GPU-Accelerated Primal Learning for Extremely Fast
Large-Scale Classification: Supplementary Material

John T. Halloran David M. Rocke
Department of Public Health Sciences Department of Public Health Sciences
University of California, Davis University of California, Davis

jthalloran@ucdavis.edu dmrocke@ucdavis.edu

1 GPU speedups training a logistic regression classifier in PyTorch

A binary logistic regression classifier was implemented in PyTorch (v1.4.0) and trained over
the rcvl dataset to illustrate the speed ups possible using a GPU (Nvidia Tesla V100) ver-
sus only multithreading (24 CPU threads using an Intel Xeon Gold 5118). Speedups were
tested for both batch gradient descent (with a 0.001 learning rate) and L-BFGS. The rcvl
dataset was downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary/rcvl_train.binary.bz?2. Gradient descent converged after 3,000 it-
erations and L-BFGS converged after 100 iterations. For reference, a logistic regression classifier was
trained using single-threaded TRON (as implemented in scikit-learn v0.20.4). All code is available
in pyTorchLogisticRegression_rcvl.py.

Solver CPU training time (s) | GPU training time (s) | GPU Speedup
Gradient descent 395.58 27.05 14.63
L-BFGS 40.56 3.1 13.08
TRON (scikit-learn) 0.29 — —

Table 1: Logistic regression training times, measured in seconds, for the rcv1 dataset. Gradient
descent and L-BFGS solvers are implemented in PyTorch, and single-threaded TRON is implemented
in scikit-learn.

2 Derivation of TRON Hessian-vector products

Consider feature vectors «; € R",i = 1,...,l and label vector y € {-1, 1}1, and let X =
[€1...2]T be the feature matrix. For vectors, index-set subscripts denote subvectors and for
matrices, pairs of index-set subscripts denote submatrices. Let 1 denote the indicator function.

The general Lo-regularized objective, which we wish to minimize w.r.t. w, is

l

L r
f(w) =W w+C;€(w§mi,yi)a 1
where %'wT'w is the regularization term, C' > 0 is a regularization hyperparameter, and ¢(w; x;, y;) is

a loss function. When ¢(w; x;,y;) = log(1 + exp (—y;wT z;), commonly referred to as the logistic
loss, minimizing Equation 1 corresponds to learning a classifier using logistic regression. Similarly,
minimizing Equation 1 when £(w; z;,v;) = (max(0,1 — y;w? ;))?, commonly referred to as the
L2-SVM or quadratic SVM loss, corresponds to learning a linear SVM classifier. The logistic loss
results in an objective function that is twice differentiable and the L2-SVM loss yields a differentiable

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/rcv1_train.binary.bz2
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/rcv1_train.binary.bz2

objective (unlike the hinge loss) with a generalized Hessian [2]). We denote Equation 1 under the
logistic loss as f] r and, under the L>-SVM loss, as f] 5.

TRON is detailed in Algorithm 1. At each iteration, given the current parameters w and trust region
interval A, TRON considers the following quadratic approximation to f(w + d) — f(w),

o(d) = Vfw)d + 5"V (w)d @

A truncated Newton step, confined in the trust region, is then found by solving

m(}n q(d) st |d|2 < A. 3)

If g(d) is close to f(w + d) — f(w), w is updated to w + d and the trust region interval is increased
for the subsequent iteration. Otherwise, w remains unchanged and the trust region interval is shrunk.

Algorithm 1 The TRON algorithm

1: Given w, A, and o

2: Calculate f(w) /I Critically depends on z = X" w
3: while Not converged do
4: Find d = argmin,, ¢(v) s.t. [|[v|]2 < A. /I Critically depends on V f (w), V2 f(w)v

5 Calculate f(w +d), o M’%W /I Critically depends on z = X7 (w + d)
6 if o > o¢ then

7: w < w + d, increase trust region A.

8: else

9 Shrink A.

0 end if

1: end while

Note that the function evaluation f(w) must be computed for each new iteration, as well as the
gradient and the Hessian for Equation 2. However, Equation 2 involves only a Hessian-vector product,
computation of which circumvents loading the entire Hessian into memory. For the logistic loss, we
have

VARw) =w + CZ (ywz;) — Vyiz, “4)

where h(y;wTz;) = (1 + =¥ @)= For the L2-SVM loss, we have
V fio(w) —w+20X7z :w+2CXIT’;(X1}:w—y1), (5)

where I = {i|l — y;w”x; > 0} is an index set and and the operator : denotes all elements along the
corresponding dimension (i.e., all columns in this case). Thus, X7 . is the submatrix of all X rows
the indices of which are in 1.

Equation 3 involves only a single Hessian-vector product, the structure of which is exploited to avoid
loading the entire Hessian into memory. For the logistic loss, we have

V2 fir(w) =T + CX" DX, (6)

where D is a diagonal matrix with elements D; ; = h(y;w” z;)(1 — h(y;wT x;)). Thus, for a vector
v, the Hessian-vector product is efficiently computed as V2 f] g (w)v = v + CX T (D(Xv)). For
the L2-SVM loss, we have

V2 fia(w) =T +2CX"DX =T +20X] X, (7)

where D is a diagonal matrix with elements D;; = 1;c;. The Hessian-vector product is thus
efficiently computed as V2 f] 5 (w)v = v + QCXZZ(X[’:’U).

3 Concealing large-memory transfer latency between the host and device

To optimally conceal device-to-host transfer latency while maximizing host and device parallelism, it
is necessary to:

(a) Add all dependent device-functions involving the data to be sent to an asynchronous device
stream, s,

(b) add the transfer of the data from device-to-host to s,

(c) run independent host and/or device operations,

(d) synchronize s just prior to running a dependent operation on the host.

(e) Note that if the dependent data needed from the device on the host is a scalar, it may be
returned without latency.

The other direction is slightly different. To optimally conceal host-to-device transfer latency while
maximizing host and device parallelism, it is necessary to:

(a) launch the transfer on a device stream as soon as the data is available,
(b) add all dependent device-functions involving the data being sent to the device stream.

It is easy to see that algorithms with many sequential dependencies are at odds with these principles
(they reveal transfer latency while minimizing host/device parallelism).

4 Optimization of TRON-LR Hessian-vector products for GPUs

We complete the total GPU-optimization of TRON-LR by considering the remaining bottleneck, the
Hessian-vector product V2 f] g (w)v = Z + CXT(D(Xw)). As with the previous optimizations,
device variables are maximally decoupled from host-side dependencies, while using device-side
functions which allow peak performance. In particular, we compute the diagonal matrix D in the
same custom CUDA kernel used to compute £ (where D; ; = h(y;2;)(1 — h(y;2z;)). D is also used
in later host computations (for preconditioning [1]), so D is immediately transferred from device to
host on an asynchronous device stream (the stream is synchronized just prior to host-variable use).

The candidate Newton step v (which is only of dimension n) is transferred from device to host
on an asynchronous stream, and the following decompositions of V2 JLR (w)v are added to this
same stream: ag = Xv,a; = Dag,as = CXTa;. ay and a, are computed using CUSPARSE,
while a; is computed using a custom kernel for element-wise multiplication along D’s diagonal.
V2 JLR (w)v is then transferred from host to device. However, the rest of the conjugate procedure
is sequentially dependent on the dot-product v7'V? fiR (w)v. In order to relieve this dependence
while the V2 f| g (w)v transfers from device to host, v V? f] g (w)v is computed on the device and
the resulting scalar is available immediately to the host.

S Summary of major TRON-LR-GPU operations

The following summarizes the major operations of the GPU-optimized TRON logistic regression
solver, TRON-LR-GPU, as described in the main paper and herein. For each set of operations, the
original lines from Algorithm 1 being optimized are listed in red.

e z = Xw is calculated and stored on the device (lines 2 and 5).

¢ The vectors «, Z and diagonal matrix D are calculated on the device, such that «
log(1/h(yizi)), 2 = (h(yizi) —)ys, and D;; = h(yizi)(1 — h(yizi)), where h(y;z;)
(1 4+ e~¥#)~! (lines 2 and 5). D is asynchronously transferred back to the host for future
preconditioning computations.

* With « in device memory, the objective fi g (w) = JwTw + C ' log(1 + exp (—y;2;)) =

%wTw +C Zi:l o is computed (lines 2 and 5).

* With 2 in device memory, the gradient V f g (w) = w + X 7% is computed and transferred
asynchronously back to the host (line 7).

* While all the above device-side quantities are being computed, the host runs independent,
sequential operations concurrently, synchronizing the transfer streams for D and V f| g (w) just
prior to host-side use (lines 7 and 4, respectively).

* The Hessian-product is computed on the device as V2 f] g (w)v = v + CX 7 (D(Xv)). Subse-

quently, the vector-Hessian-vector product v’ V? fLR (w)v is computed on the device and the
resulting scalar is immediately available to the host (line 4).

6 Benchmark Dataset Statistics

Dataset #instances #features #nonzeros
rcvl 20,242 47,236 1,498,952
SUSY 5,000,000 18 88,938,127
HIGGS 11,000,000 28 283,685,620
KDD2010-b 19,264,097 29,890,095 566,345,888
url 2,396,130 3,231,961 277,058,644
real-sim 72,309 20,958 3,709,083
Kim 23,330,311 18 419,945,598
Wilhelm 215,282,771 18 3,875,089,878

Table 2: Sparse and dense benchmark dataset statistics for TRON-LR and TRON-SVM, respectively.

References

[1] Chih-Yang Hsia, Wei-Lin Chiang, and Chih-Jen Lin. Preconditioned conjugate gradient methods
in truncated newton frameworks for large-scale linear classification. In Asian Conference on
Machine Learning, pages 312-326, 2018.

[2] S. S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale
linear svms. Journal of Machine Learning Research, 6(Mar):341-361, 2005.

	GPU speedups training a logistic regression classifier in PyTorch
	Derivation of TRON Hessian-vector products
	Concealing large-memory transfer latency between the host and device
	Optimization of TRON-LR Hessian-vector products for GPUs
	Summary of major TRON-LR-GPU operations
	Benchmark Dataset Statistics

