
Woodbury Transformations for
Deep Generative Flows

You Lu
Department of Computer Science

Virginia Tech
Blacksburg, VA
you.lu@vt.edu

Bert Huang
Department of Computer Science

Tufts University
Medford, MA

bert@cs.tufts.edu

Abstract

Normalizing flows are deep generative models that allow efficient likelihood cal-
culation and sampling. The core requirement for this advantage is that they are
constructed using functions that can be efficiently inverted and for which the deter-
minant of the function’s Jacobian can be efficiently computed. Researchers have
introduced various such flow operations, but few of these allow rich interactions
among variables without incurring significant computational costs. In this paper,
we introduce Woodbury transformations, which achieve efficient invertibility via
the Woodbury matrix identity and efficient determinant calculation via Sylvester’s
determinant identity. In contrast with other operations used in state-of-the-art
normalizing flows, Woodbury transformations enable (1) high-dimensional in-
teractions, (2) efficient sampling, and (3) efficient likelihood evaluation. Other
similar operations, such as 1x1 convolutions, emerging convolutions, or periodic
convolutions allow at most two of these three advantages. In our experiments on
multiple image datasets, we find that Woodbury transformations allow learning of
higher-likelihood models than other flow architectures while still enjoying their
efficiency advantages.

1 Introduction

Deep generative models are powerful tools for modeling complex distributions and have been applied
to many tasks such as synthetic data generation [26, 37], domain adaption [38], and structured
prediction [32]. Examples of these models include autoregressive models [13, 27], variational
autoencoders [20, 30], generative adversarial networks [11], and normalizing flows [6, 7, 21, 29].
Normalizing flows are special because of two advantages: They allow efficient and exact computation
of log-likelihood and sampling.

Flow-based models are composed of a series of invertible functions, which are specifically designed
so that their inverse and determinant of the Jacobian are easy to compute. However, to preserve this
computational efficiency, these functions usually cannot sufficiently encode dependencies among
dimensions of a variable. For example, affine coupling layers [6] split a variable to two parts
and require the second part to only depend on the first. But they ignore the dependencies among
dimensions in the second part.

To address this problem, Dinh et al. [6, 7] introduced a fixed permutation operation that reverses the
ordering of the channels of pixel variables. Kingma and Dhariwal [21] introduced a 1×1 convolution,
which are a generalized permutation layer, that uses a weight matrix to model the interactions among
dimensions along the channel axis. Their experiments demonstrate the importance of capturing
dependencies among dimensions. Relatedly, Hoogeboom et al. [15] proposed emerging convolution
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operations, and Hoogeboom et al. [15] and Finz et al. [9] proposed periodic convolution. These
two convolution layers have d × d kernels that can model dependencies along the spatial axes in
addition to the channel axis. However, the increase in representational power comes at a cost: These
convolution operations do not scale well to high-dimensional variables. The emerging convolution is
a combination of two autoregressive convolutions [10, 22], whose inverse is not parallelizable. To
compute the inverse or determinant of the Jacobian, the periodic convolution requires transforming
the input and the convolution kernel to Fourier space. This transformation is computationally costly.

In this paper, we develop Woodbury transformations for generative flows. Our method is also a
generalized permutation layer and uses spatial and channel transformations to model dependencies
among dimensions along spatial and channel axes. We use the Woodbury matrix identity [36] and
Sylvester’s determinant identity [34] to compute the inverse and Jacobian determinant, respectively,
so that both the training and sampling time complexities are linear to the input variable’s size. We also
develop a memory-efficient variant of the Woodbury transformation, which has the same advantage as
the full transformation but uses significantly reduced memory when the variable is high-dimensional.
In our experiments, we found that Woodbury transformations enable model quality comparable to
many state-of-the-art flow architectures while maintaining significant efficiency advantages.

2 Deep Generative Flows

In this section, we briefly introduce the deep generative flows. More background knowledge can be
found in the appendix.

A normalizing flow [29] is composed of a series of invertible functions f = f1 ◦ f2 ◦ ... ◦ fK , which
transform x to a latent code z drawn from a simple distribution. Therefore, with the change of
variables formula, we can rewrite the log-likelihood log pθ(x) to be

log pθ(x) = log pZ(z) +

K∑
i=1

log

∣∣∣∣det( ∂fi
∂ri−1

)∣∣∣∣ , (1)

where ri = fi(ri−1), r0 = x, and rK = z.

Flow-based generative models [6, 7, 21] are developed on the theory of normalizing flows. Each
transformation function used in the models is a specifically designed neural network that has a
tractable Jacobian determinant and inverse. We can sample from a trained flow f by computing
z ∼ pZ(z), x = f−1(z).

There have been many operations, i.e., layers, proposed in recent years for generative flows. In this
section, we discuss some commonly used ones, and more related works will be discussed in Section 4.

Actnorm layers [21] perform per-channel affine transformations of the activations using scale and
bias parameters to improve training stability and performance. The actnorm is formally expressed
as y:,i,j = s � x:,i,j + b, where both the input x and the output y are c × h × w tensors, c is the
channel dimension, and h× w are spatial dimensions. The parameters s and b are c× 1 vectors.

Affine coupling layers [6, 7] split the input x into two parts, xa,xb. And then fix xa and force xb to
only relate to xa, so that the Jacobian is a triangular matrix. Formally, we compute

xa,xb = split(x), ya = xa,

yb = s(xa)� xb + b(xa), y = concat(ya,yb),
where s and b are two neural networks with xa as input. The split and the concat split and concatenate
the variables along the channel axis. Usually, s is restricted to be positive. An additive coupling layer
is a special case when s = 1.

Actnorm layers only rescale the dimensions of x, and affine coupling layers only relate xb to xa but
omit dependencies among different dimensions of xb. Thus, we need other layers to capture local
dependencies among dimensions.

Invertible convolutional layers [9, 15, 21] are generalized permutation layers that can capture
correlations among dimensions. The 1×1 convolution [21] is y:,i,j = Mx:,i,j , where M is a c× c
matrix. The Jacobian of a 1×1 convolution is a block diagonal matrix, so that its log-determinant is
hw log |det(M)|. Note that the 1×1 convolution only operates along the channel axis and ignores
the dependencies along the spatial axes.
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Figure 1: Overview of architecture of generative
flows. We can design the flow step by selecting
a suitable convolutional layer and a coupling
layer based on the task. Glow [21] uses 1×1
convolutions and affine coupling.

Emerging convolutions [15] combine two autore-
gressive convolutions [10, 22]. Each autoregressive
convolution masks out some weights to force an
autoregressive structure, so that the Jacobian is a
triangular matrix and computing its determinant is
efficient. One problem of emerging convolution is
the computation of inverse is non-parallelizable, so
that is inefficent for high-dimensional variables.

Periodic convolutions [9, 15] transform the input
and kernel to the Fourier domain using discrete
Fourier transformations, so the convolution func-
tion is an element-wise matrix product with a block-
diagonal Jacobian. The computational cost of pe-
riodic convolutions is O(chw log(hw) + c3hw).
Thus, when the input is high-dimensional, both
training and sampling are expensive.

Multi-scale architectures [7] compose flow layers
to generate rich models, using split layers to factor
out variables and squeeze layers to shuffle dimensions, resulting in an architecture with K flow steps
and L levels. See Fig. 1.

3 Woodbury Transformations

In this section, we introduce Woodbury transformations as an efficient means to model high-
dimensional correlations.

3.1 Channel and Spatial Transformations

Suppose we reshape the input x to be a c× n matrix, where n = hw. Then the 1×1 convolution can
be reinterpreted as a matrix transformation

y = W(c)x, (2)

where y is also a c × n matrix, and W(c) is a c × c matrix. For consistency, we will call this a
channel transformation. For each column x:,i, the correlations among channels are modeled by W(c).
However, the correlation between any two rows x:,i and x:,j is not captured. Inspired by Eq. 2, we
use a spatial transformation to model interactions among dimensions along the spatial axis

y = xW(s), (3)

where W(s) is an n× n matrix that models the correlations of each row xi,:. Combining Equation 2
and Equation 3, we have

xc = W(c)x, y = xcW
(s). (4)

For each dimension of output yi,j , we have yi,j =
∑c
v=1

(∑n
u=1 W

(c)
i,u · xu,v

)
·W(s)

v,j .

Therefore, the spatial and channel transformations together can model the correlation between any
pair of dimensions. However, in this preliminary form, directly using Eq. 4 is inefficient for large c or
n. First, we would have to store two large matrices Wc and Ws, so the space cost is O(c2 + n2).
Second, the computational cost of Eq. 4 is O(c2n + n2c)—quadratic in the input size. Third, the
computational cost of the Jacobian determinant is O(c3 + n3), which is far too expensive in practice.

3.2 Woodbury Transformations

We solve the three scalability problems by using a low-rank factorization. Specifically, we define

W(c) = I(c) +U(c)V(c), W(s) = I(s) +U(s)V(s),
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where I(c) and I(s) are c- and n-dimensional identity matrices, respectively. The matrices Uc, Vc,
Us, and Vs are of size c× dc, dc × c, n× ds, and dc × n, respectively, where dc and ds are constant
latent dimensions of these four matrices. Therefore, we can rewrite Equation 4 as

xc = (I(c) +U(c)V(c))x, y = xc(I
(s) +U(s)V(s)). (5)

We call Eq. 5 the Woodbury transformation because the Woodbury matrix identity [36] and Sylvester’s
determinant identity [34] allow efficient computation of its inverse and Jacobian determinant.

Woodbury matrix identity.1 Let I(n) and I(k) be n- and k-dimensional identity matrices, respec-
tively. Let U and V be n × k and k × n matrices, respectively. If I(k) + VU is invertible, then
(I(n) +UV)−1 = I(n) −U(Ik +VU)−1V.

Sylvester’s determinant identity. Let I(n) and I(k) be n- and k-dimensional identity matrices,
respectively. Let U and V be n × k and k × n matrices, respectively. Then, det(I(n) +UV) =
det(I(k) +VU).

Based on these two identities, we can efficiently compute the inverse and Jacobian determinant

xc = y(I(s) −U(s)(I(ds) +V(s)U(s))−1V(s)),

x = (I(c) −U(c)(I(dc) +V(c)U(c))−1V(c))xc, (6)

and

log

∣∣∣∣det(∂y∂x
)∣∣∣∣ = n log

∣∣det(I(dc) +V(c)U(c))
∣∣+ c log

∣∣det(I(ds) +V(s)U(s))
∣∣ , (7)

where I(dc) and I(ds) are dc- and ds-dimensional identity matrices, respectively.

A Woodbury transformation is also a generalized permutation layer. We can directly replace an invert-
ible convolution in Figure 1a with a Woodbury transformation. In contrast with 1×1 convolutions,
Woodbury transformations are able to model correlations along both channel and spatial axes. We
illustrate this in Figure 2. To implement Woodbury transformations, we need to store four weight
matrices, i.e., U(c),U(s),V(c), and V(s). To simplify our analysis, let dc ≤ d and ds ≤ d, where
d is a constant. This setting is also consistent with our experiments. The size of U(c) and V(c) is
O(dc), and the size of U(c) and V(c) is O(dn). The space complexity is O(d(c+ n)).

For training and likelihood computation, the main computational bottleneck is computing y and
the Jacobian determinant. To compute y with Equation 4, we need to first compute the channel
transformation and then compute the spatial transformation. The computational complexity isO(dcn).
To compute the determinant with Equation 7, we need to first compute the matrix product of V and
U, and then compute the determinant. The computational complexity is O(d2(c+ n) + d3).

For sampling, we need to compute the inverse transformations, i.e., Equation 6. With the Woodbury
identity, we actually only need to compute the inverses of I(ds) +V(s)U(s) and I(dc) +V(c)U(c),
which are computed with time complexity O(d3). To implement the inverse transformations, we can
compute the matrix chain multiplication, so we can avoid computing the product of two large matrices
twice, yielding cost O(c2 + n2). For example, for the inverse spatial transformation, we can compute
it as xc = y − ((yU(s))(I(ds) +V(s)U(s))−1)V(s), so that its complexity is O(d3 + cd2 + cnd).
The total computational complexity of Equation 6 is O(dcn+ d2(n+ c) + d3).

In practice, we found that for a high-dimensional input, a relatively small d is enough to obtain
good performance, e.g., the input is 256× 256× 3 images, and d = 16. In this situation, nc ≥ d3.
Therefore, we can omit d and approximately see the spatial complexity as O(c+ n), and the forward
or inverse transformation as O(nc). They are all linear to the input size.

We do not restrict U and V to force W to be invertible. Based on analysis by Hoogeboom et al.
[15], the training maximizes the log-likelihood, which implicitly pushes det(I+VU) away from
0. Therefore, it is not necessary to explicitly force invertibility. In our experiments, the Woodbury
transformations are as robust as other invertible convolution layers.

1A more general version replaces I(n) and I(k) with arbitrary invertible n× n and k × k matrices. But this
simplified version is sufficient for our tasks.
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(a) 1×1 convolution (b) Woodbury (c) ME-Woodbury

Figure 2: Visualization of three transformations. The 1×1 convolution only operates along the channel
axis. The Woodbury transformation operates along both the channel and spatial axes, modeling the
dependencies of one channel directly via one transformation. The ME-Woodbury transformation
operates along three axes. It uses two transformations to model spatial dependencies.

3.3 Memory-Efficient Variant

In Eq. 4, one potential challenge arises from the sizes of U(s) and V((s)), which are linear in n. The
challenge is that n may be large in some practical problems, e.g., high-resolution images. We develop
a memory-efficient variant of Woodbury transformations, i.e., ME-Woodbury, to solve this problem.
The ME version can effectively reduce space complexity from O(d(c+ hw)) to O(d(c+ h+ w)).

The difference between ME-Woodbury transformations and Woodbury transformations is that the ME
form cannot directly model spatial correlations. As shown in Figure 2c, it uses two transformations,
for height and width, together to model the spatial correlations. Therefore, for a specific channel
k, when two dimensions xk,i,j and xk,u,v are in two different heights, and widths, their interaction
will be modeled indirectly. In our experiments, we found that this limitation only slightly impacts
ME-Woodbury’s performance. More details on ME-Woodbury transformations are in the appendix.

4 Related Work

Rezende and Mohamed [29] developed planar flows for variational inference zt+1 = zt+uδ(wT zt+
b), where z, w, and u are d-dimensional vectors, δ() is an activation function, and b is a scalar.

Berg et al. [3] generalized these to Sylvester flows zt+1 = zt + QRδ(R̃QT zt + r), where R

and R̃ are upper triangular matrices, Q is composed of a set of orthonormal vectors, and r is a
d-dimensional vector. The resulting Jacobian determinant can be efficiently computed via Sylvester’s
identity, just as our methods do. However, Woodbury transformations have key differences from
Sylvester flows. First, Berg et al. only analyze their models on vectors. The inputs to our layers
are matrices, so our method operates on high-dimensional input, e.g., images. Second, though
Sylvester flows are inverse functions, computing their inverse is difficult. One possible way is to
apply iterative methods [2, 5, 33] to compute the inverse. But this research direction is unexplored.
Our layers can be inverted efficiently with the Woodbury identity. Third, our layers do not restrict the
transformation matrices to be triangular or orthogonal. In fact, Woodbury transformations can be
seen as another generalized variant of planar flows on matrices, with δ(x) = x, and whose inverse is
tractable. Roughly speaking, Woodbury transformations can also be viewed as applying the planar
flows sequentially to each row of the input matrix. After this work was completed and submitted, we
learned that the TensorFlow software [1] also uses the Woodbury identity in their affine bijector.

Normalizing flows have also been used for variational inference, density estimation, and generative
modeling. Autoregressive flows [17, 22, 24, 28] restrict each variable to depend on those that
precede it in a sequence, forcing a triangular Jacobian. Non-linear coupling layers replace the affine
transformation function. Specifically, spline flows [8, 25] use spline interpolation, and Flow++ [14]
uses a mixture cumulative distribution function to define these functions. Flow++ also uses variational
dequantization to prevent model collapse. Many works [9, 15, 18, 21] develop invertible convolutional
flows to model interactions among dimensions. MintNet [33] is a flexible architecture composed of
multiple masked invertible layers. I-ResNet [2, 5] uses discriminative deep network architecture as
the flow. These two models require iterative methods to compute the inverse. Discrete flows [16, 35]
and latent flows [39] can be applied to discrete data such as text. Continuous-time flows [4, 12] have
been developed based on the theory of ordinary differential equations.
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5 Experiments

In this section, we compare the performance of Woodbury transformations against other modern flow
architectures, measuring running time, bit per-dimension (log2-likelihood), and sample quality.

● ● ● ● ● ●

100.5

101

101.5

102

102.5

16 32 48 64 80 96
Channels

R
un

ni
ng

 T
im

e 
(m

s)

Spatial size 64x64 Training

● ● ● ● ● ●

101

101.5

102

102.5

103

16 32 48 64 80 96
Channels

R
un

ni
ng

 T
im

e 
(m

s)

Spatial size 64x64 Sampling

● ● ● ● ● ●

100

100.5

101

101.5

102

102.5

103

4x4 8x8 16x16
32x32

64x64
128x128

Spatial Size

R
un

ni
ng

 T
im

e 
(m

s)

Channel 96 Training

● ● ● ● ● ●
101

101.5

102

102.5

103

103.5

4x4 8x8 16x16
32x32

64x64
128x128

Spatial Size

R
un

ni
ng

 T
im

e 
(m

s)

Channel 96 Sampling

● 1x1 Conv Emerging Conv ME−Woodbury Trans Periodic Conv Woodbury Trans

Figure 3: Running time comparison. Sampling with
emerging convolutions is slow, since their inverses are
not parallelizable. Periodic convolutions are costly for
larger inputs. Both 1×1 convolutions and Woodbury
transformations are efficient in training and sampling.

Running Time We follow Finz et al. [9]
and compare the per-sample running time
of Woodbury transformations to other gen-
eralized permutations: 1×1 [21], emerg-
ing [15], and periodic convolutions [9, 15].
We test the training time and sampling time.
In training, we compute (1) forward prop-
agation, i.e., y = f(x), of a given func-
tion f(), (2) the Jacobian determinant, i.e.,
det
(∣∣∣∂y∂x ∣∣∣), and (3) the gradient of parame-

ters. For sampling, we compute the inverse
of transformation x = f−1(y). For emerg-
ing and periodic convolutions, we use 3×3
kernels. For Woodbury transformations,
we fix the latent dimension d = 16. For
fair comparison, we implement all methods
in Pytorch and run them on an Nvidia Titan
V GPU. We follow Hoogeboom et al. [15]
and implement the emerging convolution
inverse in Cython, and we compute it on a 4
Ghz CPU (the GPU version is slower than
the Cython version). We first fix the spatial
size to be 64 × 64 and vary the channel
number. We then fix the channel number
to be 96 and vary the spatial size.

The results are shown in Figure 3. For training, the emerging convolution is the fastest. This is
because its Jacobian is a triangular matrix, so computing its determinant is much more efficient
than other methods. The Woodbury transformation and ME-Woodbury are slightly slower than
the 1x1 convolution, since they contain more transformations. Emerging convolutions, Woodbury
transformations, and 1x1 convolutions only slightly increase with input size, rather than increasing
with O(c3). This invariance to input size is likely because of how the GPU parallelizes computation.
The periodic convolution is efficient only when the input size is small. When the size is large, it
becomes slow, e.g., when the input size is 96× 64× 64, it is around 30 times slower than Woodbury
transformations. In our experiments, we found that the Fourier transformation requires a large amount
of memory. According to Finz et al. [9], the Fourier step may be the bottleneck that impacts periodic
convolution’s scalability. A more efficient implementation of Fourier transformation, e.g., [18], may
improve its running time.

For sampling, both 1×1 convolutions and Woodbury transformations are efficient. The 1×1 convolu-
tion is the fastest, and the Woodbury transformations are only slightly slower. Neither is sensitive to
the change of input size. Emerging convolutions and periodic convolutions are much slower than
Woodbury transformations, and their running time increases with the input size. When the input
size is 96 × 128 × 128, they are around 100 to 200 times slower than Woodbury transformations.
This difference is because emerging convolutions cannot make use of parallelization, and periodic
transformations require conversion to Fourier form. Based on these results, we can conclude that
both emerging convolution and periodic convolution do not scale well to high-dimensional inputs. In
contrast, Woodbury transformations are efficient in both training and sampling.

Quantitative Evaluation We compare Woodbury transformations with state-of-the-art flow models,
measuring bit per-dimension (bpd). We train with the CIFAR-10 [23] and ImageNet [31] datasets. We
compare with three generalized permutation methods—1×1 convolution, emerging convolution, and
periodic convolution—and two coupling layers—neural spline coupling [8] and MaCow [24]. We use
Glow (Fig. 1, [21]) as the basic flow architecture. For each method, we replace the corresponding layer.
For example, to construct a flow with Woodbury transformations, we replace the 1×1 convolution
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Figure 4: Random samples 64× 64 drawn from models trained on CelebA with temperature 0.7.

with a Woodbury transformation, i.e., Eq. 4. For all generalized permutation methods, we use affine
coupling. For each of the coupling layer baselines, we substitute it for the affine coupling. We tune
the parameters of neural spline coupling and MaCow so that their sizes are close to affine coupling.
We follow Hoogeboom et al. [15] and test the performance of small models. For 32× 32 images, we
set the number of levels to L = 3 and the number of steps per-level to K = 8. For 64× 64 images,
we use L = 4 and K = 16. More details are in the appendix.

Table 1: Quantitative evaluation results.
Quantitative measure (bpd) Model sizes (# parameters)

CIFAR-10 ImageNet ImageNet 32x32 images 64x64 images
32x32 32x32 64x64

1×1 convolution 3.51 4.32 3.94 11.02M 37.04M
Emerging 3.48 4.26 3.91 11.43M 40.37M
Periodic 3.49 4.28 3.92 11.21M 38.61M
Neural spline 3.50 4.24 3.95 10.91M 38.31M
MaCow 3.48 4.34 4.15 11.43M 37.83M
ME-Woodbury 3.48 4.22 3.91 11.02M 36.98M
Woodbury 3.47 4.20 3.87 11.10M 37.60M

The test-set likelihoods are listed in Table 1 left. Our scores are worse than those reported by
Hoogeboom et al. [15], Kingma and Dhariwal [21] because we use smaller models and train each
model on a single GPU. Based on the scores, 1×1 convolutions perform the worst. Emerging
convolutions and periodic convolutions score better than the 1×1 convolutions, since they are more
flexible and can model the dependencies along the spatial axes. Neural spline coupling works well on
32× 32 images, but do slightly worse than 1×1 convolution on 64× 64 images. MaCow does not
work well on ImageNet. This trend demonstrates the importance of permutation layers. They can
model the interactions among dimensions and shuffle them, which coupling layers cannot do. Without
a good permutation layer, a better coupling layer still cannot always improve the performance. The
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Woodbury transformation models perform the best, likely because they can model the interactions
between the target dimension and all other dimensions, while the invertible convolutions only model
the interactions between target dimension its neighbors. ME-Woodbury performs only slightly worse
than the full version, showing that its restrictions provide a useful tradeoff between model quality and
efficiency.

We list model sizes in Table 1 (right). Despite modeling rich interactions, Woodbury transformations
are not the largest. With 32 × 32 images, ME-Woodbury and 1×1 convolution are the same size.
When the image size is 64×64, ME-Woodbury is the smallest. This is because we use the multi-scale
architecture, i.e., Fig. 1, to combine layers. The squeeze layer doubles the input variable’s channels at
each level, so larger L suggests larger c. The space complexities of invertible convolutions are O(c2),
while the space complexity of ME-Woodbury is linear to c. When c is large, the weight matrices of
invertible convolutions are larger than the weight matrices of ME-Woodbury.

Table 2: Evaluation of different d (bpd).

Woodbury ME-Woodbury

d = 2 3.54 3.53
d = 4 3.51 3.51
d = 8 3.48 3.48
d = 16 3.47 3.48
d = 32 3.47 3.48

Latent Dimension Evaluation We test the impact of la-
tent dimension d on the performance of Woodbury-Glow.
We train our models on CIFAR-10, and use bpd as met-
ric. We vary d within {2, 4, 8, 16, 32}. The results are in
Table 2. When d < 8, the model performance will be
impacted. When d > 16, increasing d will not improve
the bpd. This is probably because when d is too small, the
latent features cannot represent the input variables well,
and when d is too big, the models become hard to train.
When 8 ≤ d ≤ 16, the Woodbury transformations are
powerful enough to model the interactions among dimensions. We also test two values of d, i.e.,
16, 32, of Woodbury-Glow on ImageNet 64× 64. The bpds of both d are 3.87, which are consistent
with our conclusion.
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0 50 100 150 200
Epoch

B
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Method
Glow
Woodbury

Figure 5: Learning curves on CelebA-
HQ 64x64. The NLL of Woodbury
Glow decreases faster than Glow.

Sample Quality Comparisons We train Glow and
Woodbury-Glow on the CelebA-HQ dataset [19]. We use 5-
bit images and set the size of images to be 64×64, 128×128,
and 256× 256. Due to our limited computing resources, we
use relatively small models in our experiments. We follow
Kingma and Dhariwal [21] and choose a temperature param-
eter to encourage higher quality samples. Detailed parameter
settings are in the appendix. We compare samples from
Glow and Woodbury-Glow during three phases of training,
displayed in Fig. 4. The samples show a clear trend where
Woodbury-Glow more quickly learns to generate reasonable
face shapes. After 100,000 iterations, it can already generate
reasonable samples, while Glow’s samples are heavily dis-
torted. Woodbury-Glow samples are consistently smoother
and more realistic than samples from Glow in all phases of training. The samples demonstrate
Woodbury transformations’ advantages. The learning curves in Figure 5 also show that the NLL of
Woodbury Glow decreases faster, which is consistent to the sample comparisons. In the appendix, we
show analogous comparisons using higher resolution versions of CelebA data, which also exhibit the
trend of Woodbury-Glow generating more realistic images than Glow at the same training iterations.

6 Conclusion

In this paper, we develop Woodbury transformations, which use the Woodbury matrix identity
to compute the inverse transformations and Sylvester’s determinant identity to compute Jacobian
determinants. Our method has the same advantages as invertible d× d convolutions that can capture
correlations among all dimensions. In contrast to the invertible d× d convolutions, our method is
parallelizable and the computational complexity of our methods are linear to the input size, so that it
is still efficient in computation when the input is high-dimensional. One potential limitation is that
Woodbury transformations do not have parameter sharing scheme as in convolutional layers, so one
potential future research is to develop partially Woodbury transformations that can share parameters.
We test our models on multiple image datasets and they outperform state-of-the-art methods.
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Broader Impact

This paper presents fundamental research on increasing the expressiveness of deep probabilistic
models. Its impact is therefore linked to the various applications of such models. By enriching the
class of complex deep models for which we can train with exact likelihood, we may enable a wide
variety of applications that can benefit from modeling of uncertainty. However, a potential danger of
this research is that deep generative models have been recently applied to synthesize realistic images
and text, which can be used for misinformation campaigns.
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