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Abstract

Neural Ordinary Differential Equations (NODEs) are a new class of models that
transform data continuously through infinite-depth architectures. The continuous
nature of NODEs has made them particularly suitable for learning the dynamics
of complex physical systems. While previous work has mostly been focused on
first order ODEs, the dynamics of many systems, especially in classical physics,
are governed by second order laws. In this work, we consider Second Order
Neural ODEs (SONODEs). We show how the adjoint sensitivity method can be
extended to SONODEs and prove that the optimisation of a first order coupled
ODE is equivalent and computationally more efficient. Furthermore, we extend the
theoretical understanding of the broader class of Augmented NODEs (ANODEs)
by showing they can also learn higher order dynamics with a minimal number
of augmented dimensions, but at the cost of interpretability. This indicates that
the advantages of ANODEs go beyond the extra space offered by the augmented
dimensions, as originally thought. Finally, we compare SONODEs and ANODEs
on synthetic and real dynamical systems and demonstrate that the inductive biases
of the former generally result in faster training and better performance.

1 Introduction

Residual Networks (ResNets) [8] have been an essential tool for scaling the capabilities of neural
networks to extreme depths. It has been observed that the skip layers that these networks employ
can be seen as an Euler discretisation of a continuous transformation [7, 12, 19]. Neural Ordinary
Differential Equations (NODEs) [3] are a new class of models that consider the limit of this discreti-
sation step, naturally giving rise to an ODE that can be optimised via black-box ODE solvers. Their
continuous depth makes them particularly suitable for learning and modelling the unknown dynamics
of complex systems, which often cannot be described analytically.

Since the introduction of NODEs, many variants have been proposed [4, 10, 14, 17, 20, 22, 24]. While
a few of these models use second order dynamics [14, 17, 24], no in-depth study on second order
behaviour in Neural ODEs exists even though most dynamical systems that arise in science, such as
Newton’s equations of motion and oscillators, are governed by second order laws. To fill this void, we
consider Second Order Neural ODEs (SONODEs) and second order dynamics for the broader class of
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Figure 1: Three learnt trajectories from the one-dimensional compact parity experiment (originally
named g1d in Dupont et al. [4]). NODEs, as expected, are not able to learn the mapping (left),
ANODE(1) is able to learn it (middle), and SONODEs learn the simplest trajectory given by the
solution in Equation (7) (right).

models formed by Augmented Neural ODEs (ANODEs). Unlike previous approaches, which mainly
focus on classification tasks, we use low-dimensional physical systems, often with known analytic
solutions, as our main arena of investigation. As we will show, the simplicity of these systems is
useful in analysing the properties of these models.

To summarise our contributions, we begin by studying more closely the optimisation of SONODEs
by generalising the adjoint sensitivity method to second order models. We continue by analysing
how some of the properties of ANODEs extend to SONODEs and show that the latter can often
find simpler solutions for the problems we consider. Our analysis also extends to ANODEs and
demonstrates that they are capable of learning higher-order dynamics, sometimes with just a few
additional dimensions. However, the way they do so has deeper implications for their functional loss
landscape and their interpretability as a scientific tool. Finally, we compare SONODEs and ANODEs
on real and synthetic second order dynamical systems. Our results reveal that the inductive biases
in SONODEs are beneficial in this setting. Our code is available online at https://github.com/
a-norcliffe/sonode.

2 Background

As discussed in the introduction, Neural ODEs (NODEs) can be seen as a continuous variant of
ResNet models [8], whose hidden state evolves continuously according to a differential equation

ẋ = f (v)(x, t, θf ), x(t0) = X0, (1)

whose velocity is described by a neural network f (v) with parameters θf and initial position given by
the points of a dataset X0. As shown by Chen et al. [3], the gradients can be computed through an
abstract adjoint state r(t), once its dynamics are known.

Our investigations are mainly focused on Augmented Neural ODEs (ANODEs) [4], which append
states a(t) to the ODE:

z =

[
x
a

]
, ż = f (v)(z, t, θf ), z(t0) =

[
X0

g(X0, θg)

]
. (2)

We note that, unlike the original formulation, we allow for the initial values of the augmented
dimensions a(t0) to be learned as a function of x(t0) by a neural network g with parameters θg.
For the remainder of the paper, we use the ANODE(D) notation to signify the use of D augmented
dimensions.

We are almost exclusively concerned with the problem of learning and modelling the behaviour
of dynamical systems, given N + 1 sample points Xt∈T , t = (t0, . . . , tN ), from a fixed set of its
trajectories at multiple time steps included in the set T . For such tasks, we use the mean squared
error (MSE) between these points and the corresponding predicted location over all time steps for
training the models. For the few toy classification tasks we include, we optimise only for the linear
separability of the final positions via the cross-entropy loss function.
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3 Second Order Neural Ordinary Differential Equations

We consider Second Order Neural ODEs (SONODEs), whose initial position x(t0), initial velocity
ẋ(t0), and acceleration ẍ are given by

x(t0) = X0, ẋ(t0) = g(x(t0), θg), ẍ = f (a)(x, ẋ, t, θf ), (3)

where f (a) is a neural network with parameters θf . Alternatively, SONODEs can be seen as a system
of coupled first-order neural ODEs with state z(t) = [x(t),a(t)]:

z =

[
x
a

]
, ż = f (v)(z, t, θf ) =

[
a

f (a)(x,a, t, θf )

]
, z(t0) =

[
X0

g(X0, θg)

]
. (4)

This formulation makes clear that SONODEs are a type of ANODE with constraints on the structure
of f (v), and offers a way to reuse NODE’s first order adjoint method [3] for training, as in previous
work [14, 24]. However, a pair of questions remain about the optimisation of SONODEs: firstly,
what is the ODE that the second order adjoint follows? And, consequently, how does the second
order adjoint sensitivity method compare with first order adjoint-based optimisation? To address
these questions, we show how the adjoint sensitivity method can be generalised to SONODEs.

Proposition 3.1. The adjoint state r(t) of SONODEs follows the second order ODE

r̈ = rT
∂f (a)

∂x
− ṙT

∂f (a)

∂ẋ
− rT

d

dt

(
∂f (a)

∂ẋ

)
(5)

The proof and boundary conditions for this ODE is given in Appendix B. As an additional contribution,
we include an alternative proof to those of Chen et al. [3] and Pontryagin [18] for the first order
adjoint. Given that the dynamics of the abstract adjoint vector are known, its state at all times t can
be used to train the parameters θf using the integral

dL

dθf
= −

∫ t0

tn

rT
∂f (a)

∂θf
dt, (6)

where L denotes the loss function and tn is the timestamp of interest. The gradient with respect to
the parameters of the initial velocity network, θg , can be found in Appendix B. To answer the second
question, we compare this gradient against that obtained through the adjoint of the first order coupled
ODE from Equation (4).

Proposition 3.2. The gradient of θf computed through the adjoint of the coupled ODE from (4)
and the gradient from (6) are equivalent. However, the latter requires at least as many matrix
multiplications as the former.

This result motivates the use of the first order coupled ODE as it presents computational advantages.
The proof in Appendix B shows that this is due to the dynamics of the adjoint from the coupled
ODE, which contain entangled representations of the adjoint. This is in contrast to the disentangled
representation in Equation (5), where the adjoint state and velocity are separated. It is the entangled
representation that permits the faster computation of the gradients for the coupled ODE. We will
see in Section 5.3 that entangled representations in ANODEs are a reoccurring phenomenon, and
their effects are not always beneficial, as in this case. We use the first order ODE optimisation for the
remainder of our experiments.

4 Properties of SONODEs

In this section, we analyse certain properties of SONODEs and illustrate them with toy examples.

4.1 Generalised parity problem

It is known that unique trajectories in NODEs cannot cross at the same time [4, 14]. We extend this
to higher order Initial Value Problems (IVP). Proofs are presented in Appendix A.
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Proposition 4.1. For a k-th order IVP, if the k-th derivative of x is Lipschitz continuous and has no
explicit time dependence, then unique phase space trajectories cannot intersect at an angle. Similarly,
a single phase space trajectory cannot intersect itself at an angle.

While this shows SONODE trajectories cannot cross in phase space, they can cross in real space
if they have different velocities. To illustrate this, we introduce a generalised parity problem, an
extension to D dimensions of the g1d function from Dupont et al. [4], which maps x → −x. We
remark that SONODEs should be able to learn a parity flip in any number of dimensions, with a
trivial solution

f (a)(x, ẋ, t, θf ) = 0, g(x(t0), θg) = −
2

tN − t0
x(t0) (7)

This is equivalent to all points moving in straight lines through the origin to −x(t0). We first
visualise the learnt transformation in the one dimensional case (Figure 1), for points initialised at ±1.
SONODEs learn the simplest trajectories for this problem.
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Figure 2: The logarithm of the loss in
each dimension for the generalised parity
problem. SONODE has the lowest loss,
while the NODE loss generally oscillates
between dimensions as predicted.

For higher dimensions, we first remark that NODEs are
able to produce parity flips for even dimensions by pair-
ing off the dimensions and performing a 180◦ rotation in
each pair. This solution does not apply to odd-dimensional
cases because there is always an unpaired dimension that
is not rotated. In addition to the dimensional-parity effect,
as volume increases exponentially with the dimensionality,
the density exponentially decreases (given the number of
points in the dataset remains constant). This makes it eas-
ier to manipulate the points without trajectories crossing,
and so, it is expected that the problem will become easier
for NODEs as dimensionality increases.

In Figure 2, we investigate parity flips in higher dimen-
sions, using 50 training points and 10 test points, ran-
domly generated between -1 and 1 in each dimension. For
NODEs, as predicted, the loss oscillates over dimensions
and, for odd dimensions, the loss decreases with the num-
ber of dimensions. ANODEs perform better than NODES,
especially in odd dimensions, where it can rotate the un-

paired dimension through the additional space. SONODEs have the lowest loss in every generalisation,
which can be associated with the existence of the trivial solution in any number of dimensions, given
by Equation (7).

4.1.1 Nested n-spheres

Dupont et al. [4] prove that a transformation under NODEs has to be a homeomorphism, preserving
the topology of the input space, and as such, they cannot learn certain transformations. Similarly to
ANODEs, SONODEs avoid this problem.

NODE ANODE(1) SONODE

Figure 3: The trajectories learnt by NODE (left), ANODE (middle) and SONODE (right) for the
nested n-spheres problem in 2D. NODE preserves the topology, so the blue region cannot escape the
red region. ANODE, as expected, uses the third dimension to separate the two regions. For SONODE,
the points pass through each other in real space.
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Proposition 4.2. SONODEs are not restricted to homeomorphic transformations in real space.

The proof can be found in Appendix C. To illustrate this, we perform an experiment on the nested
n-spheres problem [4], (the name is taken from [14], originally called g function [4]), where the
elements of the blue class are surrounded by the elements of the red class (Figure 3) such that a
homeomorphic transformation in that space cannot linearly separate the two classes. As expected,
only ANODEs and SONODEs can learn a mapping.

5 Second order behaviour in SONODEs and ANODEs

Previously, the benefits of ANODEs were attributed only to the extra space they have in which to
move [4]. However, in this section, we show that coupled first order ODEs, such as ANODEs, are
also able to represent higher-order order behaviour. Additionally, we study the functional forms
ANODEs can use to learn this. Unless stated, we consider ANODEs in their original formulation
where a(t0) = 0.

5.1 How do ANODEs learn second order dynamics?

Consider a SONODE as in Equation (3). Similarly to the coupled ODE from Equation (4), ANODEs
can represent this if the state, z = [x,a], is augmented such that a has the same dimensionality as x:

z(t0) =

[
x(t0)
0

]
, ż =

[
a+ ẋ(t0)

f (a)(x, ẋ, t, θf )

]
=

[
a+ g(x(t0), θg)

f (a)(x,a+ g(x(t0), θg), t, θf )

]
, (8)

where a differentiates to the acceleration and, because a(t0) = 0, the initial velocity is added to it to
obtain the correct dynamics. Generalising this, it is clear to see how ANODEs can also learn k-th
order ODEs, by splitting up the augmented part a into k − 1 vectors with the same dimensionality as
x. However, if ANODEs were to learn higher order dynamics this way, x(t0) is required as an input,
just as in data-controlled neural ODEs [14]. To show this is not usually the case, we let ANODE(1)
learn two 1D functions at the same time with a shared ODE, using the same set of parameters, but
different initial conditions. Specifically, we consider two damped harmonic oscillators

x1(t) = e−γt sin(ωt), x2(t) = e−γt cos(ωt) (9)
where γ can be zero so that there is no decay.

SONODEs can learn these using the functional form

f (a)(x, ẋ, t, θf ) = −(ω2 + γ2)x− 2γẋ, g(x(0), θg) = −(ω + γ)x(0) + ω (10)
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Figure 4: ANODE(1) learning two func-
tions using the same parameters, for
ω = 1 and γ = 0.1667. The real trajec-
tories are going through their sampled
data points. Augmented trajectories are
plotted over their theoretical trajectories
given by Equation (11) for C = 1.2.

It is not immediately obvious how ANODEs could solve
this, especially if they follow Equation (8), where x(t0) is
needed as an input to determine ẋ(t0). However, Figure
4 shows that ANODEs are able to fit the two functions
in the same training session. We observe that ANODEs
approximate a solution of the form:[

ẋ
ȧ

]
=

[
Ca− ωx− γx+ ω

ωa− γa− 1
C (2ω

2x+ γω − ω2)

]
(11)

Using a(0) = 0, this gives the correct ODE and initial
conditions in Equation (10), for all finite, non-zero C.

We remark that the state x and the augmented dimension
a are entangled in the velocity of the state and ẋ 6= a.
This example gives an intuition about the way ANODEs
can learn second order behaviour through an ODE as in
Equation (11). We now formalise this intuition and give
a general expression:

Proposition 5.1. The general form ANODEs learn second order behaviour is given by:[
ẋ
ȧ

]
=

[
F (x,a, t, θF )
G(x,a, t, θG)

]
, G =

(
∂F

∂aT

)−1
left

(
f (a) − ∂F

∂xT
F − ∂F

∂t

)
(12)

5



This result is derived in Appendix D. It shows that SONODEs and ANODEs learn second order
dynamics in different ways. ANODEs learn an abstract function F that at t0 is equal to the initial
velocity, and another function G that couples to F giving it the right acceleration. In contrast,
SONODEs are constrained to learn the acceleration and initial velocity directly. This also leads to
several useful properties that we investigate next.

5.2 Minimal augmentation

The first property we analyse is called minimal augmentation. It refers to the fact that ANODEs can
learn second order dynamics even when the number of extra dimensions is less than the dimensionality
of the real space.
Corollary 5.1.1. When the system from Proposition 5.1 is overdetermined (i.e. dim(a) < dim(x))
and has a solution, the Moore-Penrose left pseudo-inverse produces that solution, given by G. If no
solution exists, G is the best least-squares approximation.
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Figure 5: ANODE(1) fitting a 2D second order function: real plane view (left), individual dimensions
(middle, right). ANODEs do not always need double the dimensions to learn second order.

In effect, ANODE is learning a system of linear equations parametrised by deep neural networks.
To learn second order dynamics with minimal augmentation, it must learn an overdetermined linear
system allowing a solution. Depending on the form of ẍ, it is possible that an F with explicit a
dependence that produces a degenerate system like this could be learned. In turn, this would allow a
complementary G to be learned. In fact, systems like this can naturally arise when the dynamics are
latent and lower-dimensional and many of the observed dimensions become redundant. For instance,
two spatial dimensions suffice for a pendulum moving in a plane of the 3D space.

However, even if an overdetermined system allowing a solution could not be learned due to the
additional constraints acting on F , the left Moore-Penrose pseudo-inverse from Proposition 5.1 would
still produce a G that is a best least-squares approximation. If the matrix A = ∂F

∂aT has full rank, then
the left inverse is given by (ATA)−1AT . In general, the closer dim(a) gets to dim(x), the better this
approximation will be.

To demonstrate minimal augmentation, we consider a two dimensional second order ODE, whose
starting conditions and respective ω’s and γ’s were chosen randomly such that[

ẍ
ÿ

]
=

[
−(ω2

x + γ2x)x− 2γxẋ
−(ω2

y + γ2y)y − 2γy ẏ

]
,

[
x
y

]
=

[
e−0.1t(3 sin(t) + cos(t))

e−0.3t(2 sin(1.2t)− 5 cos(1.2t))

]
(13)

ANODE(1) is able to learn this function, as shown in Figure 5. Moreover, the augmented dimension
trajectory differs greatly from the velocity of the ODE in either of the two spatial dimensions.

5.3 Interpretability of ANODEs

The result from Proposition 5.1 also raises the issue of how interpretable ANODEs are. For example,
when investigating the dynamics of physical systems it is useful to know the force equation. This
is straightforward with SONODEs, which directly learn the acceleration as a function of position,
velocity and time. However, ANODEs learn the dynamics through an abstract alternative ODE where
the state and augmented dimensions are entangled. This is similar to the widely studied problem of
entangled representations [1, 9, 15].

We then train both ANODE(2) and SONODE to learn the dynamics of the ODE from Equation
(13), and provide them both with the correct initial velocity. Figure 6 shows the results for two
different runs for both models. Though ANODE(2) is able to learn the true trajectory in real space,
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Figure 6: ANODEs and SONODEs successfully learn the trajectory in real space of a 2D ODE for
two different random initialisations. However, the augmented trajectories of ANODE are in both
cases widely different from the true velocity of the ODE (left). In contrast, SONODE converges in
both cases to the true ODE (right).

the augmented trajectories differ greatly from the true velocity of the underlying ODE. In contrast,
SONODE learns the correct velocity for both runs. This simple experiment confirms that ANODEs
might not be a suitable investigative tool for scientific applications, where the physical interpretability
of the results is important.

5.4 The functional loss landscape

The functional forms the two models converge to in Figure 6 are not a coincidence. Proposition 5.1
also has deeper implications for the ANODE’s (functional) loss landscape when learning second
order dynamics. Please refer to Appendix D for the proofs of the following results.
Proposition 5.2. There are an infinity of (non-trivial) functional forms ANODEs can learn that
model the true second order dynamics in real space.

This means that there is an infinite number of functions ANODEs can approximate and obtain a
zero loss. This suggests that an infinite number of global minima, representing different functions,
may exist in the loss landscape of ANODEs. In contrast, we show that the second order constraints
imposed on SONODE enforce that any global minima in its loss landscape approximate the same
function — the acceleration and, in some cases, the initial velocity.
Proposition 5.3. There is a unique functional form SONODEs can learn that models the true second
order dynamics in real space.

This is confirmed by our experiment from the previous section, where ANODE always converges to
another augmented trajectory for each random initialisation (only two shown in the Figure 6), while
SONODE always converges to the correct underlying ODE.

6 Experiments on second order dynamics
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Figure 7: NODE, ANODE(1) and
SONODE training on harmonic os-
cillators. SONODEs already have
the second order behaviour built in
as an architectural choice, so they
are able to learn the dynamics in
fewer iterations.

To test our above predictions, we perform an extensive compar-
ison of ANODE and SONODE on a set of more challenging
real and synthetic modelling tasks. These experiments provide
further evidence for the described theoretical findings. Addi-
tional experimental details regarding the models and additional
results are given in Appendix E.

6.1 Synthetic harmonic oscillators and noise robustness

Harmonic oscillator The most obvious application of SON-
ODEs is on dynamical data from classical physics. This
was tested by looking at a damped harmonic oscillator ẍ =
−(ω2 + γ2)x − 2γẋ with γ = 0.1 and ω = 1 on 30 ran-
dom pairs of initial positions and velocities. These were each
evolved for 10 seconds, using one hundred evenly spaced time
stamps. The loss depended on both position and velocity ex-
plicitly, therefore the models used the state z = [x, v] with the
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option of augmentation for ANODEs. NODEs and ANODEs learnt a general ż, whereas SONODEs
are given ż = [v, f (a)] and only learn f (a). SONODEs leverage their inductive bias and converge
faster than the other models. Note that, all models were able to reduce the loss to approximately zero,
as shown in Figure 7.

Noise robustness We tested the models’ abilities to learn a sine curve in varying noise regimes.
The models were trained on fifty training points in the first ten seconds of x = sin(t), and then tested
with ten points in the next five seconds. The train points had noise added to them, drawn from a
normal distribution N (0, σ2) for different standard deviations σ = (0, 0.1, 0.2, . . . , 0.7). The results
presented in Figure 8 show that SONODEs are more robust to noise.
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Figure 8: SONODEs and ANODEs learning a sine curve in different noise regimes: predictions for
noise magnitude 0.3 (left), magnitude 0.6 (middle) and test error for all noise levels (right). The
dotted line separates training and testing regimes. SONODEs are able to extrapolate better than
ANODEs because they are forced to learn second order dynamics, and therefore are less likely to
overfit the training points.

6.2 Experiments on real-world dynamical systems

Airplane vibrations The dataset [16] concerns real vibrations measurements of an airplane. A
shaker was attached underneath the right wing, producing an acceleration a1. Additional accelera-
tions at different points were measured including a2, which was examined in this experiment, the
acceleration on the right wing, next to a non-linear interface of interest. This is a higher order system,
therefore it pertains to be a challenging modelling task. The results presented in Figure 9 show that
while both methods can model the dynamics reasonably well, ANODEs perform marginally better.
We conjecture that this is due to ANODEs not being restricted to second order behaviour, allowing
them to partially access higher order dynamics. We test this conjecture in Appendix E.2.
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Figure 9: ANODE(1) and SONODE on the Airplane Vibrations dataset: training loss curves (left),
predicted value (middle), and running error (right). The models were trained on the first 1000
timestamps and then extrapolated to the next 4000. ANODEs are able to perform slightly better than
SONODEs because they are able to access higher order dynamics.

Silverbox oscillator The Silverbox dataset [21] is an electronic circuit resembling a Duffing
Oscillator, with input voltage V1(t) and measured output V2(t). The non-linear model Silverbox
represents is V̈2 = aV̇2 + bV2 + cV 3

2 + dV1. To account for this, all models included a V 3
2 term. The

results can be seen in Figure 10. On this second order system, SONODEs extrapolate better than
ANODEs and are able to capture the increase in the amplitude of the signal exceptionally well.
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Figure 10: ANODE(1) and SONODE on the second order Silverbox dataset: training loss curves
(left), predicted value (middle), and running error (right). The models were trained on the first 1000
timestamps and extrapolated to the next 4000. As expected, SONODEs perform better.

7 Discussion and related work

SONODEs vs ANODEs SONODEs can be seen as a special case of ANODEs, whose phase
space dynamics are restricted to model second order behaviour. We believe that for tasks where the
trajectory is unimportant, and performance depends only on the endpoints (such as classification),
ANODEs might perform better because they are unconstrained in how they use their capacity (see
Appendix E.4). In contrast, we expect SONODEs to outperform ANODEs both in terms of accuracy
and convergence rate on time series data whose underlying dynamics is assumed (or known) to be
second order. In this setting, SONODEs have a unique functional solution and fewer local minima
compared to ANODEs. At the same time, they have higher parameter efficiency since ẋ = v requires
no parameters, so all parameters are in the acceleration. Finally, we expect SONODEs to be more
appropriate for application in the natural sciences, where second order dynamics are common and it
is useful to recover the force equation.

Second Order Models Concurrent to our work, SONODEs have been briefly evaluated on MNIST
by Massaroli et al. [14] as part of a wider study on Neural ODEs. In contrast, our study is focused on
the theoretical understanding of second order behaviour. At the same time, our investigations are
largely based on learning the dynamics of physical systems rather than classification tasks. Second
order models have also been considered in Graph Differential Equations [17] and ODE2VAE [24].

Physics Based Models In the same way SONODEs assert Newtonian mechanics, other models
have been made to use physical laws, guaranteeing physically plausible results, in discrete and
continuous cases. Lutter et al. [13] apply Lagrangian mechanics to cyber-physical systems, while
Greydanus et al. [6] and Zhong et al. [23] use Hamiltonian mechanics to learn dynamical data.

8 Conclusion

In this paper, we analysed how Neural ODEs (NODEs) can learn second order dynamics. In particular,
we considered Second Order NODEs (SONODEs), a model constructed with this inductive bias in
mind, and the more general class of Augmented Neural ODEs (ANODEs). We began by shedding
light on the optimisation of SONODEs by generalising the adjoint sensitivity method from NODEs
and comparing it with the training procedure of the equivalent coupled ODE. We also studied some
of the theoretical properties of SONODEs and how they manifest in modelling toy problems.

We showed that, despite lacking the physics-based inductive biases of SONODEs, ANODEs are flexi-
ble enough to learn second order dynamics in practice. However, we also demonstrated, analytically
and empirically, that they do this by learning to approximate an abstract coupled ODE where the state
and augmented dimensions become entangled in the velocity. We proved that this has implications for
interpretability in scientific applications as well as the ‘shape’ of the loss landscape. Our experiments
on synthetic and real second order dynamical systems validate these concerns and reveal that the
inductive biases of SONODE are generally beneficial in this setting.

Although this work investigates second order dynamics, the underlying principles of SONODEs
can be readily extended to higher orders (a proof-of-principle is given in Appendix E.2). This, in
turn, allows for modelling richer and more complex behaviour, while retaining the benefits of faster
training and better modelling performance.
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Broader Impact

Neural ODEs are relatively new models and we are yet to see their full potential. We anticipate
NODEs will see particular success in time-series data, which have a wide variety of real-world
applications. Examples given by Jia and Benson [10] include the evolution of individuals’ medical
records and earthquake monitoring. Poli et al. [17] look at traffic forecasting and Greydanus et al. [6]
show how a Neural ODE inspired by Hamiltonian mechanics can be applied to classical physics. Our
work concerns Second Order Neural ODEs which can also be applied to classical physics, where
Newton’s second law describes the forces on an object.

Our theoretical work was concerned with demonstrating how best to use the adjoint method on
SONODEs, and showing how the coupled ODE perspective of ANODEs leads to them being able to
learn second order behaviour. Naturally, any impacts from this work will come from the applications
of SONODEs.

We directly investigated two potential real-world applications of SONODEs. The Silverbox dataset,
an electronic implementation of a damped spring with a non-linear spring constant. This naturally
applies to circuits with oscillators, and damped elements, opening new directions to monitor circuits
and signals. The dynamics can also be encountered in mechanical systems, including car suspension,
which could be used to improve car safety. Note that, in our experiments, we also investigated the
task of modelling the vibration dynamics of an aeroplane, which might lead to better and optimal
aeroplane designs. Though contributions to civil mechanical engineering such as these have parallel
applications in the design of weapons, it is not the case that our investigation expands technological
capabilities in such a way as to enable new forms of warfare or to significantly improve current
technologies (at this stage).

As stated, Neural ODEs are relatively new, and we are yet to see their full potential. We anticipate
more applications to time series data in the future, which have many positive and negative applications,
though at most we should think of our contribution as incremental in this regard and covered by
existing institutions and norms.
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