
A Phase Space Trajectory Proofs

Here we present the proofs for the propositions from Section 4, concerning a k-th order initial value
problem.

Lemma A.1. For a k-th order IVP, where the k-th derivative is Lipschitz continuous, a solution
cannot have discontinuities in the time derivative of its phase space trajectory.

Proof. Consider the phase space trajectory z(t) =

[
x(t),

dx

dt
(t), ...,

dk−1x

dtk−1
(t)

]
. Let f be the k-th

time derivative of x(t). Then the time derivative of z(t) is

d

dt


x

dx

dt
...

dk−1x

dtk−1

 =


dx

dt
d2x

dt2
...
f(z)


If for one set of finite arguments, z1, f(z1) is also finite, then because the gradients of f are all
bounded (due to Lipschitz continuity), for any other finite arguments, zn, f(zn) will remain finite.

Now consider
dk−1x

dtk−1
, its time derivative is f(z(t)), which is finite for all finite z. Therefore,

dk−1x

dtk−1
,

can’t have discontinuities with a finite derivative, and also must be finite for finite z. Now consider
dk−2x

dtk−2
, its time derivative is finite for all finite z, and therefore it can’t have discontinuities and also

must be finite for all finite z. This line of argument continues up to x. The state x and all of its
time derivatives up to the k-th have no discontinuities and are finite. Therefore as long as the initial
conditions z(t0) are finite, there can be no discontinuities in the time derivative of the phase space
trajectory at finite time.

Proposition 4.1. For a k-th order IVP, if the k-th derivative of x is Lipschitz continuous and has no
explicit time dependence, then unique phase space trajectories cannot intersect at an angle. Similarly,
a single phase space trajectory cannot intersect itself at an angle.

Proof. Consider two trajectories z1(t) and z2(t) that have different initial conditions z1(t0) = h1 and
z2(t0) = h2. Assume the trajectories cross at a point in phase space at an angle, z1(t1) = z2(t2) = h̃.
If they intersect at an angle, then evolving the two states by a small time δt << 1, and using the
Lipschitz continuity of f , meaning that the trajectories cannot have kinks in them (as shown in
Lemma A.1), z1(t1 + δt) 6= z2(t2 + δt). However, if they are at the same point in phase space, then
they must have the same k-th order derivative, f . All other derivatives are equal, so by evolving the
states by the same small time δt << 1, z1(t1 + δt) = z2(t2 + δt). There is a contradiction and
therefore the assumption is wrong, unique trajectories cannot cross at an angle in phase space when f
is Lipschitz continuous and has no t dependence.

Now consider the single trajectory z(t). Assume it intersects itself at an angle, at t1 and t2. Now
consider two particles on this trajectory, starting at t1 − τ and t2 − τ such that t2 − τ > t1. These
two particles have different initial conditions and cross at an angle. However, the above shows that
cannot happen. Therefore, the assumption that z(t) can intersect itself at an angle must be wrong.
Trajectories cannot intersect themselves in phase space at an angle.

Trajectories can, however, feed into each other representing the same particle path at different times.
Single phase space trajectories can feed into themselves representing periodic motion. This requires a
Lipschitz continuous f , and for there to be no explicit time dependence. If there was time dependence
then two trajectories can cross at different times, and a trajectory can self intersect. Effectively an
additional dimension is added to phase space, which is time. The propositions above would still

hold because
dt

dt
= 1 which is Lipschitz continuous. Therefore, with time included as a phase space

dimension, intersections in space are only forbidden if they occur at the same time.

12

B Adjoint Sensitivity Method

We present a proof to both the first and second order Adjoint method, using a Lagrangian style
approach [2, 5]. We also prove that when the underlying ODE is second order, using the first order
method on a concatenated state, z = [x,v], produces the same results as the second order method but
does so more efficiently. All parameters, θ, are time-independent (so dθ

dt =
dt
dθ = 0).

B.1 First Order Adjoint Method

Let L denote a scalar loss function, L = L(x(tn)), the gradient with respect to a parameter θ is

dL

dθ
=

∂L

∂x(tn)T
dx(tn)

dθ
(14)

The vector
∂L

∂x(tn)T
is found using backpropagation. For dynamical data the loss will depend on

multiple time stamps, there is also a sum over timestamps, tn. Therefore
dx(tn)

dθ
is needed. x(tn)

follows

x(tn) =

∫ tn

t0

ẋ(t)dt+ x(t0) (15)

subject to
ẋ = f (v)(x, t, θf), x(t0) = s(X0, θs) (16)

where X0 is the data going into the network and is constant. The functions f (v) and s describe the
ODE and the initial conditions. Here we allow X0 to first go through the transformation, s(X0, θs).
This maintains generality and allows NODEs to be used as a component of a larger model. For
example, X0 could go through a ResNet before the NODE, and then through a softmax classifier at

the end (which is accounted for in the term
∂L

∂x(tn)T
). Introduce the new variable F

F =

∫ tn

t0

ẋ(t)dt =

∫ tn

t0

(
ẋ+A(t)(ẋ− f (v))

)
dt+B(x(t0)− s) (17)

These are equivalent because (ẋ− f (v)) and (x(t0)− s) are both zero. This means the matrices, A(t)
and B, can be chosen freely (as long as they are well behaved, finite etc.), to make the computation
easier. The gradients of x(tn) with respect to the parameters are

dx(tn)

dθf
=

dF

dθf
,

dx(tn)

dθs
=
dF

dθs
+
ds(X0, θs)

dθs
(18)

Differentiating F with respect to a general parameter θ

dF

dθ
=

∫ tn

t0

dẋ

dθ
dt+

∫ tn

t0

A(t)

(
dẋ

dθ
− ∂f (v)

∂θ
− ∂f (v)

∂xT
dx

dθ

)
dt+B

(
dx(t0)

dθ
− ds

dθ

)
(19)

Integrating by parts ∫ tn

t0

A(t)
dẋ

dθ
dt =

[
A(t)

dx

dθ

]tn
t0

−
∫ tn

t0

Ȧ(t)
dx

dθ
dt (20)

Substituting this in and using
∫ tn
t0

dẋ
dθ dt = [dxdθ]

tn
t0 , gives

dF

dθ
=

(
dx

dθ
+A(t)

dx

dθ

)∣∣∣∣∣
tn

−
(
dx

dθ
+A(t)

dx

dθ

)∣∣∣∣∣
t0

−
∫ tn

t0

A(t)
∂f (v)

∂θ
dt

−
∫ tn

t0

(
˙A(t) +A(t)

∂f (v)

∂xT

)
dx

dθ
dt+B

(
dx

dθ

∣∣∣∣∣
t0

− ds

dθ

) (21)

13

Using the freedom of choice of A(t), let it follow the ODE

˙A(t) = −A(t)∂f
(v)

∂xT
, A(tn) = −I (22)

Where I is the identity matrix. Then the first term and second integral in Equation (21) become zero,
yielding

dF

dθ
= (B − I −A(t0))

dx

dθ

∣∣∣∣∣
t0

+

∫ t0

tn

A(t)
∂f (v)

∂θ
dt−Bds

dθ
(23)

Now using the freedom of choice of B, let it obey the equation

B = I +A(t0) (24)

This makes the first term in Equation (23) zero. This gives the final form of
dF

dθ

dF

dθ
=

∫ t0

tn

A(t)
∂f (v)

∂θ
dt− (I +A(t0))

ds

dθ
(25)

Subbing into Equation (18) and using the fact that f (v) has no θs dependence and s has no θf
dependence

dx(tn)

dθf
=

∫ t0

tn

A(t)
∂f (v)(x, t, θf)

∂θf
dt,

dx(tn)

dθs
= −A(t0)

ds(X0, θs)

dθs
(26)

This leads to the gradients of the loss

dL

dθf
=

∂L

∂x(tn)T

∫ t0

tn

A(t)
∂f (v)(x, t, θf)

∂θf
dt,

dL

dθs
= − ∂L

∂x(tn)T
A(t0)

ds(X0, θs)

dθs
(27)

Subject to the ODE for A(t)

Ȧ(t) = −A(t)∂f
(v)(x, t, θf)

∂x
, A(tn) = −I (28)

Now introduce the adjoint state r(t)

r(t) = −A(t)T ∂L

∂x(tn)
, r(t)T = − ∂L

∂x(tn)T
A(t) (29)

Using the fact that
∂L

∂x(tn)
is constant with respect to time, the adjoint equations are obtained

by applying the definition of the adjoint in Equation (29), to the gradients in Equation (27), and
multiplying the ODE in Equation (28) by the constant − ∂L

∂x(tn)

dL

dθf
= −

∫ t0

tn

r(t)T
∂f (v)(x, t, θf)

∂θf
dt,

dL

dθs
= r(t0)

T ds(X0, θs)

dθs
(30)

Where the adjoint a(t) follows the ODE

ṙ(t) = −r(t)T ∂f
(v)(x, t, θf)

∂x
, r(tn) =

∂L

∂x(tn)
(31)

The gradients are found by integrating the adjoint state, r, and the real state, x, backwards in time,
which requires no intermediate values to be stored, using constant memory, a major benefit over
traditional backpropagation.

These are the same equations that were derived by Chen et al. [3], however this includes the addition

of letting x(t0) = s(X0, θs) giving the corresponding gradient,
dL

dθs
. Additionally, the derivation

used by Chen et al. [3] is simpler but does not present an obvious way to extend the adjoint method
to second order ODEs, which this derivation method can do, as shown next.

14

B.2 Second Order Adjoint

Using the same derivation method, but with a second order differential equation, a second order
adjoint method is derived, according to the proposition from the main text:

Proposition 3.1. The adjoint state r(t) of SONODEs follows the second order ODE

r̈ = rT
∂f (a)

∂x
− ṙT

∂f (a)

∂ẋ
− rT

d

dt

(
∂f (a)

∂ẋ

)
(32)

and the gradients of the loss with respect to the parameters of the acceleration, θf are

dL

dθf
= −

∫ t0

tn

rT
∂f (a)

∂θf
dt, (33)

Proof. In general, the loss function, L, depends on x and ẋ

dL

dθ
=

∂L

∂x(tn)T
dx(tn)

dθ
+

∂L

∂ẋ(tn)T
dẋ(tn)

dθ
(34)

The gradients from the positional part and the velocity part are found separately and added. Firstly
the position

x(tn) =

∫ tn

t0

ẋ(t)dt+ x(t0) (35)

Subject to the second order ODE

ẍ = f (a)(x, ẋ, t, θf), x(t0) = s(X0, θs), ẋ(t0) = g(x(t0), θg) (36)

Following the same procedure as in first order, but including the initial condition for the velocity as
well

F =

∫ tn

t0

ẋ+A(t)(ẍ− f (a))dt+B(ẋ(t0)− g) + C(x(t0)− s) (37)

As before, the vectors, (ẍ − f (a)), (ẋ(t0) − g) and (x(t0) − s) are zero, which gives freedom to
choose the matrices A(t), B and C to make the calculation easier. The gradients of x(tn) with
respect to the parameters θ are

dx(tn)

dθf
=

dF

dθf
,

dx(tn)

dθg
=
dF

dθg
,

dx(tn)

dθs
=
dF

dθs
+
ds(X0, θs)

dθs
(38)

Differentiating F from equation 37 with respect to a general parameter

dF

dθ
=

[
dx

dθ

]tn
t0

−
∫ tn

t0

A(t)
∂f (a)

∂θ
dt+

∫ tn

t0

A(t)

(
dẍ

dθ
− ∂f (a)

∂xT
dx

dθ
− ∂f (a)

∂ẋT
dẋ

dθ

)
dt

+B

(
dẋ

dθ

∣∣∣∣∣
t0

− ∂g

∂θ
− ∂g

∂x(t0)T
dx(t0)

dθ

)
+ C

(
dx

dθ

∣∣∣∣∣
t0

− ds

dθ

) (39)

Integrating by parts∫ tn

t0

A(t)
dẍ

dθ
dt =

[
A(t)

dẋ

dθ
− Ȧ(t)dx

dθ

]tn
t0

+

∫ tn

t0

Ä(t)
dx

dθ
dt (40)

∫ tn

t0

A(t)
∂f (a)

∂ẋT
dẋ

dθ
dt =

[
A(t)

∂f (a)

∂ẋT
dx

dθ

]tn
t0

−
∫ tn

t0

d

dt

(
A(t)

∂f (a)

∂ẋT

)
dx

dθ
dt (41)

15

Subbing these into Equation (39)

dF

dθ
=

[(
I − Ȧ−A∂f

(a)

∂ẋT

)
dx

dθ
+A

dẋ

dθ

]
tn

−
[(
I − Ȧ−A∂f

(a)

∂ẋ

)
dx

dθ
+A

dẋ

dθ

]
t0

+

∫ tn

t0

(
Ä(t)−A(t)∂f

(a)

∂xT
+
d

dt

(
A(t)

∂f (a)

∂ẋT

))
dx

dθ
dt+

∫ t0

tn

A(t)
∂f (a)

∂θ
dt

+B

(
dẋ

dθ

∣∣∣∣∣
t0

− ∂g

∂θ
− ∂g

∂x(t0)T
dx(t0)

dθ

)
+ C

(
dx

dθ

∣∣∣∣∣
t0

− ds

dθ

) (42)

Using the freedom to choose A(t), let it follow the second order ODE

Ä(t) = A(t)
∂f (a)

∂xT
− d

dt

(
A(t)

∂f (a)

∂ẋT

)
, A(tn) = 0, Ȧ(tn) = I (43)

This makes the first term and first integral in Equation (42) zero, yielding

dF

dθ
=

∫ t0

tn

A(t)
∂f (a)

∂θ
dt+

((
Ȧ(t) +A(t)

∂f (a)

∂ẋT
− I −B ∂g

∂x(t0)T
+ C

)
dx

dθ

)∣∣∣∣∣
t0

+

(
(B −A) dẋ

dθ

)∣∣∣∣∣
t0

−B∂g
∂θ
− C ds

dθ

(44)

Now using the freedom of choice in B and C

B = A(t0), C = −Ȧ(t0)−A(t0)
∂f (a)

∂ẋ

∣∣∣∣∣
t0

+ I +A(t0)
∂g

∂x(t0)T
(45)

This makes the second and third terms in Equation (44) zero, yielding

dF

dθ
=

∫ t0

tn

A(t)
∂f (a)

∂θ
dt−B∂g

∂θ
− C ds

dθ
(46)

These give the final gradients of x(tn) with respect to the parameters, by subbing the results for B,

C and
dF

dθ
above into Equation (38), using the fact that f (a), g and s only depend on the parameters

θf , θg and θs respectively

dx(tn)

dθf
=

∫ t0

tn

A(t)
∂f (a)

∂θf
dt,

dx(tn)

dθg
= −A(t0)

∂g

∂θg

dx(tn)

dθs
=

(
Ȧ(t0) +A(t0)

(
∂f (a)

∂ẋT

∣∣∣∣∣
t0

− ∂g

∂x(t0)T

))
ds

dθs

(47)

As before, introduce the adjoint state rx(t):

rx(t) = −A(t)T ∂L

∂x(tn)
, rx(t)T = − ∂L

∂x(tn)T
A(t) (48)

Using the fact that
∂L

∂x(tn)
is constant with respect to time, all the results above, and the ODE and

initial conditions for A(t) in Equation (43) can be multiplied by − ∂L

∂x(tn)T
, to get the gradients

dL

dθ
in terms of rx(t)

dL

dθf
= −

∫ t0

tn

rx(t)T
∂f (a)

∂θf
dt,

dL

dθg
= rx(t0)

T ∂g

∂θg

dL

dθs
=

(
−ṙx(t0)T − rx(t0)

T

(
∂f (a)

∂ẋT

∣∣∣∣∣
t0

− ∂g

∂x(t0)T

))
dx(t0)

dθs

(49)

16

Subject to the second order ODE for rx(t)

r̈x(t) = rx(t)T
∂f (a)

∂x
− d

dt

(
rx(t)T

∂f (a)

∂ẋ

)
, rx(tn) = 0, ṙx(tn) = −

∂L

∂x(tn)
(50)

Where after differentiating with the product rule the ODE in Equation (50) becomes

r̈x(t) = rx(t)T
∂f (a)

∂x
− ṙx(t)T

∂f (a)

∂ẋ
− rx(t)T

(
d

dt

∂f (a)

∂ẋ

)
(51)

Where doing the full time derivative gives

d

dt

(
∂f (a)

∂ẋ

)
= [ẋT , f (a)T , 1]

[
∂x
∂ẋ
∂t

](
∂f (a)

∂ẋ

)
(52)

Where the fact that ẍ = f (a) has been used. This is only when the loss depends on the position. The
same method is used to look at the velocity part in Equation (34)

dL

dθ
=

∂L

∂ẋ(tn)T
dẋ(tn)

dθ
(53)

Where

ẋ(tn) =

∫ tn

t0

ẍ(t)dt+ ẋ(t0) (54)

The general method is to take this expression and add zeros, in the form of A(t), B and C multiplied
by the ODE and initial conditions, (ẍ− f (a)), (ẋ(t0)− g) and (x(t0)− s). Then differentiate with

respect to a general parameter θ and integrate by parts to get any integrals containing
dẋ

dθ
or
dẍ

dθ
in

terms of
dx

dθ
. Then choose the ODE for A(t) to remove any

dx

dθ
terms in the integral, and the initial

conditions of A(tn) to remove the boundary terms at tn. Then B and C are chosen to remove the
boundary terms at t0. After doing this the gradients of ẋ with respect to the parameters are

dẋ(tn)

dθf
=

∫ t0

tn

A(t)
∂f (a)

∂θf
dt,

dẋ(tn)

dθg
= −A(t0)

∂g

∂θg

dẋ(tn)

dθs
=

(
Ȧ(t0) +A(t0)

∂f (a)

∂ẋT

∣∣∣∣∣
t0

−A(t0)
∂g

∂x(t0)T

)
ds

dθs

(55)

Subject to the second order ODE for A(t)

Ä(t) = A(t)
∂f (a)

∂xT
− d

dt

(
A(t)

∂f (a)

∂ẋT

)
, A(tn) = −I, Ȧ(tn) =

∂f (a)

∂ẋT

∣∣∣∣∣
tn

(56)

Now introduce the state rv(t)

rv(t) = − ∂L

∂ẋ(tn)T
A(t), rv(t) = −A(t)T ∂L

∂ẋ(tn)
(57)

Which allows the gradients of the loss with respect to the parameters to be written as

dL

dθf
= −

∫ t0

tn

rv(t)T
∂f (a)

∂θf
dt,

dL

dθg
= rv(t0)

T ∂g

∂θg

dL

dθs
=

(
rv(t0)

T ∂g

∂x(t0)T
− ṙv(t0)

T − rv(t0)
T ∂f

(a)

∂ẋT

∣∣∣∣∣
t0

)
ds

dθs

(58)

17

Where rv follows the second order ODE and initial conditions

r̈v(t) = rv(t)T
∂f (a)

∂x
− ṙv(t)T

∂f (a)

∂ẋ
− rv(t)T

d

dt

(
∂f (a)

∂ẋ

)
rv(tn) =

∂L

∂ẋ(tn)
, ṙv(tn) = −

∂L

∂ẋ(tn)T
∂f (a)

∂ẋ

∣∣∣∣∣
tn

(59)

Now adding the gradients from the x dependence and the ẋ dependence together. It can be seen that
the gradients are the same in Equations (49) and (58), but just swapping rx and rv. Additionally, it
can be seen from the ODEs for rx and rv in Equations (51) and (59), that they are governed by the

same, linear, second order ODE, with different initial conditions. Therefore the gradients,
dL

dθ
, can

be written in terms of a new adjoint state, r = rx + rv

dL

dθf
= −

∫ t0

tn

r(t)T
∂f (a)(x, ẋ, t, θf)

∂θf
dt,

dL

dθg
= r(t0)

T ∂g(x(t0), θg)

∂θg

dL

dθs
=

(
r(t0)

T ∂g(x(t0), θg)

∂x(t0)T
− ṙ(t0)

T − r(t0)
T ∂f

(a)(x, ẋ, t, θf)

∂ẋT

∣∣∣∣∣
t0

)
ds(X0, θs)

dθs

(60)

Where a follows the second order ODE with initial conditions

r̈(t) = r(t)T
∂f (a)(x, ẋ, t, θf)

∂x
− ṙ(t)

∂f (a)(x, ẋ, t, θf)

∂ẋ
− r(t)T

d

dt

(
∂f (a)(x, ẋ, t, θf)

∂ẋ

)
r(tn) =

∂L

∂ẋ(tn)
, ṙ(tn) = −

∂L

∂x(tn)
− ∂L

∂ẋ(tn)T
∂f (a)(x, ẋ, t, θf)

∂ẋ

∣∣∣∣∣
tn

(61)

The full derivative, dt(∂ẋf (a)), is given by Equation (52). The ODE can also be written compactly
as

r̈(t) = r(t)T
∂f (a)(x, ẋ, t, θf)

∂x
− d

dt

(
r(t)T

∂f (a)(x, ẋ, t, θf)

∂ẋ

)
(62)

Just as in the first order method, a sum over times stamps tn may be required. This matches and
extends on the gradients and ODE given by proposition 3.1.

B.3 Equivalence between the two Adjoint methods

When acting on a concatenated state, z(t) = [x(t),v(t)], the first order adjoint method will produce
the same gradients as the second order adjoint method. However, it is more computationally efficient
to use the first order method. This is also given in the main text as the following proposition:

Proposition 3.2. The gradient of θf computed through the adjoint of the coupled ODE from (4)
and the gradient from (6) are equivalent. However, the latter requires at least as many matrix
multiplications as the former.

Intuitively, the first order method will produce the same gradients because second order dynamics can
be thought of as two coupled first order ODEs, where the first order dynamics happen in phase space.
However, this provides no information about computational efficiency. We prove the equivalence and
compare the computational efficiencies below.

Proof. The first order formulation of second order dynamics can be written as

z(t) =

[
x(t)
v(t)

]
, ż =

[
v

f (a)(x,v, t, θf)

]
, z(t0) =

[
x(t0)
v(t0)

]
=

[
s(X0, θs)

g(s(X0, θs), θg)

]
(63)

When using index notation, xi and vi are concatenated to make zi.. For xi and vi, the index, i,
ranges from 1 to d, whereas for zi it ranges from 1 to 2d accounting for the concatenation. This is

18

represented below

zi =

{
xi, if i ≤ d
v(i−d), if i ≥ d+ 1

(64)

It also extends to żi and zi(t0), where f (a)i , si and gi also have the index range from 1 to d, but the
index of żi goes from 1 to 2d just like for zi.

żi = f̃
(v)
i (z, t, θ̃f) =

{
vi, if i ≤ d
f
(a)
(i−d)(x,v, t, θf), if i ≥ d+ 1

(65)

zi(t0) = s̃i(X0, θ̃s) =

{
si(X0, θs), if i ≤ d
g(i−d)(s(X0, θs), θg), if i ≥ d+ 1

(66)

Using the first order adjoint method, Equations (30) and (31), and using index notation with repeated
indices summed over, the gradients are

dL

dθ̃f
= −

∫ t0

tn

ri(t)
∂f̃

(v)
i (z, t, θ̃f)

∂θ̃f
dt,

dL

dθ̃s
= ri(t0)

ds̃i(X0, θ̃s)

dθ̃s
(67)

Where the adjoint follows the ODE

ṙi(t) = −rj(t)
∂f̃

(v)
j (z, t, θ̃f)

∂zi
, ri(tn) =

∂L

∂zi(tn)
(68)

Where just like in zi, the index, i, ranges from 1 to 2d in the adjoint ri(t). When writing the sum
over the index explicitly

ṙi = −
2d∑
j=1

rj
∂f̃

(v)
j

∂zi
= −

d∑
j=1

rj
∂f̃

(v)
j

∂zi
−

2d∑
j=d+1

rj
∂f̃

(v)
j

∂zi
(69)

Now split up the adjoint state, r, into two equally sized vectors, rA and rB , where their indices only
range from 1 to d, like x, v, f (a), g and s.

ri =

{
rAi , if i ≤ d
rB(i−d), if i ≥ d+ 1

(70)

Using Equations (64), (65), (66) and (70), and subbing them into Equation (69), the derivative can be
written as

ṙi = −
d∑
j=1

rAj
∂vj
∂zi
−

2d∑
j=d+1

rB(j−d)
∂f

(a)
(j−d)

∂zi
(71)

Relabelling the indices in the second sum (j − d) −→ j

ṙi = −
d∑
j=1

rAj
∂vj
∂zi
−

d∑
j=1

rBj
∂f

(a)
j

∂zi
(72)

Looking at specific values of i:

i ≤ d

ṙi = ṙAi = −
d∑
j=1

rAj
∂vj
∂xi
−

d∑
j=1

rBj
∂f

(a)
j

∂xi
, = −

d∑
j=1

rBj
∂f

(a)
j

∂xi
(73)

i ≥ d+ 1

ṙi = ṙB(i−d) = −
d∑
j=1

rAj
∂vj

∂v(i−d)
−

d∑
j=1

rBj
∂f

(a)
j

∂v(i−d)
(74)

19

Relabelling the first index (i− d) −→ i

ṙBi = −
d∑
j=1

rAj
∂vj
∂vi
−

d∑
j=1

rBj
∂f

(a)
j

∂vi
(75)

Noting that,
∂vj
∂vi

= δij , the time derivatives can be written in vector matrix notation as

ṙA(t) = −rB(t)T ∂f
(a)(x,v, t, θf)

∂x
(76)

ṙB(t) = −rA(t)− rB(t)T
∂f (a)(x,v, t, θf)

∂v
(77)

Differentiating Equation (77), and using Equation (76) for ṙA(t)

r̈B(t) = rB(t)T
∂f (a)(x,v, t, θf)

∂x
− d

dt

(
rB(t)T

∂f (a)(x,v, t, θf)

∂v

)
(78)

This matches the ODE for the second order method in Equation (62). Now applying the initial
conditions, using index notation again

ri(tn) =
∂L

∂zi(tn)
(79)

For i ≤ d
ri = rAi (tn) =

∂L

∂xi(tn)
(80)

For i ≥ d+ 1

ri(tn) = rB(i−d)(tn) =
∂L

∂v(i−d)(tn)
−→ rBi (tn) =

∂L

∂vi(tn)
(81)

Applying these initial conditions in rA and rB to Equation (77)

ṙBi (tn) = −
∂L

∂xi(tn)
− ∂L

∂vj(tn)

∂f
(a)
j

∂vi

∣∣∣∣∣
tn

(82)

By looking at the ODE and initial conditions, it is clear rB is equivalent to the second order adjoint,
in Equation (61). Now looking at the gradients, and including an explicit sum over the index

dL

dθ̃f
= −

∫ t0

tn

2d∑
i=1

ri
∂f̃

(v)
i

∂θ̃f
dt −→ = −

∫ t0

tn

d∑
i=1

rAi
∂vi

∂θ̃f
dt−

∫ t0

tn

2d∑
i=d+1

rB(i−d)
∂f

(a)
(i−d)

∂θ̃f
dt (83)

The first term is zero because v has no explicit θ dependence. The second term, after relabelling and
using summation convention becomes

dL

dθf
= −

∫ t0

tn

rBi (t)
∂f

(a)
i

∂θf
dt = −

∫ t0

tn

rB(t)T
∂f (a)

∂θf
dt (84)

Where θ̃f = θf has been used, as they are both the parameters for the acceleration. This matches the
result for gradients of parameters in the acceleration term θf , when using the second order adjoint
method, because rB is the adjoint.

20

Looking at the gradients related to the initial conditions

dL

dθ̃s
= r(t0)

T ds̃(X0, θ̃s)

dθ̃s
(85)

After going through the previous process of separating out the sums from 1 −→ d and d+ 1 −→ 2d,
then relabelling the indices on rB , this becomes

= rAi (t0)
dsi(X0, θs)

dθ̃s
+ rBi (t0)

dgi(s(X0, θs), θg)

dθ̃s
(86)

Using the expression for rA by rearranging Equation (77), this can be written as

dL

dθ̃s
=

(
−ṙBi (t0)− rBj (t0)

∂f
(a)
j

∂vi

∣∣∣∣∣
t0

)
dsi

dθ̃s
+ rBi (t0)

dgi

dθ̃s
(87)

The parameters θ̃s contain both θs and θg . Looking at θg first, where s(X0, θs) has no dependence

dL

dθg
= rBi (t0)

∂gi(s(X0, θs), θg)

∂θg
= rB(t0)

T ∂g(s(X0, θs), θg)

∂θg
(88)

where
dg

dθg
can be written as a partial derivative, because X0 and θs have no dependence on θg.

This expression is equivalent to
dL

dθg
found using the second order adjoint method. Now looking

at the parameters θs, these parameters are in s(X0, θs) explicitly and g(s, θg), implicitly through s.
Subbing θ̃s = θs into Equation (87) gives

dL

dθs
=

(
−ṙBi (t0)− rBj (t0)

∂f
(a)
j (x,v, t, θf)

∂vi

∣∣∣∣∣
t0

+ rBj (t0)
∂gj(s(X0, θs), θg)

∂si

)
dsi(X0, θs)

dθs

(89)

Using the fact that x(t0) = s, this is the same result for
dL

dθs
found using the second order adjoint

method:

dL

dθs
=

(
rB(t0)

T ∂g(x(t0), θg)

∂x(t0)T
− ṙB(t0)

T − rB(t0)
T ∂f

(a)(x,v, t, θf)

∂vT

∣∣∣∣∣
t0

)
ds(X0, θs)

dθs
(90)

All of the gradients match, so the first order adjoint method acting on z(t) = [x(t),v(t)] will produce
the same gradients as the second order adjoint method acting on x(t). Given by Equation (60).

Looking at the efficiencies of each method and how they would be implemented. Both methods
would integrate the state z = [x,v] forward in time, with ż = [v, f (a)]. Both methods then integrate
z and the adjoint backwards, in the same way. The difference is how the adjoint is represented. In
first order it is represented as [rA, rB] where rB is the adjoint, in second order it is represented as
[r, ṙ] where r is the adjoint.

The time derivatives and initial conditions for the first order adjoint representation are

d

dt
rA(t) = −rB(t)T ∂f

(a)(x,v, t, θf)

∂x

d

dt
rB(t) = −rA(t)− rB(t)T

∂f (a)(x,v, t, θf)

∂v

rA(tn) =
∂L

∂x(tn)

rB(tn) =
∂L

∂v(tn)

(91)

21

The time derivatives and intial conditions for the second order adjoint representation are

d

dt
r(t) = ṙ(t)

d

dt
ṙ(t) = r(t)T

∂f (a)(x,v, t, θf)

∂x
− ṙ(t)T

∂f (a)(x,v, t, θf)

∂v
− r(t)T

d

dt

(
∂f (a)(x,v, t, θf)

∂v

)
r(tn) =

∂L

∂v(tn)

ṙ(tn) = −
∂L

∂x(tn)
− ∂L

∂v(tn)T
∂f (a)(x,v, t, θf)

∂v

∣∣∣∣∣
tn

(92)

Where
d

dt

(
∂f (a)

∂v

)
= [vT , f (a)T , 1]

[
∂x
∂v
∂t

](
∂f (a)

∂v

)
(93)

Looking at Equations (91) and (92), the second order method has the additional term, r ·dt(∂v(f (a))),
in the ODE, and the additional term, (∂vL) · (∂vf (a)) in the initial conditions. The first order method
acting on the concatenated state, [x,v], requires equal or fewer matrix multiplications than the second
order method acting on x, to find the gradients at each step and the initial conditions. This is in the
general case, but also for all specific cases, it is as efficient or more efficient. The same is also true
for calculating the final gradients.

The reason for the difference in efficiencies is the state, rB , is the adjoint, and the state, rA, contains
a lot of the complex information about the adjoint. It is an entangled representation of the adjoint,
contrasting with the disentangled second order representation [r, ṙ]. This is similar to how ANODEs
can learn an entangled representation of second order ODEs and SONODEs learn the disentangled
representation, seen in Section 5.3. However, entangled representations are more useful here, because
they do not need to be interpretable, they just need to produce the gradients, and the entangled
representation can do this more efficiently.

This analysis provides useful information on the inner workings of the adjoint method. It shows
a second order specific method does exist, but the first order method acting on a state z = [x,v]
will produce the same gradients more efficiently, due to how it represents the complexity. This was
specific to second order ODEs, however, the first order adjoint will work on any system of ODEs,
because any motion can be thought of as being first order motion in phase space. Additionally, the
first order method may be the most efficient adjoint method. The complexity going from the first
order to the second order was seen based on the calculation, so this is only likely to get worse as the
system of ODEs becomes more complicated.

C Second Order ODEs are not Homeomorphisms

One of the conditions for a transformation to be a homeomorphism is for the transformation to
be bijective (one-to-one and onto). In real space, a transformation that evolves according to a
second order ODE does not have to be one-to-one. This is demonstrated using a one-dimensional
counter-example

ẍ = 0 −→ x(t) = x0 + v0t

x0 =

[
[0]
[1]

]
, v0 = −x0 + 2 =

[
[2]
[1]

]
If t0 = 0 and tN = 1

x(1) =

[
[2]
[2]

]
So the transformation in real space is not always one-to-one, and therefore, not always a homeomor-
phism.

22

D ANODEs learning 2nd Order

Here we present the proofs for the propositions from Section 5

D.1 Functional Form Proofs

Proposition 5.1.The general form ANODEs learn second order behaviour is given by:[
ẋ
ȧ

]
=

[
F (x,a, t, θF)
G(x,a, t, θG)

]
, G =

(
∂F

∂aT

)−1
left

(
f (a) − ∂F

∂xT
F − ∂F

∂t

)
(94)

Proof. Let z(t) be the state vector [x(t),a(t)]. The time derivatives can be written as[
ẋ(t)
ȧ(t)

]
=

[
F (x,a, t, θF)
G(x,a, t, θG)

]
(95)

Let x(t) follow the second order ODE, ẍ = Ḟ = f (a)(x, ẋ, t, θf). Differentiating F with respect to
time

Ḟ =
∂F

∂xT
ẋ+

∂F

∂aT
ȧ+

∂F

∂t
= f (a)(x, ẋ, t, θf) (96)

Using ẋ = F and ȧ = G

f (a)(x, F, t, θf) =
∂F

∂xT
F +

∂F

∂aT
G+

∂F

∂t
(97)

Rearranging for G

G(x,a, t, θG) =

(
∂F

∂aT

)−1
left

(
f (a)(x, F, t, θf)−

∂F

∂xT
F − ∂F

∂t

)
(98)

In order for the solution of G to exist, the matrix
∂F

∂aT
must be invertible. Either the dimension of

a matches F , x and f (a), so that
∂F

∂aT
is square, or

∂F

∂aT
has a left inverse. Crucially, F must have

explicit a dependence, or the inverse does not exist. Intuitively, in order for real space to couple to
augmented space, there must be explicit dependence.

Using the equation for G(x,a, t, θG), there is a gauge symmetry in the system, which proves
proposition 5.2.

Proposition 5.2. ANODEs can learn an infinity of (non-trivial) functional forms to learn the true
dynamics of a second order ODE in real space.

Proof. Assume a solution for F (x,a, t, θF) and G(x,a, t, θG) has been found such that, Ḟ = f (a)

and F (x0,a0, t0, θF) = ẋ0. If an arbitrary function of x, φ(x), is added to F , where φ(x0) = 0

F̃ (x,a, t, θF) = F (x,a, t, θF) + φ(x) (99)

The initial velocity is still the same. The dynamics are preserved if there is a corresponding change in
G

G̃(x,a, t, θG) =

(
∂(F + φ)

∂aT

)−1(
f (a)(x, F + φ, t, θf)−

∂(F + φ)

∂xT
(F + φ)− ∂(F + φ)

∂t

)
(100)

The proof can end here, however this can be simplified. φ(x) has no explicit a or t dependence, so
this equation simplifies to

G̃ =

(
∂F

∂aT

)−1(
f (a)(x, F + φ, t, θf)−

∂F

∂xT
F − ∂F

∂t
− ∂F

∂xT
φ− ∂φ

∂xT
F − ∂φ

∂xT
φ

)
(101)

23

The term f (a)(x, F + φ, t, θf) can be Taylor expanded (assuming convergence)

f (a)(x, F + φ, t, θf) = f (a)(x, F, t, θf) +

∞∑
n=1

(
∂nf (a)(x, ẋ, t, θf)

∂ẋTn

∣∣∣∣∣
ẋ=F

φn

n!

)
(102)

Which gives the corresponding change in G

G̃ = G(x,a, t, θG)+

(
∂F

∂aT

)−1(∞∑
n=1

(
∂nf (a)

∂ẋTn

∣∣∣∣∣
ẋ=F

φn

n!

)
− ∂F

∂xT
φ− ∂φ

∂xT
F − ∂φ

∂xT
φ

)
(103)

This demonstrates that there are infinite functional forms that ANODEs can learn. This only
considered perturbing functions φ(x). More complex functions can be added that have a or t
dependence, which lead to a more complex change in G. By contrast, we now show SONODEs have
a unique functional form.

Proposition 5.3. SONODEs learn to approximate a unique functional form to learn the true dynamics
of a second order ODE in real space.

Proof. Consider a dynamical system

d2x

dt2
= f(x,v, t), x(t0) = x0, v(t0) = v0 (104)

For these problems we let the loss only depend on the position, if it depends on position and velocity
there would be more restrictions. So if it is true when loss only depends on the position, it is also true
when it depends on both position and velocity.

Assume that there is another system, that has the same position as a function of time

d2x̃

dt2
= f̃(x̃, ṽ, t), x̃(t0) = x̃0, x̃(t0) = ṽ0 (105)

Where f(x,v, t) 6= f̃(x̃, ṽ, t). Because the initial conditions are given the position and velocity are
defined at all times, and therefore position, velocity and acceleration can all be written as explicit
functions of time. x ≡ x(t), v ≡ v(t). This allows for the acceleration to be written as a function of
t only, f(x,v, t) = fτ (t) for all t. The same applies for the second system, x̃ ≡ x̃(t), ṽ ≡ ṽ(t) and
f̃(x̃, ṽ, t) = f̃τ (t)

For all t, x(t) = x̃(t), therefore, for any time increment, δt, x(t+ δt) = x̃(t+ δt). Taking the full
time derivative of x and x̃(t)

dx(t)

dt
= v(t) = lim

δt→0

x(t+ δt)− x(t)

δt
(106)

dx̃(t)

dt
= ṽ(t) = lim

δt→0

x̃(t+ δt)− x̃(t)

δt
(107)

Using these two equations and the fact that x(t) = x̃(t), it is inferred that v(t) = ṽ(t) for all t.
Taking the full time derivative of v(t) and ṽ(t)

dv(t)

dt
= fτ (t) = lim

δt→0

v(t+ δt)− v(t)

δt
(108)

dṽ(t)

dt
= f̃τ (t) = lim

δt→0

ṽ(t+ δt)− ṽ(t)

δt
(109)

Using these two equation and the fact that v(t) = ṽ(t) for all t, it is also inferred that fτ (t) = f̃τ (t)
for all t.

24

Using these three facts, x(t) = x̃(t), v(t) = ṽ(t) and fτ (t) = f̃τ (t). It must also be true that
f(x(t),v(t), t) = f̃(x̃(t), ṽ(t), t) −→ f(x,v, t) = f̃(x,v, t). Therefore the assumption that
f(x,v, t) 6= f̃(x̃, ṽ, t) is incorrect, there can only be one functional form for f(x,v, t).

Additionally, using v(t) = ṽ(t) for all t, the initial velocities must also be the same.

D.2 ANODEs Learning Two Functions

In Section 5.1, it was shown that ANODEs were able to learn two functions at the same time

x1(t) = e−γt sin(ωt), x2(t) = e−γt cos(ωt) (110)

using the solution [
ẋ
ȧ

]
=

[
Ca− ωx− γx+ ω

ωa− γa− 1
C (2ω

2x+ γω − ω2)

]
, (111)

This is a specific case of the general formulation given by Equation (8). When the problem is
generalised to have mixed amounts of sine and cosine in each function

x1(t) = e−γt(A1 sin(ωt)+B1 cos(ωt)), x2(t) = e−γt(A2 sin(ωt)+B2 cos(ωt)) (112)

ANODEs are still able to learn these functions, shown in the first plot of Figure 11. As shown
previously, if F (x,a, t, θF) gets the addition, αx + β, then the ODE is preserved if G(x,a, t, θG)

also gets the addition
−1
C

((α−ω+ γ)(αx+ β)+α(Ca−ωx− γx+ω)), given by Equation (103).
This gauge change preserves the ODE, but gives a new expression for the initial velocity

ẋ(0) = −ωx(0)− γx(0) + ω + αx(0) + β = α̃x(0) + β̃ (113)

which can be written in matrix-vector notation as[
x1(0) 1
x2(0) 1

] [
α̃

β̃

]
=

[
ẋ1(0)
ẋ2(0)

]
(114)

There are two equations and two unknowns, α̃ and β̃, so this is possible to solve, and for ANODEs to
learn.2 To test this even further we added a third function to be learnt. ANODEs were able to do this,
shown in the second plot of Figure 11.3

E Experimental Setup and Additional Results

We anticipate two main uses for SONODEs. One is using an experiment in a controlled environment,
where the aim is to find values such as the coefficient of friction. The other use is when data is
observed, and the aim is to extrapolate in time, but the experiment is not controlled, for example,
observing weather. We would expect for the former, a simple model with only a single linear layer
would be useful, to find those coefficients, and for the latter, a deeper model may be more appropriate.
Additionally, Neural ODEs may be used in classification or other tasks that only involve the start and
endpoints of the flow. For all of these tasks we used t0 = 0 and t1 = 1, and accelerations that were
not time-dependent. For tasks depending on the start and endpoint only, a deeper neural network is
more useful for the acceleration.

For all experiments, except the MNIST experiment, we optimise using Adam with a learning rate
of 0.01. We also train on the complete datasets and do not minibatch. All the experiments were
repeated 3 times to obtain a mean and standard deviation. Depending on the task at hand, we used
two different architectures for NODEs, ANODEs and SONODEs. The first is a simple linear model,

2There are trivial cases where this would be impossible. For example if the two functions were ±sin(ωt),
they would have the same initial position, but different initial velocities. Corresponding to the matrix in Equation
(114) having zero determinant.

3The figure also shows that when trajectories cross in real space they do not in augmented space, and when
they cross in augmented space they do not in real space, supporting Proposition 4.1.

25

0 2 4 6 8 10

t

−2

0

2

4

6

x
1
,x

2
,a

1
,a

2

ANODE(1) Double Function
Learnt x1

Learnt x2

a1

a2

0 2 4 6 8 10

t

−4

−2

0

2

4

x
1
,x

2
,x

3
,a

1
,a

2
,a

3

ANODE(1) Triple Function
Learnt x1

Learnt x2

Learnt x3

a1

a2

a3

Figure 11: ANODE(1) learning two functions (left) and three functions (right), with a shared ODE,
but different initial conditions. The real trajectories are seen going through their sampled data
points, and the corresponding augmented trajectories are also plotted. ANODE(1) is able to learn the
trajectories.

one weight matrix and bias without activations. This architecture, in the case of NODEs, ANODEs
and SONODEs, was used on Silverbox, Airplane Vibrations and Van-Der-Pol Oscillator, with the
aim of extracting coefficients from the models, for these tasks we also allowed ANODEs to learn the
initial augmented position. The second architecture is a fully connected network with two hidden
layers of size 20, it uses ELU activations in ż and tanh activations in the initial conditions. ELU and
tanh were used because they allow for negative values in the ODE [14].

When considering ANODEs, they are in a higher-dimensional space than the problem, and the result
must be projected down to the lower dimensions. This projection was not learnt as a linear layer,
instead, the components were directly selected, using an identity for the real dimensions, and zero for
the augmented dimensions. This was done because a final (or initial) learnt linear layer would hide
the advantages of certain models. For example, the parity problem can be solved easily if NODEs
are given a final linear layer, do not move the points and then multiply by -1. For this reason, no
models used a linear layer at the end of the flow. Equally, they do not initialise with a linear layer as
they again hide advantages. For example, the nested n-spheres problem, NODEs can solve this with
an initial linear layer, if they were to go into a higher-dimensional space the points may already be
linearly separated, as shown by Massaroli et al. [14].

E.1 Van Der Pol Oscillator

ANODEs and SONODEs were tested on a forced Van Der Pol (VDP) Oscillator that exhibits chaotic
behaviour. More specifically, the parameters and equations of the particular VDP oscillator are:

ẍ = 8.53(1− x2)ẋ− x+ 1.2 cos(0.2πt), x0 = 0.1, ẋ0 = 0 (115)

As shown in Figure 12, while ANODEs achieve a lower training loss than SONODEs, their test loss
is much greater. We conjecture that, in the case of ANODEs, this is a case of overfitting. SONODEs,
on the other hand, can better approximate the dynamics, therefore they exhibit better predictive
performance. Note that, neither model can learn the VDP oscillator particularly well, which may be
attributed to chaotic behaviour of the system at hand.

E.2 Third Order NODEs on Airplane Vibrations

We test Third Order Neural ODEs (TONODEs) on the Airplane Vibrations task from section 6.2. The
results are in Figure 13.

We see that TONODEs vastly underperform compared to ANODEs and SONODEs. In each of
the 3 repetitions of the experiment, the different initialisation found the best solution to be at zero.
Therefore, whilst the loss stays constant, the error remains large. We hypothesise that despite

26

0 200 400 600 800 1000

Iterations

0

1

2

3

4

5

6

7

M
S

E

VDP Oscillator Training MSE
SONODE

ANODE(1)

0 25 50 75 100 125 150 175 200

t

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

x

VDP Oscillator Displacement

True VDP

SONODE

ANODE(1)

0 25 50 75 100 125 150 175

t

1

2

3

4

5

6

R
u

n
n

in
g

A
ve

ra
ge

R
M

S
E

VDP Oscillator Running Error
SONODE

ANODE(1)

Figure 12: ANODE(1) and SONODE learning a Van-Der-Pol Oscillator: training loss curves (left),
predicted value (middle), and running error (right). The models were trained on the first 70 points
and extrapolated to 200. ANODEs are able to converge to a lower training loss, however they diverge
when extrapolating.

0 200 400 600 800 1000

Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
S

E

Airplane Training MSE
SONODE

ANODE(1)

TONODE

0 1000 2000 3000 4000 5000

t

−1.0

−0.5

0.0

0.5

1.0

a
2

Airplane a2

True a2

SONODE

ANODE(1)

TONODE

0 1000 2000 3000 4000

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
u

n
n

in
g

A
ve

ra
ge

R
M

S
E

Airplane Running Error
SONODE

ANODE(1)

TONODE

Figure 13: Repeating the Airplane Vibrations task with third order NODEs (TONODEs): training loss
curves (left), predicted value (middle), and running error (right). We see that, in this case, TONODEs
are not as successful at modelling these dynamics as SONODEs and ANODEs, having a larger error
both on the training data and the extrapolation.

theoretically being able to perform at least as well as SONODEs, TONODEs avoid exponentially
growing at any point by exponentially decaying towards zero. It is likely that by rescaling the time to
be between 0 and 1, TONODE would approach a more accurate solution.

E.3 First Order Dynamics and Interpolation

SONODEs contain NODEs as a subset of models. Consider first order dynamics that is approximated
by the NODE

ẋ = f (v)(x, t, θ̃f) (116)

Carrying out the full time derivative of Equation (116):

ẍ =
∂f (v)(x, t, θ̃f)

∂xT
ẋ+

∂f (v)(x, t, θ̃f)

∂t
, ẋ(t0) = f (v)(x(t0), t0, θ̃f) (117)

Which yields the SONODE equivalent of the learnt dynamics:

f (a)(x,v, t, θf) =
∂f (v)(x, t, θ̃f)

∂xT
v +

∂f (v)(x, t, θ̃f)

∂t
, g(x(t0), θg) = f (v)(x(t0), t0, θ̃f)

(118)

Additionally, it was shown in Equation (4) that SONODEs are a specific case of ANODEs that learn
the initial augmented position. Therefore, anything that NODEs can learn, SONODEs should also be
able to learn, and anything SONODEs can learn, ANODEs should be able to learn. To demonstrate
that SONODEs and ANODEs can also learn first order dynamics, we task them with learning an
exponential with no noise, x(t) = exp(0.1667t). All models, as expected, are able to learn the
function, as shown in Figure 14.

27

0 2 4 6 8 10

t

1

2

3

4

5

x

NODE

Learnt

exp(0.1667t)

Sampled

Test

0 2 4 6 8 10

t

1

2

3

4

5

x

ANODE(1)

Learnt

exp(0.1667t)

Sampled

Test

0 2 4 6 8 10

t

1

2

3

4

5

x

SONODE

Learnt

exp(0.1667t)

Sampled

Test

Figure 14: NODE (left), ANODE(1) (middle) and SONODE (right) learning an exponential (simple
first order dynamics) and interpolating between two observation sections. As expected, all models
are able to learn the function.

E.4 Performance on MNIST

NODEs, SONODEs and ANODEs were tested on MNIST [11] to investigate their ability on classifi-
cation tasks. The networks used convolutional layers, which in the case of SONODEs were used for
both the acceleration and the initial velocity. ANODEs were augmented with one additional channel
as is suggested by Dupont et al. [4]. The models used a training batch size of 128 and test batch size
of 1000, as well as group normalisation. SGD optimiser was used with a learning rate of 0.1 and
momentum 0.9. The cross-entropy loss was used. The experiment was repeated 3 times with random
initialisations to obtain a mean and standard deviation. The results are given in table 1 and Figure 15.

Table 1: Results for the MNIST experiments at convergence. SONODE converges to a higher test
accuracy than NODEs with a lower NFE. ANODEs converge to the same higher test accuracy with a
higher NFE, but with a lower parameter count than SONODEs.

Model Test Accuracy NFE

NODE 0.9961 ± 0.0004 26.2 ± 0.0
SONODE 0.9963 ± 0.0001 20.1 ± 0.0
ANODE 0.9963 ± 0.0001 32.2 ± 0.0

In terms of test accuracy, SONODEs and ANODEs perform marginally better than NODEs. ANODEs
can achieve the same accuracy with fewer parameters than SONODEs because the dynamics are
not limited to second order and it is only the final state that is of concern in classification. However,
SONODEs are able to achieve the same accuracy with a lower number of function evaluations
(NFE). NFE denotes how many function evaluations are made by the ODE solver, and represents
the complexity of the learnt solution. It is a continuous analogue of the depth of a discrete layered
network. In the case of NODEs and ANODEs, the NFE gradually increases meaning that the
complexity of the flow also increases. However, in the case of SONODEs, the NFE stays constant,
suggesting that the initial velocity was associated with larger gradients (otherwise we would expect
NFE to increase for SONODEs with training).

0 20 40 60 80 100 120

Epoch

0.994

0.995

0.996

0.997

0.998

0.999

1.000

R
u

n
n

in
g

T
ra

in
in

g
A

cc
u

ra
cy

MNIST Training Accuracy

NODE

SONODE

ANODE

0 20 40 60 80 100 120

Epoch

0.991

0.992

0.993

0.994

0.995

0.996

0.997

R
u

n
n

in
g

T
es

t
A

cc
u

ra
cy

MNIST Test Accuracy

0 20 40 60 80 100 120

Epoch

20

22

24

26

28

30

32

N
F

E

MNIST NFE

Figure 15: Comparing the performance of SONODEs and NODEs on the MNIST dataset: train
accuracy (left), test accuracy (middle), NFE (right). SONODEs converge to the same training
accuracy and a higher test accuracy with a lower NFE than NODEs. NODEs had 208266 parameters,
SONODEs had 283658 and ANODEs had 210626. Additional parameters were associated with the
initial velocity, or the augmented channel.

28

