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Abstract

In this paper we propose Stochastic Deep Gaussian Processes over Graphs (DGPG),
which are deep Gaussian models that learn the mappings between input and output
signals in graph domains. The approximate posterior distributions of the latent
variables are derived with variational inference, and the evidence lower bound
is evaluated and optimized by the proposed recursive sampling scheme. The
Bayesian non-parametric natural of our model allows it to resist overfitting, while
the expressive deep structure grants it the potential to learn complex relations.
Extensive experiments demonstrate that our method achieves superior performances
in both small size (< 50) and large size (> 35,000) datasets. We show that DGPG
outperforms another Gaussian-based approach, and is competitive to a state-of-
the-art method in the challenging task of traffic flow prediction. Our model is
also capable of capturing uncertainties in a mathematical principled way and
automatically discovering which vertices and features are relevant to the prediction.

1 Introduction

Gaussian processes (GPs) [1] are a favourable choice in the machine learning arsenal, due to their
distinguishing advantages in modeling uncertainties, the ability of introducing expert knowledge
through the flexible kernel design, and the data efficient property which accounts for their success
in small and medium datasets. GPs have been successfully applied in a variety of tasks, including
computer vision [2], Bayesian optimization [3], active learning [4], multi-task learning [5] and
reinforcement learning [6]. However standard GPs scale poorly as O(N3), making it a challenge
to apply them to large-scale datasets. Their expressiveness is also limited by the specific choice of
kernel functions, which are difficult to be manually decided for complex problems.

Recently a series of works about deep GPs were presented [7–9], which overcome the aforementioned
disadvantages. All these methods can find their roots in the seminal paper [10], which proposes to
use a set of inducing points whose size is manageable to summarize all the information in the original
large dataset - the inducing points and their latent function values can be inferred by variational
inference. This sparse approximation technique enables deep GPs to handle extremely large datasets.
For instance [11] reports that their method achieves superior performance on a dataset with over one
billion data points. The deep hierarchical structure has greatly improved the expressiveness of the
models, resulting in state-of-the-art performances over various challenging tasks.

The last decade also witnesses the rapid development of machine learning algorithms over graph-
structured datasets. A great amount of impacting research on graph neural networks (GNNs) has
been presented, including [12–17], to name only a few of which. Hitherto most of the emerging
literature on graph data analysis are based on neural networks. Though demonstrating satisfactory
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performances over various graph learning tasks, their nature as parametric methods is associated with
several inevitable drawbacks: they are insufficient in modeling uncertainties; they are vulnerable to
overfitting, especially on small datasets; the learning is difficult and their success relies heavily on
the choices of network structures and hyperparameters. A natural question to be asked is that can we
analyze graph-structured data with non-parametric models such as Gaussian processes? A few recent
publications show us that the answer is positive [18–20]. However, the investigations up to now are
far from thorough and complete, and the development of deep Gaussian processes has also revealed
us an alternative approach that is scarcely explored by far.

In this paper we propose Stochastic Deep Gaussian Processes over Graphs (DGPG), which is a
method for modeling the relations between input and output signals over graph-structured domains.
Our work is closely related to [11]: both our methods are based on sparse approximation [10] and the
variational inference framework [21]. Though the evidence lower bound is analytically intractable, it
can be evaluated and optimized by the stochastic minibatch sampling technique.

We summarize the main contributions of this paper as follows: 1) We propose a novel Bayesian
non-parametric method called Stochastic Deep Gaussian Processes over Graphs (DGPG), to model
the relations of input/output signals over graphs; 2) It is rigorously proved that under some technical
assumptions, the sampling variances of DGPG are strictly less then that of [11], implying that DGPG
achieves faster convergence by considering graph information; 3) We performed experiments on a
synthetic dataset. Numerical results conform with our theoretical analysis and support the claim
that DGPG converges much faster and better by utilizing graph information; 4) Experiments on
realistic datasets demonstrate that DGPG can be successfully applied to both small and large-scale
datasets. We show that our method outperforms a recent GP-based graph learning algorithm, and
is competitive to a state-of-the-art DNN method on the challenging task of traffic flow prediction;
5) We show that DGPG possesses several other desirable characteristics: it can model uncertainties
with high accuracy, and the automatic relevance determination (ARD) kernel allows it to learn which
neighbors and features are of greater importance for the prediction.

2 Background and Related Work

2.1 Sparse Gaussian Processes

Gaussian processes (GPs) [1] are among the most popular choices in the Bayesian non-parametric
machine learning family. Given a dataset D = {(xi, yi)}Ni=1 with xi ∈ RD and yi ∈ R, we denote
X = (x1, ...,xN )>, y = (y1, ..., yN )>, and the latent function values as f = f(X). Gaussian
process regression (GPR) models the relation as a function f : RD → R, assuming f has a Gaussian
prior. The prediction has a closed form when the likelihood p(y|f) is Gaussian. The prior of f is
characterized by a kernel function k : RD × RD → R and a mean function m : RD → R. For a test
point x∗, its prediction y∗ also follows the Gaussian distribution and is analytically tractable. Standard
GPs possess various advantages, however the prohibitive O(N3) training complexity renders them
inapplicable to large-scale datasets. Recently lots of work emerged to assuage the complexity burden
[22–26], among which the sparse Gaussian processes stand out as some of the most successful and
popular methods [27–32].

Sparse Gaussian processes (SGPs) introduce M inducing inputs Z = (z1, ..., zM )>, and the corre-
sponding function values are u = f(Z) where p(u) = N (u|m(Z), k(Z,Z)). The joint probability
density is p(y, f ,u) = p(f |u; X,Z)p(u; Z)

∏N
i=1 p (yi|fi). Posterior p(f ,u|y) is only tractable

when the likelihood p(yi|fi) is Gaussian, and in this case it still requires O(N3) computation. Fortu-
nately, variational inference presents us a framework to solve these two problems simultaneously.
Variational inference introduces a distribution q(f ,u) to approximate the posterior p(f ,u|y). It can
be showed that minimizing the Kullback-Leibler divergence KL(q(f .u)||p(f ,u|y)) is equivalent to
maximizing the evidence lower bound (ELBO), which is defined as LSGP = Eq(f ,u)

[
log p(y,f ,u)

q(f ,u)

]
.

As in [30] the variational distribution is defined as q(f ,u) = p(f |u; X,Z)q(u) where q(u) =
N(u|m,S) is assumed to be Gaussian. Furthermore, the conditional distribution p(f |u; X,Z) is
also Gaussian: p(f |u; X,Z) = N(f |µ,Σ), where [µ]i = m (xi) + α (xi)

>
(u −m(Z)), [Σ]ij =

k (xi,xj) − α (xi)
>
k(Z,Z)α (xj), and α (xi) = k(Z,Z)−1k (Z,xi). Finally we can show that
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the marginal also follows Gaussian: q(f |m,S; X,Z) =
∫
p(f |u; X,Z)q(u)du = N (f |µ̃, Σ̃), where

[µ̃]i = µm,Z (xi) = m (xi) + α (xi)
>

(m−m(Z)), (1)

[Σ̃]ij = ΣS,Z (xi,xj) = k (xi,xj)−α (xi)
>

(k(Z,Z)− S)α (xj) . (2)

With the analysis above, ELBO LSGP can be further simplified, so that by maximizing it both the
variational parameters and the latent variables can be found.

2.2 Doubly Stochastic Deep Gaussian Process

In [11] the authors show that it is possible to stack the above single-layer models and form a
hierarchical deep Gaussian process (DGP). For a DGP model with L layers, it introduces L in-
dependent latent variables {Ul}Ll=1 as the function values of the inducing points {Zl}Ll=1, so that
p(Y, {Fl,Ul}Ll=1) =

∏N
i=1 p(yi|fLi )

∏L
l=1 p(F

l|Ul; Fl−1,Zl−1)p(Ul; Zl−1). With a similar rea-
soning by assuming q(Ul) = N (Ul|ml,Sl), we have q({Fl}Ll=1) =

∏L
l=1N (Fl|µ̃l, Σ̃l), where

[µ̃l]i = µml,Zl−1(f li ) and [Σ̃l]ij = ΣSl,Zl−1(f li , f
l
j) (µml,Zl−1 and ΣSl,Zl−1 defined in Eq (1) (2)).

A key finding of [11] is that for a given xi, the marginal of the variational distribution in the last
layer q(fLi ) depends only on the marginals of {q(f li )}

L−1
l=1 in the previous layers. Formally we have

q
(
fLi
)

=
∫ ∏L−1

l=1 q
(
f li |ml,Sl; f l−1i ,Zl−1) df li . Consequently f l depends only on f l−1, so that the

sampling of fLi in the last layer can be conducted in a recursive layer-to-layer manner by using the
“re-parameterization’ trick [33, 34]. After introducing the hierarchical structure, it can be showed that
the new ELBO is LDGP =

∑N
i=1 Eq(fLi )

[
log p

(
yn|fLn

)]
−
∑L

l=1 KL
[
q
(
Ul
)
‖p
(
Ul; Zl−1)].

With the samples of fLi in the last layer readily available, [11] finally proposed to evaluate and
optimize ELBO with stochastic sampling. Similar to SGP, DGP can be applied to large-scale datasets
(e.g. a billion data points), and the deep structure allows it to model more complex relations. Later we
will see that our new method enhances this recursive sampling scheme by utilizing graph information,
and our sampling has strictly smaller variances so that better and faster convergence can be achieved.
All the aforementioned advantages of SGP and DGP are naturally inherited by our method.

2.3 Related Work

To assuage the O(N3) training complexity of standard GPs, several sparse approximation methods
have been proposed [35, 36, 27–29, 31, 32], the ideas of which are to construct a manageable set
of inducing points to summarize the information of the original dataset. It is rigorously established
in [37] that under some technical assumptions sparse approximation methods can produce reliable
results with M = O(logDN) inducing points, where D is the dimension of the data. Inspired by
some of them, [10] introduces a method to select the inducing points by using variational inference.
A few years later this work has become the foundation of a series of deep Gaussian process models:
inspired by [10] and the GP latent variable model (GP-LVM) [38], Damianou and Lawrence proposed
deep GPs [7], which are composed of hierarchical Gaussian process mappings; several other deep
GP models were lately proposed [8, 9]. All these models demonstrate their superior performances
over a variety of challenging tasks. The work above derives analytically tractable evidence lower
bounds, while in contrast with them in [11] - which is the most related paper of our work - the authors
present a model with milder independent assumption and utilize the sampling technique. Applying
the sampling technique not only allows the model to use both Gaussian (e.g. in regression) and
non-Gaussian (e.g. in classification) likelihood in an uniform manner, but also enables it to take
advantage of GPU acceleration. These strengths are also inherited by our proposal.

Recently applying machine learning methods to graph-structured datasets has draw much attention
from the research community. Among various approaches, graph neural networks (GNNs) [39, 40]
are one family of the most successful methods. GNNs can be divided into two categories, the spectral
methods [12, 15, 16] and the non-spectral methods [13, 14, 17]. Though with great empirical success
in many challenging tasks including network analysis, biochemistry, and traffic prediction - to name
only a few of them - their training is generally difficult and the success relies heavily on the choices
of network structures and hyperparameters, and the models are vulnerable to overfitting. It is thus
desirable that non-parametric methods like GPs can overcome these drawbacks.
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A few works aiming to apply GPs to graph-structured domains exist. The paper of [18] proposes a
GP model to solve semi-supervised learning problems over graphs. Their method is also based on
sparse approximation and the variational inference framework. However, our goals are different and
our approaches share little similarity besides the minor points mentioned above. In [19] the authors
present a novel model called the graph convolutional GPs. Their paper aims to tackle the graph
classification problem by designing an addictive kernel with translation-invariant property, which
borrows the idea of the convolutional operator on the grid-like domains. Gaussian Markov Random
Fields (GMRFs) [41, 42] are elegant models for interpolating signals over graphs. However they
are inadequate in extrapolation across the vertices, which is the challenge that focused in our work.
Finally a method called Gaussian Processes over Graphs (GPG) was proposed in [20]. This paper
shares the same goal with us, i.e. both our models try to learn the mappings between input-output
signals over graphs. However our methodologies are totally different. The key idea of their approach
is to incorporate the graph information as prior knowledge in the covariance matrix. Their method
still suffers the poor scalability, and results are only reported for datasets up to about 100 data points.
By contrast DGPG is based on sparse approximation and deep GPs. Consequently our method can
handle datasets with tens of thousands of training instances, and has the potential of modeling more
complex mappings.

3 Stochastic Deep Gaussian Processes over Graphs

Problem Statement and Notations The dataset is defined asD = {G,Ψ,Φ}, where G encodes the
graph structure, and Ψ and Φ represent the input and output signals. To be more precise, G = 〈V, E〉
is comprised of a set of vertices V and a set of edged E ⊆ V × V . For each vi ∈ V , we use
pa(vi) = {vk|(vk, vi) ∈ E} to denote its parents. Each input ψ ∈ Ψ is a function ψ : V → Rdin

over the vertices of the graph. Similarly each output φ ∈ Φ is defined as φ : V → Rdout . The goal is
to learn a function h : Ψ→ Φ that takes a signal ψ as input and predicts the output φ.

We introduce several notations that makes the presentation more succinct. Let N be the size of the
training dataset, |V| = K be the number of vertices. The graph G is denoted by AG ∈ {0, 1}K×K .
Note that binary connection does not restrict the expressiveness, since the ARD kernel can capture
the relevance of each node (see later discussions). The input signals Ψ can be represented as a matrix
X = (x1, ...,xN )>,where xi ∈ RKdin is a vector constructed by concatenating the features of all
the nodes, depicted as the i-th row of X in Fig. 1. Similarly Φ is represented as Y = (y1, ...,yN )>,
where yi ∈ RKdout is depicted as the i-th row of Y in Fig. 1.

Figure 1: An example illustrating the notations and factorization. X and Y are the observed input and output
signals; Ql = Kdl is the dimension of the concatenated vector in layer l. In this example v2 is connected to v1
and v3; two yellow boxes denote F1,1

1 and F1,3
1 (or F1,pa(2)

1 ); red box denotes F2,2
1 ; green box denotes U2,2.

Model Structure Similar to [11], we define a deep structure in our DGPG. For a L-layer model,
we denote F1, ...,FL (Fl ∈ RN×Kdl

where dl is the dimension of each node in layer l) as the
latent function values. Inspired by the sparse approximation framework, for each layer we introduce
M inducing points Z1, ...,ZL (Zl ∈ RM×Kdl

) and the associated function values are U1, ...,UL

(Ul ∈ RM×Kdl

). For a matrix M (M ∈ {X,Y,F,Z,U}), we use Ml,k to denote the submatrix
associated with the l-th layer and the k-th vertex. Ml,pa(k) is the submatrix in the l-th layer associated
with all the parents of vertex vk in the next layer. Ml,k

i is a vector that denotes the i-th row of Ml,k.
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The factorization of the joint distribution is depicted in Fig. 1, given by

p
(
Y,
{
Fl,k,Ul,k

}
l,k

)
=
∏N

n=1

∏K

k=1
p
(
yk
n|FL,k

n

)︸ ︷︷ ︸
likelihood

·

∏L

l=1
p
(
Fl,k|Ul,k; Fl−1,pa(k),Zl−1,pa(k)

)
p
(
Ul,k; Zl−1,pa(k)

)
︸ ︷︷ ︸

GP prior

, (3)

where F0 = X. It is assumed that the prior is Gaussian, and Ul,k’s are factorized among layers and
vertices. The likelihood can be Gaussian (e.g. regression) or non-Gaussian (e.g. classification).

By applying variational inference, we define the approximate posterior distribution as

q({Fl,k,Ul,k}l,k) =

L∏
l=1

K∏
k=1

p(Fl,k|Ul,k; Fl−1,pa(k),Zl−1,pa(k))q(Ul,k), (4)

where q(Ul,k)=̇N (Ul,k|ml,k,Sl,k) is Gaussian. Since both two terms on the r.h.s. in Eq (4) are
Gaussian, we can marginalize out Ul,k and obtain q({Fl,k}l,k) =

∏L
l=1

∏K
k=1N (Fl,k|µ̃l,k, Σ̃l,k),

where [µ̃l,k]i = µml,k,Zl−1,pa(k)(F
l−1,pa(k)
i ), [Σ̃]ij = ΣSl,k,Zl−1,pa(k)(F

l−1,pa(k)
i ,F

l−1,pa(k)
j ). In

this equation [µ̃l,k]i denotes the i-th row of the matrix µ̃l,k ∈ RN×Kdl

; [Σ̃l,k]ij denotes the value at
the entry (i, j) in Σ̃l,k ∈ RN×N . The final analytical results are can be obtained by Eq (1) and (2).
Considering the above mean and covariance, as well as the marginal property of Gaussian processes,
we have the following simple method to sample the latent function values recursively.

Recursive Sampling Scheme The marginal of the i-th row, k-th vertex in layer L depends only on
the parents of k in layer L− 1. By a recursive analysis, the distribution of q(FL,k

i ) depends only on
the ancestors of k. Consequently for the final layer we have

q(FL,k
i ) =

∫ ∏
q(Fl,k′

i |m
l,k′ ,Sl,k′ ; F

l−1,pa(k′)
i ,Zl−1,pa(k′))d{Fl−1,pa(k′)

i }, (5)

where 〈l, k′〉’s enumerate all ancestors of 〈L, k〉 and 〈L, k〉 itself.

The significance of the above observation is that it provides us with a method to sample from q(FL,k)
in a recursive way. Similar to [11], the sampling can be conveniently achieved by using the “re-
parameterization trick” recursively. Specifically let εl,ki ∼ N (0, Idl) be a sampled Gaussian noise,
the samples of vertices in different layers can be obtained recursively as

F̂l,k
i = µml,k,Zl−1,pa(k)(F̂

l−1,pa(k)
i ) + εl,ki �

√
ΣSl,k,Zl−1,pa(k)(F̂

l−1,pa(k)
i , F̂

l−1,pa(k)
i ) (6)

Evidence Lower Bound Now we derive the evidence lower bound of DGPG. As Fl,k’s and Ul,k’s
represent the latent variables in the model, the evidence lower bound is computed as LDGPG =

Eq({Fl,k,Ul,k}l,k)

[
log

p
(
Y,{Fl,k,Ul,k}

l,k

)
q({Fl,k,Ul,k}l,k)

]
. By substituting Eq (3) and (4) this can be simplified as

LDGPG =

N∑
n=1

K∑
k=1

Eq(FL,k
n )

[
log p

(
yk
n|FL,k

n

)]
−

L∑
l=1

K∑
k=1

KL
[
q
(
Ul,k

)
‖p
(
Ul,k; Zl−1,pa(k)

)]
.

There all totally O(KNM2(d1 + · · ·+ dL)) variational parameters in the model.

Main Theorem Next we present the main theoretical result of this paper, which states that by utiliz-
ing graph information DGPG reduces sampling variances, which implies faster convergence during
the optimization of ELBO. First we list two technical assumptions and their intuitive explanations.

Assumption 1. k(Z,Z)− S � 0 (� 0 denotes positive definite). Intuitively in Eq (2) the uncertainty
characterized by ΣS,Z(xi,xj) should be strictly smaller than that of k(xi,xj) since more information
is available. Similar observations and arguments can be found in [27].

Assumption 2. Without graph the prediction y depends on all other nodes, i.e. h(x) = y where x ∈
RD; while with graph y depends only on x̃ ⊂ x, i.e. h(x̃) = y where x̃ ∈ Rd and d < D. Similarly
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Z̃ ∈ RM×d and S̃ ∈ RM×M represent the variables when graph is considered. We assume that
||k(Z̃, x̃)||2/||k(Z,x)||2 > λmax/λ̃min (λmax is the maximal eigenvalue of k(Z,Z)−1(k(Z,Z)−
S)k(Z,Z)−1, and λ̃min is the minimal eigenvalue of k(Z̃, Z̃)−1(k(Z̃, Z̃) − S̃)k(Z̃, Z̃)−1). In the
proof we show how to justify this assumption when the graph is sparse (i.e. d� D).

Theorem 1 We denote the sampling variance with graph as Σ̃ii = ΣS̃,Z̃(x̃i, x̃i) (defined in Eq (2)),
and the sampling variance without graph as Σii = ΣS,Z(xi,xi). Under the assumptions 1 and 2,
for a large variety of kernel functions (including RBF, Matérn32, etc.) we have Σ̃ii < Σii.

The proof is left in the supplementary materials. Finally let α = ||k(Z̃, x̃)||2/||k(Z,x)||2 and
β = λmax/λ̃min. The assumptions are equivalent to λmin(λ̃min) > 0 and α > β. Now both the
assumptions become verifiable assertions, which will be further validated in the experimental study.

4 Experimental Study

In this section, we conduct thorough experimental study of our method. Our implementation is based
on the GPflow framework [43] and the implementation of DGP 3. The source code and evaluations of
our work are publicly available 4. All experiments were performed on a Ubuntu server equipped with
GeForce GTX 1080 Ti GPU, which supports our parallelized implementation.

4.1 Synthetic Dataset

We begin with presenting the experimental results on a synthetic dataset. The goal of this example
is to support our theoretical analysis with numerical evidences, e.g. verifying the positive definite
assumption and the claim that graph can reduce sampling variances and lead to faster convergence.

Consider a symmetric graph with 500 nodes, and each node is connected to approximately 7 randomly
selected parents (including a self-connecting edge). We sample each input signal xi ∈ R500 from
a standard multivariate normal distribution with an isometric covariance matrix x ∼ N (0, I). The
output of each node is defined as the sum of its parents: yk

i =
∑

k′:k′∈pa(k) xk′

i . We totally generate
500 input-output signals for training, and 200 for testing. In the theoretical analysis we show that
α� β implies the algorithm benefits from graph information and thus converges faster, so we use
r = α/β to measure the richness of information of graphs: larger r suggests more informative graph
structures. We further corrupt the graph by randomly select p = 0, 2, 4, 6 edges and change them into
erroneous connections (when p = 0 the connection is not changed).

Table 1: Several statistics that are of interest for the theoretical analysis.

Run p = 0 p = 2 p = 4 p = 6

λmin λmax λ̃min α β α/β α/β α/β α/β

1 0.4 1.1 1.1E+00 5.0E+18 1E+0 5.0E+18 2.9E+17 2.8E+15 6.1E+13
2 1.2 1.2 5.4E+02 4.1E+17 2E-3 2.1E+20 2.8E+16 3.3E+15 4.2E+13
3 1.0 1.1 4.9E+01 2.8E+17 2E-2 1.4E+19 1.1E+16 6.8E+14 4.5E+13
4 0.6 1.0 2.8E+00 3.7E+20 3E-1 1.2E+21 3.9E+15 3.3E+15 3.5E+13
5 0.4 1.1 9.5E-01 1.3E+18 4E-1 3.3E+18 6.0E+16 1.8E+16 1.6E+13

We trained a DGPG model with 1 layer and 50 inducing points, repeated over 5 runs. Without loss
of generality we report the results of the first node and the first instance. Table 1 presents various
numerical values that are of interest to our analysis. As p increases r becomes smaller (corrupted
graph is less informative), which follows our analysis and expectation. Fig. 2 shows the convergences
ELBO. ‘DGPG without graph’ is computed with a fully connected graph, in which case DGPG
reduces to DGP.

3https://github.com/ICL-SML/Doubly-Stochastic-DGP
4https://github.com/naiqili/DGPG
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Figure 2: Convergence of ELBO

Table 2: Dataset description of training/test
instances, number of nodes, and average de-
gree. #Iter. is the steps of iteration.

Dataset Weather fMRI ETEX

#Training 46 145 30
#Test 46 145 30

#Node 45 100 168
Avg. D. 5 5 10

#Iter. 2000 5000 5000

The results suggest that: 1) Assumption k(Z,Z)− S � 0
does always hold (λmin’s are always positive); 2) α� β
- according to Theorem 1 this implies that our method
can reduce the sampling variances by utilizing the graph
information; 3) the above claim is further demonstrated in
Fig. 3, from which we can see that our method converges
much faster in optimizing ELBO.

4.2 Small Datasets

Data efficiency is an appealing property of GPs. In this
experiment we test the performance of DGPG on three
small datasets: Weather [44], fMRI [45] and ETEX [46].
To ensure that our comparison is fair, we use the identi-
cal datasets and training/test splitting. Description of the
datasets is presented in Table 2. We use M = 5 induc-
ing points. When building the adjacent matrix we use
Euclidean distance to construct the connections.

Considering the utilization of graph information, we add
two graph-aware Gaussian Process methods (GPG [20]
and GCGP [19]) to the comparison experiment. Accord-
ingly, other DGP methods are excluded as they are inca-
pable of modeling graph datasets. GCGP [19] is originally
designed to only make one output for the whole graph
rather than every node. In order to make it comparable, we train an independent GCGP instance for
each node and recompose their outputs as the requested complete prediction. Besides, the definition
of intrinsic angular distance on general graphs is not provided in [19], so we just use the diffusion
graph convolution kernel in experiments.

Table 3 presents the evaluation results. We are interested in three metrics: mean absolute error (MAE),
root mean square error (RMSE) and mean absolute percentage error (MAPE). Since these metrics
were not considered in [20] we evaluated their method locally. We also consider two naive baselines:
historical mean and historical median. In the preprocessing stage we normalize the data on each node
to have zero mean and one standard deviation. For fMRI and ETEX the input signals on some nodes
are absent, and we simply take their values as Gaussian noises with very small variances (10−4).

We tested our model with 1 to 4 layers, and tried the RBF and Matérn32 kernels. From this experiment
we can draw the following conclusions: 1) our method outperforms the other recently proposed
Gaussian-based method in most cases, and sometimes by a large margin; 2) in complex tasks deeper
layers lead to better performance, showing that DGPG benefits from the deep structure; 3) RBF and
Matérn32 kernels produce similar results, indicating that DGPG is not sensitive to the particular
kernel choice; 4) DGPG reserves the appealing data efficiency property.

Table 3: GP-L and GPG-L are baselines in [20]. SVR denotes support vector regression. For SVR the output is
a function of its neighbors’ input and high-order graph information is lost. Metrics of GCGP [19] are calculated
using the recomposed prediction result. We report the results of DGPG using linear kernel (L), RBF kernel
(RBF), Matérn32 kernel (M32), and the optimal layer. Terms with underline denote best results. Results of
several other baselines are in the supplementary materials.

Dataset Metrics mean GP-L GPG-L SVR GCGP DGPG (L/RBF/M32/layer)

MAE 1.61 1.52 1.66 1.44 1.46 1.47 / 1.37 / 1.36 / 1
Weather RMSE 2.11 1.97 2.19 1.88 1.90 1.92 / 1.80 / 1.79 / 1

MAPE 17% 19% 24% 15% 18% 17% / 16% / 15% / 1

MAE 0.016 0.026 0.074 0.014 0.015 0.015 / 0.010 / 0.010 / 4
fMRI RMSE 0.021 0.033 0.089 0.020 0.021 0.020 / 0.015 / 0.015 / 4

MAPE 1.6% 2.6% 7.4% 1.4% 1.5% 1.5% / 1.0% / 1.0% / 4

MAE 0.40 0.25 0.30 0.18 0.22 0.30 / 0.27 / 0.21 / 3
ETEX RMSE 0.45 0.34 0.36 0.31 0.31 0.41 / 0.41 / 0.35 / 3

MAPE 40% 25% 30% 18% 22% 30% / 27% / 21% / 3
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Table 5: Comparison on the task of traffic flow prediction. Results of other baselines are obtained from [48].
DGPG* utilizes validation data during training, fixed to be 3-layer. Terms with underline indicate best results.
::::
Terms with wavy underline indicate second best. Results of the BAY dataset are in the supplementary materials.

T Metrics VAR FC-LSTM DCRNN DGPG (1/2/3/4) DGPG∗

L
A

15 min
MAE 4.42 3.44 2.77 3.06 / 3.04 / 3.02 / 3.02

:::
3.00

RMSE 7.89 6.30 5.38 5.40 / 5.35 /
::::
5.32 /

:::
5.32 5.31

MAPE 10.2% 10.9% 7.3% 6.6% / 6.0% / 6.6% /
:::
6.5%

::::
6.5%

30 min
MAE 5.41 3.77 3.15 3.57 / 3.42 / 3.42 /

:::
3.39

:::
3.39

RMSE 9.13 7.23 6.45 6.37 / 6.16 / 6.16 / 6.12
:::

6.13
MAPE 12.7% 10.9 8.8% 7.5% /

::::
7.3% /

::::
7.3% / 7.2% 7.2%

60 min
MAE 6.52 4.37

::
3.6 4.02 / 3.83 /3.00 / 3.80 3.8

RMSE 10.11 8.69 7.59 7.12 /
:::
6.93 / 6.94 / 6.94 6.85

MAPE 15.8% 13.2% 10.5% 8.4% / 8.1% /
::::
7.9% / 8.0% 5.0%

4.3 Large Datasets

Next we test DGPG on two challenging large datasets, where the goal is to predict the traffic flow with
different forecasting horizons (15, 30 and 60 min) in Los Angeles (LA) [47] and Bay Area (BAY)
[48]. We compare with DCRNN [48], which is one of state-of-the-art approaches in traffic flow
prediction. We use the same data and splitting according to their released code5. We use M = 20
inducing points per node. Records in some instances are missing, and we fill them with the median
values. When building the graph each vertex is connected to about 5 neighbors. The only difference is
that we only consider the first 100 nodes. Dataset details can be found in the supplementary materials.

Table 4: Variance Analysis of DGPG

T ±1σ ±2σ ±3σ

L
A

15 min 84.4% 94.7% 97.7%
30 min 84.2% 94.5% 97.5%
60 min 83.7% 94.3% 97.5%

B
A

Y
S 15 min 87.4% 95.6% 97.9%

30 min 86.0% 94.5% 97.2%
60 min 85.1% 94.1% 97.0%

Figure 3: Locations of the sensors with:
(top) the least uncertainty, and (bottom) the
largest uncertainty.

The results are presented in Table 5. Due to space limit we
only show three strong baselines, VAR [49], FC-LSTM
[50] and DCRNN (other results are in the supplementary
materials). One advantage of DGPG is that we do not have
strong necessity to use a validation set, so similar to [18]
we utilize the validation dataset for training while fixing
its layer to be 3. These results are showed as DGPG*.

Results in Table 5 show that: 1) DGPG is competitive
w.r.t. the state-of-the-art method DCRNN, and outper-
forms it in most cases in the more challenging dataset
LA; 2) DGPG produces accurate predictions for different
datasets and forecasting horizons, showing its stability and
consistency; 3) DGPG achieves its best performance with
the appropriate layers, demonstrating that it benefits from
deep structures; 4) the performance can be improved by
utilizing the validation data during training.

Variance Analysis A distinguishing advantage of GPs
is that they are capable of modeling the predictive vari-
ances. We will see that DGPG can capture uncertainty
with satisfactory precision.

Inspired by [51], we exam how many test instances fall
in the predictive confidence interval. For Gaussian dis-
tribution N (µ, σ2), the interval (µ− kσ, µ+ kσ) covers
about 68.3%/95.5%/99.7% of the probability density as
k = 1, 2, 3. So we can expect that the potion of the test
instances falling in the predictive intervals should have the
same ratio. Table 4 shows the experimental results. We
can see that the numerical results comply with our analysis
reasonably well, particularly within the ±2σ intervals.

5https://github.com/liyaguang/DCRNN
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We performed a case study to show DGPG’s ability in capturing uncertainty. We computed the
variances of the test data and took the average across each node. Fig. 3 depicts the two sensors with
the “least” and the “largest” uncertainties. The sensor with the least uncertainty locates at sparsely
populated area with simple traffic condition; the sensor with the largest uncertainty locates at the
business center where the traffic condition is very complex.

Automatic Relevance Determination Fig. 4 depicts the learned lengthscales of node 1. In this
particular example, node 1 is connected to 5 other nodes (including itself). Each node has 8 features:
‘T’ represents time in a day (00:00, 00:05, ...); ‘D’ represents day in a week (Monday, Tuesday, etc.);
features at t = {6, ..., 1} represent the traffic at 5t minutes before. The first 8 bars correspond to
the lengthscales of the self connection, and other bars represent the lengthscales w.r.t. the other four
nodes. Note that a smaller lengthscale indicates greater relevance.

The effectiveness of the ARD kernel can be inspected in Fig. 4: 1) by using ARD, DGPG is capable
of discerning which neighbors are more relevant - for instance the self connection is more important
when the forecasting horizon is small (15 min); 2) DGPG can further discover which features are
relevant - “time” plays a significant role in the prediction, while which “day” the record occurred
is less relevant; 3) we emphasize again that the relevance is automatically discovered, so that using
binary adjacent matrices does not reduce the expressiveness of our model.

Figure 4: Lengthscales inferred by the ARD kernel in: (left) 15 min; (middle) 30 min; (right) 60 min.

5 Conclusion

In this paper we propose a method to learn the mappings between input and output signals over
graphs, which we call Stochastic Deep Gaussian Processes over Graphs (DGPG). Our method utilizes
the graph information during the construction of the deep GP structure. By applying variational
inference, the evidence lower bound is derived and optimized by a recursive sampling scheme.

We conducted thorough experiments in both synthetic and realistic datasets. Numerical results on
a synthetic dataset validate our theoretical assumptions and analysis, particularly the claim that
our method has smaller sampling variances and thus converges faster. In the realistic datasets, we
show that our method generally outperforms other baselines in small datasets, and is competitive
to the state-of-the-art method in the challenging task of traffic flow prediction. Finally DGPG also
exhibits several appealing characteristics, such as the ability to accurately model uncertainties and to
automatically discover which vertices and features are relevant to the prediction.
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Broader Impact

This paper proposes a graph guided deep Gaussian process model. Through incorporating the
graph information into deep Gaussian process, our proposed method reduces sampling variances
and achieves faster convergence. Graph structure is a very common tool in numerous fields. In
experiments, we also show that the proposed method can facilitate the tasks of traffic flow prediction.
We believe that the exploration of graph structure will largely improve the capacity of current machine
learning algorithms.
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