Appendix

A Relationship of Barbarik2 with Property Testing

Testing of samplers is basically testing if two distributions Dg,) and Ag ) are similar, where G
is the sampler under test and A is the ideal sampler. As stated in the Introduction and the Related
Work section, the sub-field of property testing in theoretical computer science has been studying this
problem for over two decades and our tester Barbarik2 draws ideas from some of the latest research
in this area.

In understanding the closeness between two distributions one may consider a variety of different
distance measures. The variation distance (also called the ¢; distance) is possibly most commonly
used. In property testing the problem is to distinguish between the case where the two distributions
are e-close in ¢; distance from the case where the distributions are n-far from each other in ¢;
distance. An easier question, called the “equivalence testing of distributions" considers the problem
of distinguish identical distributions from distributions that are n)-far from each other in ¢; distance.
The former question, often referred to as the tolerant version of equivalence testing of distributions or
estimation of variation distance, is more suitable for various applications. The goal in all the settings
is to minimize the sample complexity. The time complexity or other complexity measures are usually
not considered in property testing literature.

The problem of equivalence testing of distributions was first considered by [4] and they (along with
[37]) showed that the sample complexity was ©(N 2/ 3), where N is the size of the support of the
distributions. Note that, in the setting of samplers, IV is exponential in the input size and hence the
number is prohibitively large. The tolerant version of the problem was proved to have even higher
sample complexity of O(N) ([37, 36]). This was a significant bottleneck is practicality of these
property testing algorithms and the tight lower bounds implied that no improvement was possible
for algorithms that has only blackbox access to the distributions. Even the much simpler problem of
testing if a distribution is uniform requires Q(\/N ) samples.

In [11, 8] a new model for sampling was introduced called the conditional sampling. This model
allowed access to the distributions that the standard sampling method (or the blackbox access to
the distributions) could not give. It allowed a kind of grey-box access to the distributions. It was
shown that in this model only O(1/£?) conditional samples were needed to test if a distribution is
uniform or e-far from uniform. In fact similar conditional sample complexity is sufficient for the
non-tolerant version of the equivalence testing of distributions. For the tolerant version of equivalence
testing of distributions it was shown that polynomial in log(N') number of conditional samples suffice.
Although this brings down the sample complexity drastically but still it was quite high for practical
implementations. On top of that a major obstacle was whether the conditional samples were at all
practical and were they implementable.

In [10] they successfully used the idea from the conditional sampling testing to test if samplers
are uniform. They crucially used a special kind of conditional sampling. In [8] a concept of pair-
conditioning (they called PCOND) was introduced to define a restricted version of the conditional
sampling model. A normal conditional sample is obtained by specifying a subset S of the domain
of the distribution D and then drawing a random sample from the conditional distribution D|g. A
PCOND-sample is a normal conditional sample where the subset .S is of size 2. In [10] it was
shown how this kind of restricted samples can be successfully implemented using a clever use of
chain-formulas.

When it come to the more general problems of non-tolerant version of equivalence testing of
distributions it can be shown that the sample complexity in the PCOND-model is at least polynomial
in log N. The tolerant version has even higher PCOND-sample complexity. Since our primary
objective was to have a tester that can be practical and implementable we had to circumvent the
problem of high sample complexity and also of implementational issues of conditional sampling. In
our tester Barbarik2 we addressed these problems by using another trick from [10], that of, using two
different notions of distance - ¢, for closeness and ¢; for farness. In Barbarik2 we re-designed the
sampler and give a proof of correctness in this paradigm using very different techniques as compare
to that used in [10].
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It is worth noting here that recently conditional sampling and its various variants has been used
to design efficient testing and learning algorithms for various other properties of distributions
([1, 28, 5,9, 17]). Many of these have the potential to be used more efficient and sophisticated
testing of samplers and related questions. But the major question is the practicality of the models and
the implementability of the algorithms.

B Proof of Correctness of Barbarik2

In this section, we present the theoretical analysis of Barbarik2, and the proof of Theorem 1. The
proof clearly follows from the the following three lemmas.

Lemma 2. If a sampler G is e-close * to the ideal sampler A then Barbarik2 returns ACCEPT with
probability at least (1 — 0).

Lemma 3. If G is subquery consistent w.r.t Barbarik2Kernel and if the distribution Dg ) is n-far
Sfrom the ideal sampler then Barbarik2 returns REJECT with probability at least (1 — §).

tilt(wt,p)?
n(n—6¢)*
© and weight function wt, where the tilde hides a poly logarithmic factor of 1/6,1/n and 1/(n — 6¢).

Lemma 4. Given ¢, 1 and 6, Barbarik2 needs at most 0 ( ) samples for any input formula

We will present the proofs of Lemma 2, Lemma 3 and Lemma 4 in Section B.1, Section B.2 and
Section B.3 respectively.

In the rest of this section we will use the following notations:

e We use 1(E) to represent the indicator variable for the event E.

e We use R; to denote the event that Barbarik2 returns REJECT in iteration :.

For the proof of correctness of our algorithm, we need some standard concentration inequalities. The
following versions of the Chernoff Bound will be used.

Lemma 5. LetY1,Ys,...,Y, bei.i.d O-1 random variables.
1. IfE[Y;] > 0 > 0, then for any t < 0,

Y. _ 2
Pr Z #St <exp<—(02;)n)

j€ln]
2. IfE[Y;] < 0, then for any t > 0,
Y; (t—6)n
P o>t xp | -t
D IR ( J
J€[n]
We are now ready to present the proofs of Lemma 2, Lemma 3 and Lemma 4.

B.1 Proof of Lemma 2

Lemma 2. If a sampler G is e-close * to the ideal sampler A then Barbarik2 returns ACCEPT with
probability at least (1 — §).

For the proof of Lemma 2 we will firstly show (in Lemma 6) that in each iteration of the loop, the
probability that Barbarik2 returns REJECT is less than 6 /¢ and then the proof of Lemma 2 follows
by the application of the Chernoff Bound. Recall that R; denotes the event that Barbarik2 returns
REJECT in iteration ¢.

1

?

3

3for any £ <
“for any € <

and ) > 6¢
and n > 6¢
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Lemma 6. If sampler G is e-close to an ideal sampler A then the probability that Barbarik2 returns
REJECT in any particular iteration of the loop, is atmost 0 /t. Then

_ _ 5
Pr|Ri| N R ><1—t>

j€li—1]

Proof. (of Lemma 6) Barbarik2 returns REJECT in the ith iteration if the Bias (in the ith iteration)
is more than 7', where T' = # with

(1+¢e)palp,S,o1)
(1+e)palp, S,o1) + (1 —€)palep, S, 02)

And since, by definition, all the elements in I';, I's and I's are obtained by drawing independent
samples from Dg ), D 4(,) and Dg ) respectively so

Pr|R;| /\ Rj|=Pr[Bias <T inthe ith iteration]
j€li—1]
=1—Pr[ Bias > T in the ith iteration]

1(Ts[j]ys = 01)
=1-P —r
T Z N >T
JE[N]
Note that the random variables 1(I'3[j];s = o01) are an i.i.d 0-1 random variable. And since the
sampler G is assumed to be £-close to the ideal sampler so we have

(1 =2)pa(@,Tslj]) < pg(#,Tsli]) < (1+&)pa(@, Isli]).

Thus we have,

E[1(T3[j]ys = 01)] = pg (@, S,01) < (1 +€)pa(p,S,01)

pAa(p,S,01)

PA(9:5,01) Pl S03) W€ have

Now, since p4(p, S, 01) =

(1+e)palp, S,01)

E[L(Ts[j].s = 01)] = pg(&, 9, 01) < 1
[1(T's[j]ys = 01)] = pg (&, S, 01) pa(e, S, 01) +palp, S, 02) €]
Similarly, we have that
’ b 1 _ 757
E[1(Ts[j]ys = 02)] = pg(p, S, 02) > ( e)palp, S, 02) )

pa(e, S,01) +pale, S, 02)

Now we consider two cases depending on whether p 4 (i, S, 01) is greater or lesser than p 4 (¢, S, 02).
If pa(p, S,01) < pa(ep,S,o2) then from Equation 1 we have

E[1(T3[j]ys = 01)] = pa(p, S, 01)
(1+¢)palep,S,o1)
~ palp, S,01) +palp, S, 02)
< (1+¢e)palp, S,01)
~ (L+e)palp, S,01) + (1 —€)palep, S, 02)

=1L 3)

Butif p4(p,S,01) > palp, S, o) then from Equation 1 we have

E[1(Ts[j]ys = 02)] = pa(®, S, 02)
(1 _5>pA(4P7S70'2)
T paly, S,01) +palp, S, 02)
- (1 —)palp, S, 02)
~ (L+e)palp, S,o1) + (1 —€)palp, S, 02)
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And in that case since p4(p,S,01) + pa(p, S,02) = 1 we have

E[ﬂ(rs[ﬂis =01)] = pa(p,S,01)
=1 _p.A(@vSv 02)

o (1 —€)pA(<p,S, 02)

=1 ((1+5)p¢4(§075701)+(1 _5)]9_,4(90,5,02))
(L+e)palp, S, o1) B

=TT apale. So0) + (1 —pal@ So) - @

Thus in either case, from Equation (3) and Equation (4) we have E[1(T's[j];s = 01)] < L. Now
applying the Chernoff bound from Lemma 5 we have

Pr[Bias > T] =Pr Z W>T

JEIN]
B (T — L)®2N B (H - L)*N
TP\ 2L P 8L
T2
< exp <(H8£II/)N> Because [H > L] (5)
0

where the inequality in line (5) follows because H > L when e < 1/3 and 1 > 6¢° and last inequality
follows because N = n.H/(H — L)? where n = 8log(t/6). O

Proof. (of Lemma 2) Let R; denote the event that Barbarik2 returns REJECT in iteration i and R
denote the event that Barbarik2 returns ACCEPT. Thus R = N; R;.

In the i*" iteration if the bias is less than the threshold, Barbarik2 fails to REJECT. Thus from
Lemma 6 if the sampler G is e-close to the ideal sampler .4 then

If Barbarik2 has not returned REJECT in any of the iteration then after the last iteration Barbarik2
returns ACCEPT. The probability of Barbarik2 returning ACCEPT (event R) is

t
Pr(R] > [[Pr|Ril A R, ><1—i> >1-6
]

i€t] jeli—1

B.2 Proof of Lemma 3

Lemma 3. If G is subquery consistent w.r.t Barbarik2Kernel and if the distribution Dg .,y is n-far
from the ideal sampler then Barbarik2 returns REJECT with probability at least (1 — §).

Proof. To prove the Lemma, we will start by splitting the set I, into disjoint subsets depending on
the distribution Dg ).

Definition 10. We define the following sets for use in the soundness proof:

o D= {.13 € RSD : pg(@ax) < pA(<)07"L‘)}
*H > Lif hi > lothatis (6 +n)/4 > (2¢)/(1 —¢)
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o U=R,\D
o Up={z€Ry: palp,z) <pglp,x) < (14 ) pa(p, )}

e Uy ={z€R,: (1+25) pa(p,z) < pgle,z)}

Recall, R; is the event that Barbarik2 returns REJECT in the ith iteration of the for loop. Then
the following lemmas helps us to lower bound the probability of 'y [i] € U; A T'3[i] € D and the
probability of R; under the condition that 'y [i] € Uy A T'2[i] € D.

Lemma 7. [If the sampler G is n-far from the ideal sampler then

Pr|Ri|( /\ Rj)A (T[] € Uy AT2li] € D)| >
jeli-1]

O‘l\»lk

Lemma 8. If the sampler G is n-far from the ideal sampler on input ¢ then

n(n — 6c)

Pr[Fl[]EUl/\FQHED]Z 3

And now using Lemmas 8 and 7 we can complete the proof of soundness. The probability that
Barbarik2 returns REJECT in the ith iteration of the for loop is

Pr /\ R
L Jeli—1]
— Py /\ Rj) i] € Uy ATsfi] € D)| - Pr[Ty[i] € Uy AT, € D]
jEi—1]
> (g) @ [From Lemma 8 and Lemma 7] (7

The probability of Barbarik2 returning REJECT in any iteration (event R) is given by

Pr[y; i—l—HPr R; | /\ E

i€[t] jeli—1]
>1-— H 1-— M [Using Equation (7)]
= 10 g Eq

1€[t]

S (1 3 n(nl—oﬁﬁ))t

Substitutingt, >1-—9
O

Now to complete the proof of Lemma 3 we have to prove the Lemma 7 and Lemma 8. They are
presented next.

Lemma 7. If the sampler G is n-far from the ideal sampler then

Pr|RI( N\ B Al €Uy ATofil € D) >
jeli—1]

U‘Mlk
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Proof. (of Lemma 7) Let us assume I'1 [i] € Uy and I's[i] € D. That is, we have pg(p, S, T'2[i]) <
pa(e. S, Tali]) and pg (¢, S, T1[i]) > (1 + 2£5) p.a(p, S, T1[i]). It follows that

P9, S.Tli) 1) pale, STal) (
Since Vx > 0,a/b > = a/(a+b) > z/(z + 1), we have from Equation 8
pg (¢, S, T'1[i])
6= + 77) palp, S, T1[i)) ( ( 6 + 77) paly, S, T1[i)) )
> 1+ . —= |14+ (1+ . -
( 4 pA(‘)avSv FQ[Z]) 4 p.A(QDNSv FQ[Z])
Thus we have
E[1(T3[ilys = o1)] = pg(, 5, T1[i])
pg(@a Sa]-—‘l[ZD . .
= - - by the subquery consistent sampler assumption
pg(SD7S7F2[Z])+pg(g0,S,F1[Z]) [ Y d Y P P ]
65+77> p.A(SDa Sarl[z]) < < 6€+7]> pA(QO,S,Fl[Z])>_1
>(1+ . <14+ (14 . -
- < 4 pal(p, S, Ta[i]) 4 pale, S, Tali])
=H [By definition of H| )

Barbarik2 returns REJECT in the ith iteration if the Bias (in the th iteration) is more than 7', where
T = L48 with

(1 + 63#)17./4((7075701)
(1 + @%)p/\(¢7 S7 01) +p.A(50a Sa UQ)

And since, by definition, all the elements in I';, I's and I's are obtained by drawing independent
samples from Dg ), D 4(,) and Dg ) respectively so

PriRi|( N\ R;)A\Tili] €Uy ATsfi] € D)

j€E€li—1]

=Pr[ Bias > T in the ith iteration | (I'1[i] € U; AT9[i] € D)]
1(Ts|jlys =0 . .

=Pr _GZU:V] % > T | (T1[i] € Uy ATsi] € D)

LJ

Now since 1(I's[j];s = o1) are i.i.d 0-1 random variables and since I'1[i] € Uy and I's[i] € D
implies E[1(I'3[j];s = 01)] > H (from Equation 9) by applying Chernoff bound from Lemma 5 we
have:

(H — T)2N>

by the choice of N < ;
sinced <0.5andt >3 <1/5

Lemma 8. If the sampler G is n-far from the ideal sampler on input ¢ then

Pr[[1[i] € Uy ATsli] € D] > M.

Proof. of Lemma 8) Since the sampler G is e-far from the ideal sampler on input ¢ so, the ¢; distance
between Dg () and D4(¢p) is at least 7). By the definition of sets U and D we have,

> (po(p, ) —palp.d)) = D (pale,@) = polpa)) > 5 (10)

zeU zeD
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Now by definition of Uy, we have

> (o, 2) — pale, )

xz€Uy €Uy

AsU = Uy U Uy,

7]+65

Y

> (pg(p,x) — pale,z))

€Uy

=Y (pgle,2) —pale, ) = D> (pe(p, @) — palp, @) (12)

zeU xze€Up
Substituting Equation (11) and Equation (10) in Equation (12) we get:-

n n+6e n—=06e
Z (pQ(SD79U) _p.A(QDMT)) > 5 - 4 - 4
Ui

zeUy

Therefore, Z pglp,x) >
el

Thus we have,

— 6e
Pr(lifi] € i) = Y pole,a) = 1 (13)
xeU;

From Equation (10) we know that,

Pr(lyfi € D] = > palp,x
xeD

(14)

1\9\3

Since I'1[i] € Uy and I'2[i] € D are independent events, putting together Equation (13) and Equation
(14), we see that

n(n — 6e)

Pr [].—‘1[2} elU; /\FQ[’L] S D] > 3

B.3 Proof of Lemma 4

tilt (wt,p)?
n(n—6¢)3
 and weight function wt, where the tilde hides a poly logarithmic factor of 1/5,1/n and 1/(n — 6¢).

Lemma 4. Given ¢, 1 and 9, Barbarik2 needs at most 0 ( ) samples for any input formula

Proof. From Algorithm 1, line 1, we see that the number of trials is:

In(1/9)
10
In (10—n(n—66)>

(In(z) <xz—1) t< ln(l/(S)ﬁ

In every iteration we calculate a value N according to the expression:
N — 8in ty oz~hz'.. 04~hi._ a-lo \?
6 14+ a-hi l1+a-hi 14a-lo

t 1 \* 1+a-hi )
8ln(5).<hi—lo> ~hz~7a (14 «-lo)
1 \? .
U<lo<hi<2 <8in(l) (— g 1ta?
0 hi —

t=

(1+a-2)?
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On Line (11) in Algorithm 1 we define:

t
(Definition 4)  tilt(wt, ) = max wtlon)
01,02€R, Wt(O'Q)

Thus, a < tilt(wt, ). Substituting the values of «, lo and hi, we get:

t tilt(wt, @)\
N S T b i 4
<&HLJ ( n—6e )

The maximum number of samples drawn after ¢ trials is:

2t +tN < 2tN
I 1 10-In(1/6) 10-In(1/8)  tilt(wt, @)?
(Substituting for t,N) < 8In ( . ) X X
6 n(n—6e) n(n — 6e) (n — 6¢)?
_6 (tilt(wt,g&)j)
n(n — 6e)

C Log-Linear Distributions and Inverse Transform Sampling

Log-linear models capture wide class of distributions of interest including those arising from graphical
models, conditional random fields, skip-gram models [34]. Formally, for o € {0,1}", we define

Pr[o]0] o e

Following Chavira and Darwiche [16], we describe the following equivalent representation, called
literal-weighted functions, of log-linear models.

Definition 11 (Literal-Weighted Functions). For a CNF formula ¢ and set S C Supp(p), a weight
function wt : {0, 1}151 — (0, 1) is called a literal-weighted function if there is a map W : S — (0, 1)

such that for any assignment o € R,

W(z) if z=1
Wt(U)H{l—W(w) if z=0

rEo
In this case we call wt a literal-weighted function w.r.t. W. And note that we have Pr[c] o< wt(o).

We now discuss the standard technique of inverse transform sampling for completeness. For com-
pleteness, we follow the description due to Chakrborty et al [15].

Lemma 9. For any e-close unl orm sampler V, any CNFformula @ with support S and a literal-

weighted function wt : {0, 1}1% , we can construct a  s.t.
1—¢)wt(o 1+e¢e)wt(o
VUGRWM (3,8,0) < LTEE(@)
> en, E() > en, vE()

Proof. Let S; = {x;1, - ,Zim,} be aset of m; “fresh” variables (i.e. variables that were not used
before) for each x; € S. Given any integer m; > 0 and a positive odd number k; < 2", we construct
Okymi (i1, -+ Ti m, ) using the chain formula construction in [15] such that |R¢ki,m& | = k. For
notational clarity, we simply write ¢y, ,,, when the arguments of the chain formula are clear from
context. For each variable z; € S, such that W(z}) = i, (29) = 1—W(x;), let (z; <> Pk, .m,;)
be the representative clause. Thus let 0OV = A._o(@; > g, m,). We then define the formula ¢
as follows:

P=pAyp
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We can see that model count of the formula | Ry| can be given by:

:21:2 Z 1 (15)

GER; 0€ER, (6€Ry:6,5=0)

Ry

Since the representative formula of every variable uses a fresh set of variables, we have from the
structure of ¢ that if o is a witness of ¢ then:

>, i=Jlem-wm [k (16)
(6€Ry:6 5=0) €00 i€olt
For any o € R,:
pu((ﬁa S,O’) = Z pU(‘)‘A’NSA’v&)
(&ER¢Z&¢S:G)
- ¥ &
(5’6R¢,2a’¢5:0) |R¢|
o 5:015=0 1
_ __ 2GeRsns=0) Using (15)
ZJ/GRg, Z(&€R¢:&¢s:cﬂ)
[Licoo (2™ = ki) [Ticon ki

= . Using (16)
ZO'/GRap HiEU’O (2m1 - kl) HiEU’l ki
= [licoo (2™ = ki) [Licor ki [lies2™
HiES 2mi ZU’ERw HiEU’O (2m7 - kjl) HiEU’1 kz
_ Hies w(aizi)
ZU'ERw HieS W(Uizi)
t
) - (17)
>orcr, W(0')
From the definition of e-additive closeness (Def. 5) we have:
(1 - E)pu((pv Sv U) < pV(@a S? U) < (1 + E)pu(QD, Sv U)
Substituing into 17, we get:
(1 —e)wt(o) . (1+¢e)wt(o)
VU Y N~ L/ N\ < 7S7 S
GRg; ZU,ERW Wt(o'/) - pv(go 0) ZUIER% wt(o_/)
O

Remark 1. It is worth noting that Lemma 9 implies that if V is e-close uniform sampler )V then it can
be used as a blackbox to obtain a e-close to an ideal sampler w.r.t any literal-weighted function wt. It
should also be noted that Lemma 9 does not imply that if V' is n-far from a uniform sampler, then the
new sampler (obtained using the above transformation) is also far from the ideal sampler w.r.t wt.
Therefore, to test whether py, (¢, S, o) is close to ideal sampler, one can not rely on merely testing
uniformity of V.

D Extended Tables of Results

D.1 Comparing sample complexity.

“A”(“R”) represent Barbarik2 returning ACCEPT(REJECT). “DNS” is used against those instances on
which the indicated sampler Did Not Sample. “-” indicates that Barbarik?2 timed out on that particular
instance on the indicated sampler. Note that “DNS” is different from “-” as “DNS” indicates the
failure of the underlying sampler to sample the initial set of samples, while “-” indicates the failure of
Barbarik?2 to finish within the timeout period. The timeout was set to 50,000 seconds for wSTS and
wQuicksampler, while for wUniGen it was 24 hours.
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Table 2: The Extended Table

Barbarik2

Benchmark tilt wUniGen wSTS wQuicksampler

(maxSamp) (samples) (samples) (samples)
107.sk_3_90 (2641,05) DNS & 56) (6&9)
tableBasedAddition.sk (ZeiOS) DNS (6(?09) (241;34)
55.sk_3_46 (2;05) DNS (851 1) (43R54)
111.k_2_36 (26405) DNS 23543) (5150)
17.sk_3_45 (26_}_05) DNS (16505) (46R7 7)
80.sk_2_48 (2641,05) DNS (42;4) (4?27)
27.sk 332 (ZeiOS) (1eé05) (2513{29) (6&9)
70.sk_3_40 (26l05) DNS (101}02) (1717{04)
32.sk 438 (2e41r05) (1e/:05) (18%81) (141282)
84.sk_4_77 (2641,05) DNS s 516) (43Rs4)
53.sk_4_32 (ZeiOS) (1e[:05) (351218) (6(1;)9)
$35932_3_2 (6ei05) DNS TO (1 1I7{56)
$35932_7_4 (66305) DNS TO (11556)
s832a_3 2 (6e-?-05) (lei\OS) (87%8) (5411{38)
109.sk_4_36 (3ef06) DNS (261;18) (6&)9)
77.5k_3_44 (5406) DNS @7582) @7907)
$35932_15_7 (661306) DNS TO (4;34)
s832a_7_4 (8e1+506) (1e/i05) (4593) (1313{50)
Sl.sk 4 38 (1e1f07) (78261) (4584) (4527)
29.sk_3_45 (26%,607) DNS (4534) (551;89)
81.sk_5_51 (3e2+707) DNS (281}09) (2e[i05)
5349 3 2 (3e21§07) (1e1:05) (1e/:05) (2218{54)
5298 3 2 (3e3+207) (1e/:05) (80583) (261291)

continued ...
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Barbarik2

Benchmark tilt wUniGen wSTS wQuicksampler
(maxSamp) (samples) (samples) (samples)
$820a_3_2 (5e3+707) (96/312) (87597) (ZeI:OS)
s298 157 (6;407) (1e{:05) (4215{20) (5311{07)
63.sk_3_64 (1;808) DNS (4??93) (46R77)
s820a_15_7 (2e7+908) (84/;10) (ZeEOS) (1617{14)
s1488_15_7 (43:4188) (86[1\52) (1711{68) (73%11)
s1488_3_2 (6@1343-38) (89286) (89/336) (73111)
s382 157 (6338) (92/?59) (2e1j05) (6&9)
UserServicelmpl.sk_8_32 (6(1?—88) (1 e{:OS) (16505) (43Rg3)
20.sk_1_51 Tet08) DNS (30895) (5146)
s820a_7_4 (9@1346-88) (95?66) (1e/i05) (6509)
s832a_15_7 (1;%9) (96[384) (9534) (1313{50)
s1488 7 4 (13,289) (1e1:05) (4577) (4527)
s344_15_7 (2241-39) (90?83) (941:81) (43R54)
LoginService2.sk_23_36 (252:43-%9) (lef—‘OS) (381844) (131??50)
s420_newl_15_7 (22_?_(5)9) DNS (1912224) (3::05 )
$349_15_7 (5339) (99?15) (281}00) (141282)
sd44_15_7 (822(1)9) (1e/:05) (1e1:05) (261;27)
$349_7_4 (122?0) (75?55) (451?34) € FSO)
s444_7 4 (1214110) DNS 439%) @354
s420_newl_7_4 (3593?.%0) (1eﬁ-\05) (43354) (181273)
s298_7_4 (3253?0) (83281) (86RSS) (6&9)
s420_newl_3_2 (5162.3160) DNS (lef-xOS) & 1RSO)
$382_7_4 (51638130) (92[;07) (261}91) (73%11)
continued ...
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Barbarik2

Benchmark tilt wUniGen wSTS wQuicksampler
(maxSamp) (samples) (samples) (samples)
$420_3_2 (81;5120) (lei\OS) (141;56) (48583)
s1238a_7_4 (113,516 1) (95/395) G 1R50) (73%11)
s1238a 3 2 (11e9+615 1) (1eé05) (28%48) (4527)
s444_3_2 (126(?181 ) (1e{:05) (2e§05) (95ROO)
s1238a_15_7 (22;]171) DNS (95{20) (8812{33)
s420_new_15_7 (22;117 1) (99?98) (leEOS) (43R93)
30.sk_5_76 (2%531 ) DNS (551 6) (4%7)
$344_7 4 (22:#0171 ) ( 1ei\05) ( 1411270) ¢ 61§l 8)
$344_3 2 (.°,3e3+01O 1 (1e[:05) (591;52) € {RSO)
s420_new_7_4 (365:119 1 (82?12) (961259) (49};55)
$953a_7_4 (386945;14 2) DNS (Ze[:OS) (4527)
$953a_15_7 (QSE?S) DNS (1 1534) (59I7{35)
10.sk_1_46 (%ZE?S) DNS (3511{79) (leEOS)
s420_new_3_2 (%Zﬁg) (1e{:05) (441;37) (5 FSO)
19.sk_3_48 (iﬁiﬁ) DNS (591314) (4527)
$953a_3_2 (%gf?g) DNS (5111261) (1e§05)
s641_3_2 (éii?g) DNS (141}54) (4527)
ProjectService3.sk_12_55 (321(1)2 ) DNS (9(?2()) (43%3)
71.5k_3_65 et DNS (Lo405) (4284)
$838_7_4 Gorit) DNS 4393) “284)
$838_15_7 (221%) DNS (5150) (4393)
71332 (ex20) DNS (563860 (5827
S713_7_4 S DNS (5827) (37419)
continued ...
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Barbarik2

Benchmark tilt wUniGen wSTS wQuicksampler
(maxSamp) (samples) (samples) (samples)
s641_7_4 Ger20) DNS &747) (16206)
$838.3 2 e DNS (9504) 467)
54.5k_12_97 o DNS (14012) 4627)
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D.2 Comparing the runtime performance of Barbarik2 against the baseline approach

In each of the following tables we compare the runtime of Barbarik2 against the runtime of the
baseline approach. The runtime of Barbarik2 on REJECT instances depends on which iteration the
tester terminated on. The runtime of the baseline is extrapolated from the expected number of
samples and the average sampling rate of the sampler. To do this we use the /;-testing algorithm
given in [4]. In the context of this paper, the algorithm assumes black box sample access to a
uniform sampler over the models of a Boolean formula ¢, and the sampler under test, and requires
O(#¢*/3(n — €)~8/3log(#/5)) samples, where #¢ is the model count, (&,7) are the closenes
and farness parameters, and ¢ is the confidence parameter.

D.2.1 Comparision with baseline for wSTS

Table 3: Extended table comparing the baseline tester for wSTS with Barbarik2

Benchmark Baseline Barbarik2(s) Speedup
s349_7 4 16457.21 5 3428.58
s420_newl_7_4 5.4E+6 6 8.6E+5
$298_7_4 705.13 8 94.02
sdd4 7 4 1.1E+7 8 1.3E+6
s832a_7_4 3725.35 10 372.53
s1488_7 4 184.99 12 15.16
s344_7_4 24751.45 15 1683.77
s420_3_2 2.2E+6 17 1.3E+5
s1238a_7_4 1.4E+6 20 66538.64
s832a_3 2 2149.58 22 98.60
s832a_15_7 15121.66 24 622.29
s838_15_7 2.9E+13 27 L.1IE+12
$349_15_7 16457.21 28 587.76
s838_7 4 3.7E+13 29 1.3E+12
$382_7_4 14915.27 32 469.03
$298_15_7 384.62 32 12.09
s420_newl_15_7 4.1E+6 33 1.3E+5
27.sk_3_32 79531.43 34 2346.06
s1238a_15_7 1.8E+6 37 49906.05
111.sk_2_36 2.9E+8 42 6.8E+6
S5l.sk_4 38 2.0E+6 44 45904.52
80.sk_2_48 6.0E+7 46 1.3E+6
s1488_15_7 128.69 48 2.67
$953a_15_7 1.1E+9 49 2.2E+7
s344_3_2 15750.92 51 309.45
$298_3 2 229.07 52 4.42
$838_3_2 2.7E+13 57 4.8E+11
s420_new_3_2 2.9E+6 65 44288.35
84.sk_4_77 3.4E+13 68 5.0E+11
s641_3_2 4.1E+10 70 5.9E+8
55.sk_3_46 2.0E+7 70 2.9E+5
$349_3_2 30563.39 73 416.96
107.sk_3_90 1.7E+15 86 1.9E+13
s1238a_3_2 2.2E+6 87 25824.41
s344_15_7 2475145 91 271.10
32.sk_4_38 5.8E+5 94 6228.23
10.sk_1_46 6.5E+7 112 5.8E+5
29.sk_3_45 2.2E+8 150 1.5E+6
s420_new_7_4 4.1E+6 152 27272.30
s1488_3_2 52.52 163 0.32
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Table 3: Extended table comparing the baseline tester for wSTS with Barbarik2

Benchmark Baseline Barbarik2(s) Speedup
s953a_3_2 6.4E+8 165 3.9E+6
$420_new_15_7 4.5E+6 186 24014.34
70.sk_3_40 2.9E+6 201 14544.89
s444_15_7 13470.05 202 66.82
s420_newl_3_2 2.6E+6 211 12084.36
s820a_3_2 2189.81 221 991
s444_3_2 11186.45 247 45.22
s713_3.2 8.8E+10 255 3.5E+8
109.sk_4_36 6.6E+5 269 2459.36
s820a_7_4 4240.22 277 15.33
63.sk_3_64 5.8E+11 282 2.1E+9
s641_7_4 8.2E+10 311 2.6E+8
53.sk_4 32 55060.22 313 176.08
$382_15_7 33182.79 343 96.86
s820a_15_7 4154.77 370 11.23
ProjectService3.sk_12_55 1.3E+10 458 2.9E+7
$35932_3.2 3.6E+2 TO -
$35932_7_4 3.6E+2 TO -
$35932_15_7 3.6E+2 TO -
s953a_7_4 5.7TE+8 689 8.3E+5
UserServicelmpl.sk_8_32 479.33 720 0.67
30.sk_5_76 7.0E+14 1116 6.2E+11
77.sk_3_44 5.3E+6 1687 3156.66
tableBasedAddition.sk_240_1024 3.8E+14 1832 2.1E+11
81.sk_5_51 5.0E+9 2099 2.4E+6
LoginService2.sk_23_36 12951.33 2368 5.47
20.sk_1_51 1.1E+10 2568 4.1E+6
19.sk_3_48 3.1E+8 2760 1.1E+5
17.sk_3_45 4.5E+7 3016 14948.13
71.sk_3_65 4TE+12 4365 1.1E+9
54.sk_12_97 2.7E+18 4688 5.8E+14
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D.3 wQuicksampler

Table 4: Extended table comparing the baseline tester for wQuicksampler with Barbarik2

Benchmark Baseline Barbarik2(s) Speedup
s344_3_2 24751.45 3 8534.98
s344_15_7 24751.45 4 7071.84
$349 7 4 28212.36 4 7624.96
$298_7_4 512.82 4 119.26
s420_newl_3_2 5.1E+6 4 1.2E+6
s420 _new_3 2 2.2E+6 4 5.1E+5
s420_new_15_7 3.5E+6 4 7.8E+5
$382_7_4 12429.39 5 2589.46
sd444 7 4 51980.83 5 10192.32
s820a_7_4 2283.19 5 430.79
s1488_7_4 128.07 6 20.99
s444_3_2 8700.57 6 1359.46
s838_7_4 1.3E+13 7 1.8E+12
27.sk_3_32 48942.42 7 6797.56
s1238a_3_2 1.6E+6 7 2.2E+5
$953a_7_4 6.6E+8 8 8.8E+7
s1488_3_2 65.65 8 8.31
$838_3_2 1.9E+13 8 2.4E+12
s1488_15_7 60.56 9 6.80
$349_15_ 35265.44 9 3833.20
s344_7_4 22501.32 9 2393.76
$349 3.2 14106.18 10 1424.87
55.sk_3_46 4.5E+7 10 4.3E+6
s1238a_7_4 1.1E+6 11 97431.59
$298_3_2 534.49 11 46.89
s832a_7_4 4139.28 12 344.94
111.sk_2_36 5.2E+5 12 41613.34
s838_15_7 2.6E+13 12 2.1E+12
s420_newl_7_4 2.2E+6 13 1.7E+5
s832a_15_7 13861.52 14 1011.79
UserServicelmpl.sk_8_32 326.81 14 23.68
$382_15_7 27149.56 15 1859.56
53.sk_4_32 91767.04 16 5595.55
s820a_15_7 5665.59 17 335.24
84.sk_4_77 2.1E+13 18 1.2E+12
51.sk_4 38 1.8E+6 19 91363.08
s444_15_7 14817.06 19 763.77
109.sk_4_36 6.6E+5 20 33425.00
107.sk_3_90 1.6E+15 21 7.4E+13
71.sk_3_65 1.3E+12 27 5.0E+10
s641_3_2 2.8E+10 28 1.0E+9
$298_15_7 1153.85 30 38.98
32.sk_4_38 1.2E+6 34 36689.91
s420_3_2 4.5E+6 34 1.3E+5
s420_new_7_4 3.5E+6 36 96896.05
80.sk_2_48 2.1E+8 37 5.7E+6
s832a_3_2 2149.58 45 47.66
19.sk_3_48 4.5E+8 50 9.0E+6
63.sk_3_64 2.1E+11 51 4.0E+9
17.sk_3_45 8.3E+7 55 1.5E+6
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Table 4: Extended table comparing the baseline tester for wQuicksampler with Barbarik2

Benchmark Baseline Barbarik2(s) Speedup
s713.3.2 9.4E+10 56 1.7E+9
$953a_15_7 6.7E+8 79 8.5E+6
20.sk_1_51 4.0E+9 82 4.8E+7
70.sk_3_40 4.3E+6 101 42475.10
s1238a_15_7 1.0E+6 107 9614.31
10.sk_1_46 7.1E+7 128 5.5E+5
$953a_3_2 3.4E+8 132 2.6E+6
$820a_3_2 1167.90 137 8.54
30.sk_5_76 3.0E+14 210 1.4E+12
ProjectService3.sk_12_55 6.4E+9 219 2.9E+7
LoginService2.sk_23_36 12692.30 229 55.52
s420_newl_15_7 3.2E+6 232 13726.91
77.sk_3_44 1.2E+7 409 30125.88
29.sk_3_45 1.3E+8 658 2.0E+5
54.sk_12_97 4.0E+17 690 5.8E+14
s641_7_4 6.8E+10 1117 6.1E+7
$35932_15_7 1.4E+356 1182 1.2E+353
tableBasedAddition.sk_240_1024 3.0E+13 1430 2.1E+10
$35932_7_4 1.2E+356 2227 5.5E+352
$35932 3 2 1.1E+356 2346 4.5E+352
81.sk_5_51 2.0E+9 2461 8.3E+5
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D.4 wUniGen

Table 5: Extended table comparing the baseline tester for wUniGen with Barbarik?2

Benchmark Baseline Barbarik2(s) Speedup
s1488_3_2 229.78 6648 0.03
$298_7_4 7564.11 10758 0.70
s1488_15_7 643.45 11493 0.06
$298_15_7 2948.72 12325 0.24
s349 7 4 1.8E+06 12858 136.40
$820a_15_7 48724.11 14070 3.46
s344_15_7 3.8E+05 14074 27.18
s1488_7_4 853.78 15049 0.06
s820a_7_4 42728.33 16124 2.65
s349_15_7 3.9E+05 17690 21.80
s382_7_4 9.7E+05 21785 44.45
s349 3 2 3.0E+05 22395 13.54
s832a_15_7 5.6E+05 23036 24.45
s420_new_7_4 4.0E+09 24092 1.7E+5
s344 7 4 1.7E+06 26423 64.55
51.sk_4_38 2.7E+09 26612 1.0E+5
$820a_3_2 2.3E+05 27408 8.47
$298 3 2 2061.62 30262 0.07
s344_3 2 5.0E+05 32378 15.29
s1238a_7 4 1.5E+09 33689 45408.69
s832a_7_4 76990.55 34315 224
s382_15_7 1.0E+07 39024 263.98
s1238a_3_2 7.1E+08 40406 17575.38
s420_new_15_7 4.9E+09 40725 1.2E+5
27.8k_3_32 7.4E+06 41997 176.26
$832a_3_2 74844.43 42696 1.75
UserServicelmpl.sk_8_32 21547.88 45090 0.48
32.sk_4 38 4.9E+08 45126 10872.88
s420_newl_7_4 2.8E+08 48911 5639.38
s444 3 2 1.9E+06 55017 34.61
LoginService2.sk_23_36 1.3E+06 56229 22.38
s420_3_2 2.3E+09 68048 33247.50
53.sk_4_32 2.2E+07 70590 312.87
s420_new_3_2 1.2E+10 75284 1.6E+5
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D.S Number of samples required for baseline approach

Table 6: Number of samples required for baseline tester

Benchmark Number of
samples
s344_3_2 2E+6
s344_15_7 2E+6
$349 7 4 2E+6
s298_7_4 6E+4
s420_newl_3_2 3E+8
s420_new_3_2 3E+8
s420 new_15_7 3E+8
$382_7_4 1E+6
s444_7_4 4E+6
s820a_7_4 3E+5
s1488_7_4 1E+4
s444_3 2 1E+6
s838_7_4 2E+15
27.sk_3_32 6E+6
s1238a_3_2 1E+8
s953a_7_4 4E+10
s1488_3_2 TE+3
s838_3_2 2E+15
s1488_15_7 8E+3
$349_15_ 2E+6
s344_7_4 2E+6
s349_3.2 2E+6
55.sk_3_46 2E+9
s1238a_7_4 1E+8
$298 3.2 4E+4
s832a_7 4 4E+5
111.sk_2_36 3E+7
s838_15_7 2E+15
s420_newl_7_ 4 3E+8
s832a_15_7 1E+6
UserServicelmpl.sk_8_32 2E+4
s382_15_7 3E+6
53.sk_4_32 6E+6
s820a_15_7 4E+5
84.sk_4_77 1E+15
51.sk_4_38 8E+7
s444_15_7 1E+6
109.sk_4_36 4E+7
107.sk_3_90 TE+16
T1.sk_3_65 S5E+13
s641_3_2 3E+12
$298_15_ 6E+4
32.sk_4_ 38 TE+7
s420_3_2 3E+8
s420_new_7_4 3E+8
80.sk_2_48 6E+9
s832a_3_2 2E+5
19.sk_3_48 1E+10
63.sk_3_64 5E+12
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Table 6: Number of samples required for baseline tester

Benchmark Number of
samples
17.sk_3_45 2E+9
s713_3.2 6E+12
s953a_15_7 5E+10
20.sk_1_51 TE+10
70.sk_3_40 2E+8
s1238a_15_7 1E+8
10.sk_1_46 6E+9
s953a_3 2 4E+10
$820a_3_2 1E+5
30.sk_5_76 2E+15
ProjectService3.sk_12_55 2E+11
LoginService2.sk_23_36 1E+5
s420_newl_15_7 3E+8
77.sk_3_44 3E+8
29.sk_3_45 3E+9
54.sk_12_97 4E+18
s641_7_4 SE+12
$35932_15_7 1E+357
tableBasedAddition.sk_240 1024 1E+15
$35932_7_4 1E+357
$35932_3.2 1E+357
81.sk_5_51 4E+10
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