
We thank the reviewers for their time and valuable feedback. Overall, reviewers found our method G-META "novel",1

"scalability is particularly appealing", "theoretical analysis is great, substantial, valid, correct", experiments are2

"comprehensive", and the paper "well-written". Below, we clarify important points raised by reviewers: (1) relation to3

existing work, (2) local subgraphs in G-META vs. computation graphs in GNNs, (3) size of local subgraphs, (4)4

ablation, and (5) others. We believe these clarifications, together with our new analyses, resolve all key issues raised.5

(1) Relation to existing work. R1 questioned the difference between Meta-GNN and G-META, saying it "remains6

moderate." We respectfully disagree. The key difference are local subgraphs, and this is crucial because local subgraphs7

enable i) accurate and fast adaptation to new tasks, ii) learning in few-shot settings, and iii) theoretical justification. In8

contrast to our G-META, Meta-GNN and, similarly, Meta-Graph, use entire graphs for meta-learning. Because of that,9

they are unable to propagate label information across large graphs when only a few node labels are given. Theoretically,10

Meta-GNN/Meta-Graph works only on 1 out of 3 graph meta-learning problems (see Appendix B) and does not have any11

theoretical motivation whereas G-META works on all 3 problems and is theoretically justified. Empirically, G-META12

outperforms Meta-GNN, for example, by 65% on the ogbn-arxiv dataset (Meta-GNN cannot even be used on other13

datasets and meta-learning regimes). As suggested by reviewers, we will carefully discuss this in the final version.14

(2) Local subgraphs vs. computation graphs. R3 raised a critical concern that "the idea of using local subgraphs15

to compute node representations is not novel." This points to a critical misunderstanding—computation graphs in16

GNNs are used to generate node embeddings vs. local subgraphs in our G-META are used to transfer knowledge17

for graph meta-learning. We are not claiming novelty in "the idea of using local subgraphs to compute node18

representations." Instead, as we write in the paper, we are claiming novelty in the idea of using local subgraphs for graph19

meta-learning, as recognized by R1 and R2. This innovation has important implications, which we show theoretically20

(i.e., proofs, solving classes of graph meta-learning problems not solved before) and empirically (i.e., considerable21

boost in accuracy over 9 baselines and 7 datasets). For example, a baseline method Meta-GNN, which uses a standard22

GNN on an entire graph together with MAML, performs 42.5% worse than G-META-MAML, a simplified variant of23

our G-META. Note that the only difference between Meta-GNN and this simplified G-META’s variant is that it uses the24

entire graph vs. local subgraphs. We will clearly mention this contribution, which we agree is crucial for G-META.25
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(3) Size of local subgraphs and computational complexity. (3.1) R2, R3, and R426

nicely point that G-META’s performance can vary with local subgraph size h. To address27

this, we evaluate G-META for h = 1, 2, 3 (Figure for Fold-PPI). We find that h = 2 gives28

the best performance, which nicely corroborates R2’s hypothesis on the inverted U-shape29

relationship. We will include this analysis in our final version. (3.2) R4 also raises an30

important concern on computational complexity of subgraph extraction. We would like to31

clarify that we don’t need to compute "shortest paths ahead of the training". Instead, we simply do a lookup, retrieving32

neighbors of neighbors. Empirically, we find the subgraph construction takes 14.7% of training time, and this can be33

further reduced by implementing techniques for improving training efficiency, e.g., GraphSAINT [Zeng et al., ICLR34

2020]. Regarding R4’s comment of "evaluating each node label individually", we note that each mini-batch consists35

only of a few labels (e.g., 9 in 3-way 3-shot learning) and as such is a cheap operation.36

Method ogbn-arxiv Tissue-PPI Fold-PPI

G-META 0.451 0.768 0.561
- MAML 0.372 0.546 0.382
- Prototype 0.389 0.745 0.482

(4) Further ablations. All reviewers raise an important point on ablation, which37

we agree is crucial especially for G-META. While we already included ablation38

in the form of baselines, we will make it explicit in the next version following39

R3 and R4. We thank R3 and R4 for nicely pointing out that baselines ProtoNet40

and MAML can be seen as G-META’s ablations. In response to R2, new results in Table show that gradient-based meta-41

learning aids G-META more than metric-based meta-learning but both are indispensable for G-META’s performance.42

(5) Baselines and further clarifications. (5.1) R1 raised an important point about performance under varying size of43

the training set, i.e., K in the K-shot problem. We conduct experiments and observe, as expected, a linear trend between44

K and performance (e.g., on arxiv-ogbn, accuracy goes from 0.373, 0.442 to 0.484 for K = 1, 3, and 10, respectively).45

We will include the full study in the final version. (5.2) R1 correctly pointed out G-META "covers node classification46

task and link prediction task where the target is discrete class label.". In contrast, existing Meta-GNN and Meta-Graph47

only work for one of these two tasks—G-META is the first to work on both tasks. Also, to avoid confusion, we will48

update reference for graph-level molecular prediction [Hu et al., ICLR 2019] to edge-level interaction prediction [Zitnik49

et al., Bioinf. 2018]. (5.3) We thank R4 for rightly pointing out that local subgraphs can alleviate over-smoothing50

because, in each iteration, different subgraphs are fed into GNN, which promotes inductive generalization. (5.4) R451

raised a question about hyper-parameters. We use random search on validation set to select hyper-parameters and52

find that model performance is stable for a broad range of values. We will include the recommended set of constant53

parameters in the next version. (5.5) R4 raised an important point on experimental setup. We follow standard episode54

training and semi-supervised setting in which most nodes are not labeled, i.e., few-shot learning. In K-shot N -way55

setup, for "Multiple Graphs and Shared Labels" problem, each task samples K nodes for each label Ni in the same56

label set of size N from one graph, and different tasks are associated with different graphs. For "Multiple Graph and57

Disjoint Labels" problem, each task defines an N -size label set, and samples K nodes for each label Ni.58


