
We thank the reviewers for their insightful comments. We first respond to the common concerns across the four reviews1

before addressing specific reviewer feedback.2

Strength of results, hyperparameters, additional experiments: All reviewers observe we achieve only modest gains3

compared to the log-uniform spacing in terms of final log likelihood. We emphasize that while this is true, the main4

benefit of our approach is in avoiding the costly grid required by the log/linear-uniform spacing schedule. To respond to5

R4’s request, as measured in wall-clock time, our GP-bandit schedule takes approx. 12 hrs to train a VAE on MNIST6

compared to the approx 160hrs training time for the grid searched log schedule (8 hrs/run x 20 runs). We will update7

the main text to make these considerations clear, and add an additional appendix section benchmarking our schedule8

against baselines in terms of total wall-clock time.9
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Figure 1: VAE MNIST, 6k epochs, 5 seeds

To respond to R4, all results were obtained from10

a single seed. We will update the figures in the11

final draft to average results across five seeds, and12

have included preliminary results on MNIST in13

Figure 1. As per R1’s request, we will also include14

the training loss in the final version, which closely15

mirrors the test loss curves.16

R2 raises a concern about the number of hyper-17

parameters in our method. The GP-bandit intro-18

duces three additional hyperparameters which can19

be learned directly from data by maximizing the20

GP marginal likelihood, and therefore require no21

additional hand-tuning by practitioners as discussed in Appendix B. The exploration-exploitation trade off parameter κt22

is set using Theorem 1.23

Figure 2 clarity: We agree with R2 and R4 that a more thorough description of both Fig. 2 and Fig. 3 are needed.24

In Fig. 2, we investigate the bandit exploration / exploitation behavior at early, middle, and late stages of training by25

showing where the bandit positions a single β1. Color encodes timestep, so clusters of similar colors indicate the bandit26

is "exploiting" a particular region, particularly in regions where the blue line, i.e. GP mean, is high. This indicates27

that our reward model expects the TVO objective will improve with this choice of β1. We also show the variance of28

our GP surrogate model across training phases and see both the mean and variance of predicted reward decreases as29

optimization converges.30

The key takeaway from this figure is that we see the bandit exploits early on in training, and that the surrogate reward31

function correctly learns that the reward for choosing the correct location decreases as optimization proceeds and the32

curve flattens.33

Figure 3 clarity: R2 correctly observes that it is difficult to know the shape of the integrand. We agree, and this is in34

fact one of our primary motivations for using a bandits schedule, as bandit optimization is uniquely suited to scenarios35

where one has little knowledge of the form of the reward function. We show possible example shapes for the integrand36

in the subpanel of Fig. 3, reflecting bandit choices of β in the middle (orange) and late (green) stages of training. These37

are based on the intuition that β choices should be concentrated in regions where the integrand is changing quickly,38

allowing the left Riemann approximation to capture the most area with a fixed budget of d partitions. We also assume39

that a perfectly flat curve will result in uniform β choices. We will update the caption of Fig. 3 to make this clear.40

(R4) Comparison with Bogunovic et. al [5]: We agree that the positioning of our contribution with respect to [5]41

requires further clarification, and regret this oversight. Theorem 1 improves the bound on the maximum mutual42

information gain γ̃ from [5] by using Cauchy Schwarz and Jensen’s inequality rather than an analysis of the optimality43

conditions (cf. eq. 61 in [5]). We have updated the main text in 4.3 to make it clear that Theorem 1 follows by using44

our tighter bound on γ̃ in Theorem 4 of [5], and simplified the derivation in the appendix to refer to [5] directly where45

possible.46

(R4) Discussion on spatial covariance: R4 asks for clarification on covariance functions which can be used alongside47

our projection operation. Since the projection preserves the input space, any PSD covariance function will maintain this48

property after projection. We recommend choosing a kernel for which bounds on the maximum information gain are49

known, such as exponentiated quadratic, Mattern, or linear from Srinivas et al 2010 [35].50

Typos: R1, R3, R4 helpfully point out a number of typos and suggestions to improve the writing which we will51

incorporate into the final draft.52

(R4) Ref [43] in the supplement: Martin J Wainwright. "Basic concentration bounds." In High-dimensional Statistics:53

A non-asymptotic viewpoint. Chapter 2, pages 21–57. 201954


