the
availability of practical samplers. Since the available off-the-shelf solvers with theoretical guarantees
provide the guarantee of ε-closeness, we are interested in accepting a sampler that is ε-close [24, 23,
12, 14]. On the other hand, we would like to be more forgiving to the samplers without guarantees
and would like to reject only if they are η-far in `1 distance, a notion more relaxed than multiplicative
closeness.

Definition 6 ((ε, η, δ)-tester for samplers). A (ε, η, δ)-tester for samplers is a randomized algorithm
that takes a sampler G, an ideal sampler A, a tolerance parameter ε, an intolerance parameter η, a
guarantee parameter δ and a CNF formula ϕ such that (1) If G(ϕ) is ε-close to A(ϕ), then the tester
returns ACCEPT with probability at least (1− δ), and (2) If G(ϕ) is η-far from A(ϕ) then the tester
returns REJECT with probability at least (1− δ).

3

2.1 Chain Formula

A crucial component in our algorithm is the chain formula. Chain formulas, introduced in [15],
are a special class of Boolean formulas. Given a positive integer k and m, chain formulas provide
an efficient construction of a Boolean formula ψk,m with exactly k satisfying assignments with
dlog(k)e ≤ m variables. We employ chain formulas for inverse transform sampling and in the
subroutine Barbarik2Kernel.
Definition 7. [15] Let c1c2 · · · cm be the m-bit binary representation of k, where cm is the least
significant bit. We then construct a chain formula ϕk,m(·) on m variables a1, . . . am as follows. For
every j in {1, . . .m− 1}, let Cj be the connector “∨” if cj = 1, and the connector “∧” if cj = 0.
Define

ϕk,m(a1, · · · am) = a1 C1 (a2 C2(· · · (am−1 Cm−1 am) · · ·))

For example, consider k = 11 and m = 4. The binary representation of 11 using 4 bits is 1011.
Therefore, ϕ5,4(a1, a2, a3, a4) = a1 ∨ (a2 ∧ (a3 ∨ a4)).
Lemma 1. [15] Let m > 0 be a natural number, k < 2m , and ϕk,m as defined above. Then |ϕk,m|
is linear in m and ϕk,m has exactly k satisfying assignments. Every chain formula ψ on n variables
is equivalent to a CNF formula ψCNF having at most n clauses. In addition, |ψCNF | is in O(n2).

2.2 Barbarik2Kernel and the Subquery Consistency Assumption

Barbarik2Kernel is a crucial subroutine that we use in our algorithm to help us draw conditional
samples from Rϕ↓S . This is similar to the subroutine Kernel used by the Barbarik in [10]. We will
now define a collection of functions KernelFamily.
Definition 8. KernelFamily is family of functions that take a Boolean formula ϕ, a set of variables
S ⊆ Supp(ϕ), and two assignments σ1, σ2 ∈ Rϕ↓S , and return ϕ̂ such that Rϕ̂↓S = {σ1, σ2}.

[10] introduced the notion of non-adversarial assumption, which was crucial in their analysis. We
rename the notion of subquery consistency to better capture its intended properties, defined below.
Definition 9. Let Barbarik2Kernel ∈ KernelFamily. A sampler G is subquery consistent w.r.t.
a particular Barbarik2Kernel for ϕ if for all S ⊆ Supp(ϕ), σ1, σ2 ∈ Rϕ↓S , let ϕ̂ ←
Barbarik2Kernel(ϕ, S, σ1, σ2) then the output of G(ϕ̂, wt, S, τ) is τ independent samples from the
conditional distribution DG(ϕ)|T , where T = {σ1, σ2}.

Similar to the usage of non-adversarial assumption in the correctness analysis of Barbarik [10], the
notion of subquery consistency would play a crucial role in our analysis. Since each subquery can be
viewed as conditioning and given that conditioning is a fundamental operation, one would expect
that off the shelf samplers would be subquery consistent. At the same time, in contrast to practical
applications, the set T is arbitrarily chosen, and therefore, it is possible that certain samplers do not
satisfy the property of subquery consistency. It is, however, not known how to test whether a sampler
is subquery consistent w.r.t a particular Barbarik2Kernel. While our empirical evaluation provides
weak evidence to our claim that off the shelf samplers are subquery consistent, we believe checking
whether a sampler is subquery consistent is an interesting and important problem for future work.

3 Related Work

Distribution testing involves testing whether an unknown probability distribution is identical or
close to a given distribution. This problem has been studied extensively in the property testing
literature [11, 8, 36, 37] . The sample space is exponential, and for many fundamental distributions,
including uniform, it is prohibitively expensive in terms of samples to verify closeness. This led to
the development of the conditional sampling model [11, 8], which can provide sub-linear or even
constant sample complexities for the testing of the above-given properties[1, 28, 5, 9, 17]. A detailed
discussion on prior work in property testing and their relationship to Barbarik2 is given in Appendix
A.

The first practically efficient algorithm for verification of samplers with a formal proof of correctness
was presented by Chakraborty and Meel in form of Barbarik [10]. The central idea of Barbarik,
building on the work of Chakraborty et al. [11] and Canonne et al. [8], was that if one can have

4

conditional samples from the distribution, then one can test properties of the distribution using only a
constant number of conditional samples.

Barbarik constructs a two-element set T ⊂ Rϕ, with one element drawn according to the distribution
DG(ϕ) and one element drawn uniformly at random from the set Rϕ. Using a subroutine Kernel
Chakraborty et al. argued that one can draw samples from the conditional distribution DG(ϕ)|T . Their
sample complexity was Õ(1/(η − 2ε)4). They proved that if a sampler G is ε-close to a uniform
sampler then Barbarik will accept with probability at least (1 − δ), while if G(ϕ) is η-far from
the uniform sampler and if G is subquery consistent w.r.t Kernel for ϕ, then Barbarik rejects with
probability at least (1−δ). Their underlying assumption was that many samplers that are in use would
in fact be subquery consistent and the success of Barbarik in rejecting several samplers provides
evidence in support of the aforementioned assumption. They used Barbarik to test the correctness of
samplers like STS, Quicksampler, and UniGen.

Note that Barbarik can only distinguish a uniform sampler from a far-from uniform sampler, and the
techniques used cannot be generalized easily to the case where the ideal sampler is not necessarily uni-
form. While Barbarik2, that we present in this paper, does borrow several techniques from Barbarik,
including drawing inspiration from the concept of conditional sampling for their design; Barbarik2 is
very different from Barbarik both in terms of the algorithmic design and its implementation.

4 An overview of the Barbarik2 Algorithm

In this section, we present the algorithmic framework of Barbarik2, the pseudocode, presented
as Algorithm 1, and then the theoretical justification for the algorithm. Barbarik2 takes as input a
blackbox sampler G, a Boolean formula ϕwith the associated weight function wt and three parameters
(ε, η, δ). It also has access to an ideal sampler A. Barbarik2 is an (ε, η, δ)-tester for samplers. Also
if Barbarik2 returns REJECT (that is, when G is η-far from A), it provides as witness a new formula
ϕ̂ which is similar to ϕ, except that ϕ̂ has only two assignments to the variables in S (namely σ1 and
σ2) that can be extended to satisfying assignments of ϕ̂ and the relative probability masses of σ1 and
σ2 in DG are significantly different from that in DA.

The core idea of Barbarik2 is that for verifying the quality of the sampler G(ϕ), we can proceed in
two stages. In the first stage, if the sampler is far from the ideal sampler A, we hope to find a witness
(in the form of two satisfying assignments) for farness with good probability. This can be guaranteed
by drawing one sample each from DG(ϕ) and DA(ϕ). In the second stage, we confirm whether the
witness is indeed far. That is, if the witness is the (σ1, σ2) pair, we check that the probability of σ1

and σ2 in DG(ϕ) and DA(ϕ) are similar or not.

Here Barbarik2 differs from Barbarik in a significant way. Barbarik employs a bucketing strategy.
But, Barbarik2 chooses a simpler yet equally effective method to check the similarity between σ1 and
σ2. This is also the most difficult stage of the tester as one may have to draw a exponential number
of samples to confirm the similarity. We manage this by drawing samples from the conditional
distribution DG(ϕ)|{σ1,σ2} instead of DG(ϕ). Since DG(ϕ)|{σ1,σ2} is supported on a set of size only
two estimating the distance of DG(ϕ)|{σ1,σ2} from DA(ϕ)|{σ1,σ2} can be done with constant number
of samples.

Now since we do not have direct access to the distribution DG(ϕ)|{σ1,σ2} we circumvent the problem
by drawing samples from a new distribution DG(ϕ̂) where ϕ̂ is obtained from ϕ and has similar
structure as ϕ (with Supp(ϕ) ⊆ Supp(ϕ̂)) and there are only two assignments (namely σ1 and σ2)
to the variables in Supp(ϕ) that can be extended to the satisfying assignments of ϕ̂. The subroutine
Barbarik2Kernel helps us simulate the drawing of samples from DG(ϕ)|{σ1,σ2} by drawing samples
from DG(ϕ̂). The subroutine Bias helps to estimate the distance of DG(ϕ̂) from DA(ϕ̂).

Finally, we repeat the whole process for a certain number of rounds, and we argue that if the sampler
is indeed far then, with high probability, in at least one round, we will find a witness of farness and
confirm that the witness is indeed far. On the other hand, if the sampler is close to ideal, then there
does not exist any such witness of farness.

Barbarik2 accesses two subroutines, Bias and Barbarik2Kernel: Bias(σ̂,Γ, S) takes as input an
assignment σ̂, a list Γ of assignments and a sampling set S. It returns the fraction of assignments of Γ
whose projections on S is equal to σ̂. Barbarik2Kernel(ϕ, σ1, σ2) is a Barbarik2Kernel subroutine

5

Algorithm 1 Barbarik2(G,A, ε, η, δ, ϕ, S, wt)

1: t← ln(1/δ)ln
(

10
10−η(η−6ε)

)−1

2: n← 8ln (t/δ)
3: lo = (1 + ε)/(1− ε)
4: hi = 1 + (η + 6ε)/4
5: Γ1 ← G(ϕ, S, t);
6: Γ2 ← A(ϕ, S, t);
7: for i = 1 to t do
8: σ1 ← Γ1[i]; σ2 ← Γ2[i];
9: if σ1 = σ2 then

10: continue
11: α← wt(σ1)/wt(σ2)
12: L← (α · lo) / (1 + α · lo)
13: H ← (α · hi) / (1 + α · hi)
14: T = (H + L)/2
15: N ← n ·H/(H − L)2

16: ϕ̂← Barbarik2Kernel(ϕ, σ1, σ2)
17: Γ3 ← G(ϕ̂, S,N)
18: Bias← Bias(σ1,Γ3, S)
19: if Bias > T then
20: return REJECT
21: return ACCEPT

Algorithm 2 Barbarik2Kernel(ϕ, σ1, σ2)

1: m← 12, k ← 2m − 1
2: Lits1 ← (σ1 \ σ2)
3: Lits2 ← (σ2 \ σ1)
4: V← NewV ars(ϕ,m);
5: ϕ̂← ϕ ∧ (σ1 ∨ σ2)
6: l ∼ Lits1 ∪ Lits2
7: ϕ̂← ϕ̂ ∧ (¬l→ ψk,m(V))
8: ϕ̂← ϕ̂ ∧ (l→ ψk,m(V))
9: return ϕ̂

Algorithm 3 Bias(σ̂, Γ, S)

1: count = 0
2: for σ ∈ Γ do
3: if σ↓S = σ̂ then
4: count← count +1
5: return count

|Γ|

(Definition 8). Its aim is to create a ϕ̂ such the behaviour of the sampler on ϕ̂ is similar to it’s
behaviour on ϕ, i.e. DG(ϕ)|{σ1,σ2} ≈ DG(ϕ̂).

In Barbarik2, in the for loop (in lines 7−20), in each round, the algorithm draws one sample σ1

according to the distribution DG(ϕ) and one sample σ2 according to the ideal distribution on Rϕ
(line 8). In the case that σ1 = σ2 it moves the to next iteration (in line 9-10). In line 16, the
subroutine Barbarik2Kernel uses ϕ, the two samples σ1 and σ2, to output a new formula ϕ̂ such
that Supp(ϕ) ⊆ Supp(ϕ̂). On line 17, Barbarik2 draws a list, Γ3, of N samples according to the
distribution DG(ϕ̂). Barbarik2Kernel ensures that for all σ ∈ Γ3, σ↓S is either σ1 or σ2. In line 18
Barbarik2 uses Bias to compute the fraction of samples that are equal to σ1 (on the variable set S),
and if the fraction is greater than the threshold then Barbarik2 returns REJECT (in line 20).

Algorithm 2 presents the pseudocode of subroutine Barbarik2Kernel. As stated above,
Barbarik2Kernel takes in a Boolean formula ϕ, a set S ⊆ Supp(ϕ) and two partial assignments
σ1, σ2 ∈ Rϕ↓S . Since the set S is implicit from σ1 and σ2 it may not be explicitly given as an input.
Barbarik2Kernel assumes access to subroutine NewV ars which takes in two parameters, a formula
ϕ and a number m, and returns a set of m fresh variables that do not appear in ϕ. Barbarik2Kernel
first constructs two sets of literals, denoted by Lits1 (resp. Lits2), which appear in σ1 (resp. σ2) but
not σ2 (resp. σ1). The algorithm then constructs the formula ϕ̂. First it generates ϕ ∧ (σ1 ∨ σ2) on
Line 5, a formula with exactly two solutions. Next, it randomly chooses a literal l from Lits1∪Lits2
and constructs a chain formula (l→ ψk,m) over the fresh Boolean variables V[1],V[2] · · · ,V[m]
where k is the number of satisfying assignments the formula has. Conjuncting the two generated
formulas, we get ϕ̂ ≡ ϕ ∧ (σ1 ∨ σ2). Therefore, at the end of Barbarik2Kernel, i.e. line 8, ϕ̂ has 2k
solutions. We choose the value of k such that it is odd (see [15]). The chain formula is linked to a
random Boolean literal from the given set of literals for two reasons,

1. An ideal or ε-close to ideal sampler would not be affected by the randomization and would
generate the same distribution over ϕ̂ as it does over ϕ ∧ (σ1 ∨ σ2).

2. If the sampler under test G is η-far from ideal, then we want to construct a formula which
cannot be easily guessed by A. We wish to avoid the scenario where A, an η-far sampler
on ϕ, somehow behaves as an almost-ideal sampler over ϕ̂ and hence manages to fool
Barbarik2.

6

4.1 Theoretical Analysis

The following theorem gives the mathematical guarantee about the correctness of Barbarik2.
Theorem 1. Given sampler G, ideal sampler A, ε < 1

3 , η > 6ε, δ, ϕ and weight function wt,

Barbarik2 needs at most Õ
(
tilt(wt,ϕ)2

η(η−6ε)3

)
samples, where Õ hides a poly logarithmic factor of 1/δ.

• If G is an ε-close to A then Barbarik2 returns ACCEPT with probability at least (1− δ).

• If G is subquery consistent w.r.t Barbarik2Kernel and if the distribution DG(ϕ) is η-far from
the ideal sampler then Barbarik2 returns REJECT with probability at least (1− δ).

Note that if G is ε-close to A then Barbarik2 accepts (with high probability) even if the sampler G
isn’t subquery consistent w.r.t Barbarik2Kernel. It is also worth noting that Barbarik2 terminates
with REJECT as soon as the check in line 19 succeeds. Therefore, we expect Barbarik2 to require
significantly less number of samples when it returns REJECT. Furthermore, in the case of ACCEPT,
the bound on N , as calculated on line 15 in terms of tilt, is pessimistic as the probability of observing
σ1 and σ2 such that α ≈ tilt for a sampler close to ideal is very small when the tilt is large. The
proof of Theorem 1 is presented in Appendix B.

5 Evaluation

The objective of our evaluation was to answer the following questions:

RQ1. Is Barbarik2 able to distinguish between off-the-shelf samplers by returning ACCEPT for
samplers ε-close to the ideal distribution and REJECT for the η-far samplers?

RQ2. What improvements do we observe over the baseline?

RQ3. How does the required number of samples scale with the tilt(wt, ϕ) of the distribution?

To evaluate the runtime performance of Barbarik2 and test the quality of some state of the art samplers,
we implemented a prototype of Barbarik2 in Python. Our algorithm utilizes an ideal sampler, for
which we use the state of the art sampler WAPS [25]. All experiments were conducted on a high
performance computing cluster with 600 E5-2690 v3 @2.60GHz CPU cores. For each benchmark,
we use a single core with a timeout of 24 hours. The detailed logs along with list of benchmarks
and the runtime code employed to run the experiments are available at http://doi.org/10.5281/
zenodo.4107136.

We focus on the log-linear distributions given their ubiquity of usage in machine learning; a formal
description is provided in Appendix C for completeness. Observe that Barbarik2 does not put any
restrictions on the representation of the weight distribution. We conducted our experiments on 72
publicly available benchmarks, which have been employed in the evaluation of samplers proposed in
the past [13, 21]. The tilt of the benchmarks spans many orders of magnitude, between 1 and 1011.

Samplers Tested The past few years have witnessed a multitude of sampling techniques ranging
from variational methods [38], MCMC-based techniques [27, 31], mutation-based sampling [21],
importance sampling-based methods [22], knowledge-compilation techniques [25] and the like.
The conceptual simplicity of uniform samplers encourages designers to tune their algorithms for
uniform sampling, and the standard technique for weighted sampling employs the well-known
method of the inverse transform. For the sake of completeness, we provide a detailed discussion of
the transformation technique in Appendix C

We perform empirical evaluation with the three state of the art samplers wUniGen, wQuicksampler,
and wSTS constructed by augmenting inverse sampling with underlying samplers UniGen [13],
Quicksampler [21] and STS(SearchTreeSampler) [22] respectively.

While wUniGen is known to have theoretical guarantees of ε−closeness, there is no theoretical
analysis of the distributions generated by wQuicksampler and wSTS. Of the 72 instances, wUniGen
can handle only 35 instances while wQuicksampler and wSTS can handle all the 72 instances. The
variation in the number of instances that are amenable to sampling for a particular sampler highlights
the trade-off between the runtime performance and theoretical guarantees. It is perhaps worth

7

http://doi.org/10.5281/zenodo.4107136
http://doi.org/10.5281/zenodo.4107136

Barbarik2

Benchmark tilt
(maxSamp)

wUniGen
(samples)

wSTS
(samples)

wQuicksampler
(samples)

s349_3_2 28
(3e+07)

A
(1e+05)

A
(1e+05)

R
(22854)

s820a_3_2 37
(5e+07)

A
(96212)

R
(87997)

A
(2e+05)

UserServiceImpl.sk 140
(6e+08)

A
(1e+05)

R
(1e+05)

R
(4393)

LoginService2.sk 232
(2e+09)

A
(1e+05)

R
(38044)

R
(13350)

s349_7_4 603
(1e+10)

A
(75555)

R
(4284)

R
(5150)

s344_3_2 3300
(3e+11)

A
(1e+05)

R
(59952)

R
(5150)

s420_new_7_4 3549
(4e+11)

A
(82312)

A
(96659)

R
(49955)

54.sk_12_97 4e+11
(6e+27) DNS R

(14012)
R

(4627)

s641_7_4 9e+07
(3e+20) DNS R

(8747)
A

(1e+06)

s838_3_2 2e+08
(1e+21) DNS R

(9504)
R

(4627)

Table 1: “A"(resp. “R") represents Barbarik2 returning ACCEPT(resp. REJECT). maxSamp represents
the upper bound on the number of samples required by Barbarik2 to return ACCEPT/REJECT.

emphasizing that wQuicksampler and wSTS are significantly more efficient in runtime performance
than the ideal sampler WAPS.

Test Parameters We set tolerance parameter ε, intolerance parameter η, and confidence δ for
Barbarik2 to be and 0.1, 1.6 and 0.2 respectively. The chosen setting of parameters implies that
for a given Boolean formula ϕ, if the sampler under test G(ϕ) is ε-close to the ideal sampler, then
Barbarik2 returns ACCEPT with probability at least 0.8, otherwise if the sampler is η-far from ideal
sampler then Barbarik2 returns REJECT with probability at least 0.8. Note that, the number of
samples required for ACCEPT depends only on the parameters (ε, η, δ) and tilt(wt, ϕ). We instantiate
Barbarik2Kernel with the values m = 12 and k = 2m − 1. Observe that Theorem 1 does not put
restrictions on k and m.

Description of the table We present the experimental results in Table 1. Due to lack of space, we
present results for a subset of benchmarks while the extended table is available in the supplementary
material. The first column indicates the name of the benchmark, the second the tilt, and the following
columns indicate the outcome of the experiments with wUniGen, wSTS and wQuicksampler in that
order. Every cell in the table has two entries. In the second column, the first entry shows the value of
tilt for the corresponding benchmark, while in the other columns, it contains “A” and “R” to indicate
the output of Barbarik2 for the corresponding sampler. The second entry for the cells in the column
corresponding to tilt indicates the theoretical upper bound on the samples required for Barbarik2 to
terminate, while for rest of the columns, the second entry indicates the number of samples consumed
by Barbarik2 for the corresponding instance and the sampler.

RQ1 Our experiments demonstrate that Barbarik2 returns REJECT for wQuicksampler on 68 bench-
marks and ACCEPT on the remaining four benchmarks. For wSTS we found Barbarik2 returned
REJECT on 62 of the benchmarks and ACCEPT on 7 while it times out on the remaining 3. Since
wSTS and wQuicksampler are samplers with no formal guarantees and therefore one may expect
them to generation distributions away from the ideal distributions. In this context, the results in

8

Table 1 provide strong evidence for the reasonableness of the subquery consistency assumption in
practice.

In contrast, Barbarik2 returned ACCEPT for wUniGen on all the 35 benchmarks for which wUniGen
could sample. Recall, wUniGen formally guarantees ε-closeness of the samples to the required
distribution, hence Barbarik2 returning ACCEPT on all the benchmarks provides evidence in support
of soundness of Barbarik2.

RQ2 We also computed the number of samples required by the baseline approach owing to [4].
Since the number of samples is so large that exhaustive experimentation is infeasible, we had to
resort to estimating the average time taken by a sampler for a given instance. Based on the estimated
time, we can estimate the time taken by the baseline for our benchmark set. We observe that the time
taken by the baseline would be over 106 seconds for 43, 42 and 16 benchmarks for wQuicksampler,
wSTS and wUniGen respectively. In this context, it is worth highlighting that Barbarik2 terminates
within 24 hours for all the instances for all the samplers. We observe that the geometric means of
the speedups over the baseline approach are 105.0, 1020.2 and 58 for wSTS, wQuicksampler and,
wUniGen respectively. The lower speedup in the case of wUniGen owes to its ability to handle only
small benchmarks, for which the number of models was not very large. The extended results are
available in Appendix D.

RQ3 The number of trials required (indicated by the the variable t as on Line 7 of Algorithm 1)
depends only on (ε, η, δ), so for the values we use, (0.1, 1.6, 0.2), we find that we require t = 14 trials.
The analysis of the algorithm reveals an upper bound on the sample complexity of the tester (See
Section 4, Theorem 1) which is quadratic in terms of the tilt(wt, ϕ). We now return to Table 1 and
observe that the number of samples required by Barbarik2 before returning ACCEPT were significantly
lower than the theoretical bound provided in the second column. Furthermore, as noted earlier, the
number of samples required before Barbarik2 returns REJECT is typically significantly less than the
worst case – a trend demonstrated in Table 1.

6 Conclusion

In this paper, we study the problem of verifying whether a probabilistic sampler samples from a
given discrete distribution. Existing approaches require samples linear in the size of the sampling set,
which is commonly exponentially large. We present a conditional sampling technique that can verify
the sampler in sample complexity constant in terms of the sampling set. We also test a prototype
implementation of our algorithm against three state-of-the-art samplers.

We noticed that the analytical upper bound on the sample complexity is significantly weak compared
to our observed values; this suggests that the bounds could be further tightened. Our algorithm
can only deal with those discrete distributions for which the relative probabilities of any two points
is easily computable. Since our algorithm does not deal with all possible discrete distributions,
extending the approach to other distributions would enable the testing of a broader set of samplers.

Broader Impact

The recent advances in machine learning techniques have led to increased adoption of the said
techniques in safety-critical domains. The usage of a technique in a safety-critical domain necessitates
appropriate verification methodology. This paper seeks to take a step in this direction and focused
on one core component. Our analysis is probabilistic, and therefore, practical adoption of such
techniques requires careful design of frameworks to handle failures.

Acknowledgements

We are grateful to Teodora Baluta and Arijit Shaw for the technical help and for the useful comments
on the earlier drafts of the work. We are grateful to the anonymous reviewers for their constructive
feedback that has greatly improved the quality of the paper. This work was supported in part by the
National Research Foundation Singapore under its NRF Fellowship Programme [NRF-NRFFAI1-
2019-0004] and the AI Singapore Programme [AISG-RP-2018-005], and NUS ODPRT Grant [R-252-

9

000-685-13]. The computational work for this article was performed on resources of the National
Supercomputing Centre, Singapore https://www.nscc.sg. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore.

References
[1] Jayadev Acharya, Clément L. Canonne, and Gautam Kamath. A chasm between identity and

equivalence testing with conditional queries. Theory of Computing, 2018.
[2] Jürgen Altmann and Frank Sauer. Autonomous weapon systems and strategic stability. Survival,

2017.
[3] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction

to MCMC for machine learning. Machine learning, 2003.
[4] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing

closeness of discrete distributions. J. ACM, 2013.
[5] Rishiraj Bhattacharyya and Sourav Chakraborty. Property testing of joint distributions using

conditional samples. TOCT, 2018.
[6] Stephen P Brooks and Andrew Gelman. General methods for monitoring convergence of

iterative simulations. Journal of computational and graphical statistics, 1998.
[7] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov Chain

Monte Carlo. CRC press, 2011.
[8] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions using

conditional samples. SIAM J. Comput., 2015.
[9] Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Testing

conditional independence of discrete distributions. CoRR, 2017.
[10] Sourav Chakraborty and Kuldeep S. Meel. On testing of uniform samplers. In Proc. of AAAI,

2019.
[11] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of

conditional samples in distribution testing. SIAM J. Comput., 2016.
[12] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A Scalable and Nearly Uniform

Generator of SAT Witnesses. In Proc. of CAV, 2013.
[13] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.

Vardi. Distribution-aware sampling and weighted model counting for SAT. In Proc. of AAAI,
2014.

[14] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.
Vardi. On parallel scalable uniform SAT witness generation. In Proc. of TACAS, 2015.

[15] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From weighted to
unweighted model counting. In Proc. of IJCAI, 2015.

[16] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 2008.

[17] Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. Learning and testing junta distribu-
tions with subcube conditioning. CoRR, 2020.

[18] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation. In
ACM SIGGRAPH Papers. 2004.

[19] Elliott Crigger and Christopher Khoury. Making policy on augmented intelligence in health
care. AMA Journal of Ethics, 2019.

[20] Michael E Donohue. A replacement for Justitia’s scales?: Machine learning’s role in sentencing.
Harvard Journal of Law & Technology, 2019.

[21] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. Efficient sampling of SAT
solutions for testing. In Proc. of ICSE, 2018.

[22] Stefano Ermon, Carla P. Gomes, and Bart Selman. Uniform solution sampling using a constraint
solver as an oracle. In Proc. of UAI, 2012.

10

https://www.nscc.sg

[23] Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. Embed and project:
Discrete sampling with universal hashing. In Proc. of NIPS, 2013.

[24] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of combinatorial
spaces using XOR constraints. In Proc. of NIPS, 2007.

[25] Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S. Meel. WAPS: Weighted and
Projected Sampling. In Proc. of TACAS, 2019.

[26] Mark Jerrum. Mathematical foundations of the markov chain monte carlo method. In Proba-
bilistic methods for algorithmic discrete mathematics. 1998.

[27] Mark R. Jerrum and Alistair Sinclair. The Markov Chain Monte Carlo method: an approach to
approximate counting and integration. Approximation algorithms for NP-hard problems, 1996.

[28] Gautam Kamath and Christos Tzamos. Anaconda: A non-adaptive conditional sampling
algorithm for distribution testing. SIAM, 2019.

[29] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by simulated annealing.
Science, 1983.

[30] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Proc. of NIPS, 2014.
[31] Neal Madras. Lectures on Monte Carlo Methods, Fields Institute Monographs 16. American

Mathematical Society, 2002.
[32] Kuldeep S. Meel, Moshe Y. Vardi, Supratik Chakraborty, Daniel J Fremont, Sanjit A Seshia,

Dror Fried, Alexander Ivrii, and Sharad Malik. Constrained sampling and counting: Universal
hashing meets sat solving. In AAAI Workshop: Beyond NP, 2016.

[33] Kathleen L Mosier and Linda J Skitka. Human decision makers and automated decision aids:
Made for each other? In Automation and human performance. 2018.

[34] K.P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
[35] Sanjit A Seshia, Dorsa Sadigh, and S Shankar Sastry. Towards verified artificial intelligence.

arXiv preprint arXiv:1606.08514, 2016.
[36] Gregory Valiant and Paul Valiant. The Power of Linear Estimators. In Proc of FOCS, 2011.
[37] Paul Valiant. Testing symmetric properties of distributions. SIAM J. Comput., 2011.
[38] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and

variational inference. Found. Trends Machine Learning, 2008.

11

