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The supplementary material provides additional details on experiments and theory discussed in the
main paper. The figure and equation numbers are continued from the main paper.

1 Additional Details on Public Datasets

Auto MPG: This dataset is obtained from https://archive.ics.uci.edu/ml/datasets/
Auto+MPG. The features correspond to the various attributes of a model of a car, and the outcome is
miles per gallon. This is the only regression dataset used.

Retention: This is a synthetic dataset that is generated using https://github.com/IBM/
AIX360/blob/master/aix360/data/ted_data/GenerateData.py. The features correspond
to job position, organization, performance, compensation, and tenure of an employee and the outcome
is whether the employee will leave the organization (1) or not (0). We choose to explain class 1.

HELOC: This dataset is obtained from https://community.fico.com/s/
explainable-machine-learning-challenge?tabset-3158a=2. The HELOC dataset
had about 10000 instances, and some instances were basically empty and were excluded. From the
rest, we used only the first 1000 instances both in the user study (Sections 4.3 and 4.2) in order to
speed up explanation generation. The dataset had two labels - 0 indicating default on loan, and 1
indicating full repayment. We choose to explain class 1. The features correspond to financial health
of people who apply for a loan.

Waveform: The dataset was obtained from https://archive.ics.uci.edu/ml/datasets/
Waveform+Database+Generator+(Version+1). The outcome variable is 3 classes of waves (0,
1, 2) and the features are noisy combinations of 2 out of 3 base waves. We choose to explain class 0.

ATIS: This dataset contains short texts along with 26 intents (labels) associated to each text, in
a air travel information system. This dataset was obtained from https://www.kaggle.com/
siddhadev/ms-cntk-atis and processed using the code provided in https://www.kaggle.
com/siddhadev/atis-dataset-from-ms-cntk. We used the slot filling IOB labels as input
features after binarization - any value greater than 0 will be coded as 1. We also removed the last
feature (O). The dataset is used for intent classification 26 intents and we choose to explain the class
flight. We use the train and test partitions provided in the dataset itself, with 4978 and 893 examples
respectively.

2 (Hyper-)Parameter Settings in Experiments

Evaluation on Public Datasets and the User Study: The neighborhood size |Ni| was set to 10
when running LIME to generate the leaf explanations. We found this size to be reasonable since
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larger sizes will make the codes run slower. We also found the default kernel width setting in LIME
(0.75 ∗ √p) worked well, so we used that. The number of non-zero coefficients in an explanation
(a.k.a. explanation complexity) was set at 5, since we found it to be a good number for users to digest
multiple explanations. The public datasets were evaluated using 5−fold cross validation, except for
ATIS which came with its own train-test partition. The training partitions were used to train the
black box model and the explanation methods. Results were generated using the test partition,s and
averaged.

When running MAME and Two Step, we set the multiplicative step-size t to 1.01, the initial regu-
larization level for β, ε = 1e− 10. We used 10 conjugate gradient iterations when solving for Θ in
(4).

Evaluation for the Expert Study: The neighborhood size |Ni|was set to 15 here. Side information
(refer Section 6 Study 2) from expert identifying pumps with the same manufacturer type consisted
of 2155 edges. The explanation complexity for MAME was set at 3 (Figure 3). Figure 1 does not
encode any side information and the complexity was set at 4. There were a total of 426 levels in the
tree in Figure 1. The remaining parameters were set as mentioned above for the public datasets.

3 Computing Infrastructure

We ran the codes in an Ubuntu machine with 64 GB RAM and 32 cores. For the ATIS dataset alone,
we used a machine with 250 GB RAM to avoid memory issues. Both MAME and Two Step were
implemented without explicit parallelization, and the parallel operations only happened implicitly
in Linear Algebra libraries. The codes were written in Julia 1.3 and also utilized some Python 3.7
libraries (e.g., for RF and MLP model building).

4 Note on Two Step Method Implementation

Since the optimization for Two Step method discussed in Section 3 is a special case of that of
the MAME method in (1), we re-purposed the code written for MAME method by re-defining the
variables and setting parameters appropriately.

5 Additional Evaluation on Public Datasets

In addition to using the explanation infidelity measure, we also use a generalized fidelity measure for
understanding the trustworthiness of the explanations generated. Similar to the infidelity measure,
we associate novel test examples to explanations, and then compute the R2 of the prediction from
the linear explanation model with respect to the black-box model’s prediction. The R2 value is
the generalized fidelity. We compute this for MAME and Two Step for each level in the tree and
compare the levels that have the same number of groups/clusters as the depth of the trees may vary.
We also compute this measure for SP-LIME by varying the number of representative explanations
from 1 to the total number of training examples. We remark that the 1−nearest neighbor association
is meaningful since LIME explanations (which also form the basis for Two Step and MAME) are
optimized to work well in the neighborhood of each training data point.

The average generalized fidelity measures for the datasets for RF and MLP black-boxes are given
in Table 1. Averaging is done in a similar way as the Explanation Infidelity measure discussed in
Section 4.2(a). MAME is either the best or the second best in all cases. On an average, across all
datasets, MAME improves generalized fidelity with respect to SP-LIME and two-step by 27% and
14% for RF, and 34% and 10% for MLP. In addition, we can see from the table that in 6 out of 10
datasets, SP-LIME produces negative R2 values for at least one set of representative explanations,
and this makes it an unreliable explanation method.

6 Expert Study with Oil & Gas Industry Dataset

We provide a full description of the case study described in Section 4.4 from the main paper.
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Dataset Random Forest MLP
SP-LIME Two Step MAME SP-LIME Two Step MAME

Auto MPG 0.92 0.92 0.93 0.75 (0.68) 0.84 0.83
Retention 0.22 (-0.03) 0.49 0.48 0.25 (-0.03) 0.41 0.40
HELOC 0.63 0.43 0.55 0.19 (0.16) 0.21 0.25

Waveform 0.65 0.46 0.61 0.36 0.32 0.41
ATIS 0.50 (0.35) 0.63 0.69 0.43 (0.25) 0.63 0.67

Table 1: Average generalized fidelity measure over all clusters/levels computed for the three compared
methods with the black box models. The first and second best numbers are respectively in bold and
italics. The numbers in parenthesis represent true average R2 taking negative values into account,
whereas the ones outside are averages with negative set to 0. Overall, MAME improves generalized
fidelity with respect to SP-LIME and Two Step by 27% and 14% for RF, and 34% and 10% for MLP.

We perform a case study with a real-world industrial pump failure dataset (classification dataset) from
the Oil & Gas industry. The pump failure dataset consists of sensor readings acquired from 2500 oil
wells over a period of four years that contains pumps to push out oil. These sensor readings consist of
measurements such as speed, torque, casing pressure (CPRESS), production (ROCURRRATE) and
efficiency (ROCEFF) for the well along with the type of failure category diagnosed by the engineer.
In this dataset, there are three major failure modes: Worn, Reservoir and Pump Fit. Worn implies
the pump is worn out because of aging. Reservoir implies the pump has a physical defect. Pump
Fit implies there is sand in the pump. From a semantics perspective, there can be seven different
types of pumps in a well which can be manufactured separately by fourteen different vendors. We are
primarily interested in modeling reservoir failures as they are the more difficult class of failures to
identify. The black-box classifier used was a 7-layer multilayer perceptron (MLP) with parameter
settings recommended by scikit-learn MLPClassifier. The dataset had 5000 instances 75% of which
were used to train the model and the remaining 25% was test.

We conducted two types of studies here. One where we obtained explanations without any side
information from the experts and the other where we were told certain groups of pumps that should
exhibit similar behavior and hence should have similar explanations for their outputs.

Study 1- Expert Evaluation: In this study, we built the MAME tree on the training instances. We
picked a level which had 4 clusters guided by expert input given the dataset had 4 prominent pump
manufacturer groups. In Figure 1 from the main paper, in the introduction, we show the root and
example leaves and the level with 4 clusters (level 380), where two of these clusters are shown that
the expert felt were semantically meaningful. The expert said that the two clusters had semantic
meaning in that, although both clusters predominantly contained the same type of Progressive Cavity
pump (main pump type of interest), they were produced by different manufacturers and hence, had
somewhat different behaviors. Two of the manufacturers were known to have better producing pumps
in general which corresponds to the explanation on the right compared to that on the left which
had pumps from all other mediocre producing manufacturers, which was consistent with on-field
observations. Hence, the result uncovered by MAME without any additional semantic information
gave the expert more trust in the model that was built.

Study 2- Expert Evaluation with Side Information: In this study, the expert provided us a grouping
of pumps that should have similar explanations. We incorporated this knowledge (W ) (refer Eqn. (1)
from main paper) into both MAME and Two Step (which also has the fusion term in its formulation).
Based on expert input, we picked the level in the tree generated both by MAME and Two Step
which had four clusters (as done in Study 1). The expert observed that none of the four clusters
obtained from Two Step were homogeneously aligned with the four pump manufacturer groups (prior
knowledge incorporated). However, two of the bigger homogeneous clusters in the MAME tree
which are shown in Figure 3 were of interest to the expert. The expert provided the following insights
for both these clusters: all non-producing (Well-down category) pumps in the homogeneous cluster
in Figure 3g are more likely to be used in a run-to-failure scheme where they are used rigorously (i.e.
at higher speed, ROCURRRATE and CPRESS) than they would be run regularly which explains why
these factors impact reservoir type failures here.

All Producing pumps in the homogeneous cluster in Figure 3e on the other hand keep producing
oil adequately for longer periods while operating at optimal efficiency (slightly lower than max
efficiency). Also operating these producing pumps with lower torque (caused by the helical rotor
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(a) Two Step Cluster 1 (b) Two Step Cluster 2

(c) Two Step Cluster 3 (d) Two Step Cluster 4

(e) MAME Cluster 1 (Producing pumps) (f) MAME Cluster 2

(g) MAME Cluster 3 (Non-Producing pumps) (h) MAME Cluster 4

Figure 3: Expert study on Oil & Gas Industry dataset depicting exemplar explanations for levels with
four clusters using both MAME and Two Step with Side Information.

in the pump) can elongate their operational lifetime and reduce likelihood for imminent failure.
These insights helped the expert to build more trust in MAME. Both these expert studies were also
conducted on the same computing infrastructure described above, and they completed execution in
10 minutes or less in a single core.

7 Approximation Quality and Timing Comparisons between the Exact and
AR-based methods

In order to demonstrate the approximation quality between Exact and AR-based solutions, we plot
the approximate quality and timing between the two methods. Note that the exact method runs the
ADMM iterations in (4)-(8) several times for each β value until convergence, whereas the AR-based
method runs the iterations only once for each β value.

We use the Auto MPG dataset (both train and test partition together) to obtain a RF regres-
sor black box model and train MAME trees. We set ε = 1e − 10 and choose t from
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{1.01, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5}. We therefore run the exact and AR-based methods 7 times each,
one for each value of t. Both the exact and AR-based methods are warm-started using the solution
for previous value of β. The approximation quality is measure by a normalized version of the
measure given in Theorem 3.1. The normalization factor that divides the measure is pnµ where
µ = maxi,j:(i,j)∈E ‖θ

(0)
i −θ

(0)
j ‖2. Note that the superscript (0) indicates that the explanations belong

to the leaf nodes.

From Figure 4, we see that the exact and approximate solutions get closer as t→ 1 as predicted by
the theory. We also see from Figure 5 that the AR-based solution is around 10 times faster to compute
than the exact solution for all t values. Both these results demonstrate the utility of the AR-based
approximate method.

Figure 4: Normalized distance between exact and AR-based solutions.

Figure 5: Runtime comparison between exact and AR-based solutions.

8 Proof Sketch of Lemma 3.1

Proof Sketch. If Op denotes the objective in equation 1 being optimized at level p, then Op =

Op−1 + ∆p

(∑
i<j wij‖θi − θj‖2

)
, where ∆p = βp − βp−1. We know that ∆p > 0 by design and

so we have an added penalty.

If at the optimal of level p, ‖θ(p)
i − θ

(p)
j ‖2 > ‖θ

(p−1)
i − θ(p−1)

j ‖2 for some xi and xj , then that would
imply that the other two terms in the objective reduce enough to compensate for the added penalty.
However, this would imply that θ(p−1)

i and θ(p−1)
j were not the optimal solution at level p− 1 as the

current solution would be better given the lesser emphasis on the last term (i.e. lesser β) at that level.
This contradicts our assumption.
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9 Linear Convergence of ADMM for MAME

Strong convexity of the objective function ensures linear convergence of the ADMM method in
practice. However, in the absence of strong convexity certain additional criteria need to be satisfied to
have linear convergence. Hong and Luo in their paper [1] established the global linear convergence
of ADMM for minimizing the sum of any number of convex separable functions expressed in the
form below.

minimze f(x) = f1(x1) + f2(x2) + . . .+ fK(xK) (10)
subject to Ex = E1x1 + E2x2 + . . .+ EKxK = q

xk ∈ Xk, k = 1, 2, . . . ,K

The major assumptions imposed by the authors in their paper to prove the linear convergence for the
function f(x) are the following

1. Each fk can further be decomposed as fk(xk)=gk(Akxk) + hk(xk) where gk and hk are
both convex and continuous over their domains.

2. Each gk is strictly convex and continuously differentiable with a uniform Lipschitz continu-
ous gradient.

‖∇ATk gk(Axk)−ATk∇gk(Ax
′

k)‖ ≤ L‖xk − x
′

k‖

3. Each hk satisfies either one of the following conditions
• The epigraph of hk(xk) is a polyhedral set.
• hk(xk) = λk‖xk‖1 +

∑
J wJ‖xk,J‖2 where xk = (. . . , xk,J , . . .) is a partition of xk

with J being the partition index.
• Each hk(xk) is the sum of the functions described in the previous two terms.

4. For any fixed and finite y and ξ,
∑
k hk(xk) is finite for all x ∈ {x : L(x; y) ≤ ξ} ∩X .

5. Each submatrix Ek has full column rank.
6. The feasible sets Xk, k = 1, . . . ,K are compact polydedral sets.

In Equation 10, each fk is a convex function subject to linear equality constraints. Our original
MAME problem in Equation 2 can be written in the form below as in Equation 11, which satisfies all
the necessary criteria specified above from 1-6. For example, it is known that the epigraph of the `1
norm is a polydedral set. The I identity matrix and the difference matrix D satisfy the full column
rank condition also.

Hong and Luo [1] additionally mentions that each fk may only consist of the convex non-smooth
function hk and the strongly convex part gk can be absent. This helps us ensure that the two sparsity
inducing norm terms in our formulation on U and V do not violate any of the conditions stated. To
understand the proof of convergence, we recommend the readers to go through the proof provided in
Hong and Luo [1]. This completes the proof for linear convergence of ADMM for MAME.

arg min
Θ,U,V

n∑
i=1

∑
z∈Ni

ψ (xi, z)
(
f(z)− g(z)T θi

)2
(11)

+ αi||U.i||1 + β

(∑
el∈E

wl‖V.l‖2

)
,

such that Θ(I +D)− IU − IV = 0,

10 Proof of Theorem 3.1 (from main paper)

In this section we prove Theorem 3.1 on the expectation of difference between exact and AR solutions.
We begin with 3 technical lemmas based on the lemmas given in [2] which maybe of independent
interest: Lemma 10.1 provides a convergence rate for the optimization step embedded within an
iteration; Lemma 10.2 establishes a form of Lipschitz continuity for convex clustering regularization
paths; Lemma 10.3 provides a global bound for the approximation error induced at any iteration.
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Lemma 10.1 (Q-Linear Error Decrease). At each iteration k, the approximation error decreases by
a factor c < 1 not depending on t or ε. That is,

‖Θ(k) −Θ(β)‖ < c
[
‖Θ(k−1) −Θ(β)‖

]
for some c strictly less than 1 where β is the computed regularization parameter on the AR path
(β = γ(k)).

Proof. In the notation of [1], the constraint matrix for MAME problem from Equation 11 is given by
E = (I +D −I −I), for appropriately sized identity matrices, which is clearly row-independent
(one of the assumptions mentioned in Section 9), yielding linear convergence of the primal and dual
variables at a rate cλ < 1 which may depend on λ. This follows from the proof sketch for the linear
convergence of ADMM for MAME which has been provided in Section 9 where we show how our
formulation satisfies all the assumptions stated in [1]. Taking c = supλ≤λmax

cλ, we observe that the
MAME iterates are uniformly Q-linearly convergent at a rate c.

Lemma 10.2 (Lipschitz Continuity of Solution Path). Θ(λ) is L-Lipschitz with respect to λ. That is,

‖Θ(λ1) −Θ(λ2)‖ ≤ L ∗ |λ1 − λ2|
for some L > 0.

Proof. We first show that Θ(λ) is Lipschitz. The vectorized version of MAME problem can be
written as

θ(λ) = arg min
θ∈Rn×p

1

2
‖θ − u‖22 + λfp(θ) + λfq(D̃θ)

where u = vec(ψ1/2f(z)), θ = vec(ψ1/2g(z)TΘ), fq and fp are convex functions, and D̃ = I ⊗D
is a fixed matrix. The KKT conditions give

0 ∈ θλ − u+ λ∂fp(θλ) + λD̃T∂fq(D̃θλ)

where ∂fp(·), ∂fq(·) are the subdifferential of fp and fq. Since both fp and fq are convex, it is
differentiable almost everywhere [Theorem 25.5] [3], so the following holds for almost all θλ:

0 = θλ − u+ λf ′p(θλ) + λD̃T f ′q(D̃θλ)

Differentiating with respect to λ, we obtain

0 = θλ − u+ λf ′p(θλ) + λD̃T f ′q(D̃θλ)

∂

∂λ
[0] =

∂

∂λ

[
θλ − u+ αf ′p(θλ) + βD̃T f ′q(D̃θλ)

]
0 =

∂θλ
∂λ
− 0 + λ

∂

∂λ

[
f ′p(θλ)

]
+ f ′p(θλ)

+ λ
∂

∂λ

[
D̃T f ′q(D̃θλ)

]
+ D̃T f ′q(D̃θλ)

0 =
∂θλ
∂λ

+ λf ′′p (θλ)
∂θλ
∂λ

+ f ′p(θλ)

+ λD̃T f ′′q (D̃θλ)D̃
∂θλ
∂λ

+ D̃T f ′q(D̃θλ)

=⇒ ∂θ

∂λ
= −[I + λf ′′p (θ)]−1f ′p(θ)

− [I + λD̃T f ′′q (D̃θ)D̃]−1DT f ′q(D̃θ).

Note that θλ depends on λ so the chain rule must be used here. From here, we note∥∥∥∥∂θλ∂λ
∥∥∥∥
∞

≤ ‖ − [I + 0]−1f ′p(θλ)− [I + 0]−1D̃T f ′q(D̃θλ)‖∞
= ‖f ′p(θλ) + D̃T f ′q(D̃θλ)‖∞.
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For the MAME problem, we recall that fp(·) and fq(·) are convex norms and hence have bounded
gradients; hence f ′p(θλ) and f ′q(D̃θλ) are bounded so the gradient of the regularization path is bounded
and exists almost everywhere. This implies that the regularization path is piecewise Lipschitz. Since
the solution path is constant for λ ≥ λmax and is continuous, the solution path is globally Lipschitz
with a Lipschitz modulus equal to the maximum of the piecewise Lipschitz moduli.

Lemma 10.3 (Global Error Bound). The following error bound holds for all k:

‖Θ(k) −Θ(β)‖ ≤ ckLε+ L(t− 1)εtk
k−1∑
i=1

(c
t

)i
Proof. Our proof proceeds by induction on k. First note that, at initialization:

‖Θ(0) −Θ(ε)‖ ≤ Lε
by Lemma 10.2.

Next, at k = 1, we note that

‖Θ(1) −Θ(tε)‖ ≤ c‖Θ(0) −Θ(tε)‖
by Lemma 10.1. We now use the triangle inequality to split the right hand side:

‖Θ(0) −Θ(tε)‖ ≤ ‖Θ(0) −Θ(ε)‖︸ ︷︷ ︸
RHS-1

+ ‖Θ(ε) −Θ(tε)‖︸ ︷︷ ︸
RHS-2

From above, we have RHS-1 ≤ Lε. Using Lemma 10.2, RHS-2 can be bounded by

‖Θ(ε) −Θ(tε)‖ ≤ L |tε− ε| = L(t− 1)ε.

Putting these together, we get

‖Θ(1) −Θ(tε)‖ ≤ c [RHS-1 + RHS-2] ≤ c [Lε+ L(t− 1)ε] = cLtε

Repeating this argument for k = 2, we see

‖Θ(2) −Θ(t2ε)‖ ≤ c‖Θ(1) −Θ(t2ε)‖

≤ c
[
‖Θ(1) −Θ(tε)‖+ ‖Θ(tε) −Θ(t2ε)‖

]
≤ c

[
cLtε+ L

∣∣t2ε− tε∣∣]
= c2Ltε+ cL(t− 1)ε ∗ t

= c2Ltε+ Lε(t− 1)t2 ∗
(c
t

)
= c2Ltε+ Lε(t− 1)t2 ∗

k−1∑
i=1

(c
t

)i
We use this as a base case for our inductive proof and prove the general case:

‖Θ(k) −Θ(tkε)‖ ≤ c‖Θ(k−1) −Θ(tkε)‖

≤ c
[
‖Θ(k−1) −Θ(tk−1ε)‖+ ‖Θ(tk−1ε) −Θ(tkε)‖

]
≤ c

[
ck−1Ltε+ Lε(t− 1)tk−1

k−2∑
i=1

(c
t

)i
+ L

∣∣tkε− tk−1ε
∣∣]

= ckLtε+ cLε(t− 1)tk−1
k−2∑
i=1

(c
t

)i
+ cLε(tk − tk−1)

= ckLtε+ Lε(t− 1)tk

[
c

t

k−2∑
i=1

(c
t

)i
+
c

t

]
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= ckLtε+ Lε(t− 1)tk

[
k−1∑
i=2

(c
t

)i
+
c

t

]

= ckLtε+ Lε(t− 1)tk
k−1∑
i=1

(c
t

)i
With these results, we are now ready to prove Theorem 3.1

Proof. We begin by fixing temporarily β and bounding

inf
k

∥∥∥Θ(k) −Θ(β)
∥∥∥

The infimum over all k is less than the distance at any particular k, so it suffices to choose a value of
k which gives convergence to 0. Let k̃ be the value of k which gives the closest value of γ(k) to β
along the AR path; and let β̃ = γ(k̃) = εtk̃. That is,

k̃ = arg min
k

|γ(k) − β| and β̃ = γ(k̃)

Then
inf
k

∥∥∥Θ(k) −Θ(β)
∥∥∥ ≤ ‖Θ(k̃) −Θ(β)‖ ≤ ‖Θ(k̃) −Θ

˜(β)‖︸ ︷︷ ︸
RHS-1

+ ‖Θ ˜(β) −Θ(β)‖︸ ︷︷ ︸
RHS-2

Using Lemma 10.2, we can bound RHS-2 as

RHS-2 ≤ L|β̃ − β| ≤ L|γ(k̃+1) − γ(k̃−1)| = L ∗ εtk̃−1 ∗ [t2 − 1]

≤ L ∗ βmax ∗ [t2 − 1]

Using Lemma 10.3, we can bound RHS-1 as

RHS-1 ≤ ck̃Lε+ L(t− 1) ∗ εtk̃
k−1∑
i=1

(c
t

)i
≤ ck̃Lε+ L(t− 1) ∗ εtk̃ ∗ C

where C =
∑∞
i=1

(
c

1+t

)i
is large but finite. Since c < 1 and β̃ = εtk̃ ≤ βmax, we can replace the

k-dependent quantities to get

RHS-1 = ‖Θ(k̃) −Θ(β̃)‖ ≤ Lε+ C ∗ L(t− 1) ∗ βmax

Putting these together, we have

inf
k
‖Θ(k) −Θ(β)‖ ≤ RHS-1 + RHS-2

≤ Lε+ C ∗ L(t− 1) ∗ βmax + L ∗ βmax ∗ [t2 − 1]

Similarly by fixing k we know that

inf
β
‖Θ(k) −Θ(β)‖ ≤ ‖Θ(k) −Θ(β̃)‖

where
β̃ = arg min

β
| logγ β − k| and k̃ = logγ β̃

Using similar arguments as above based on Lemma 10.3 we can show that

inf
β
‖Θ(k) −Θ(β)‖ ≤ ‖Θ(k) −Θ(β̃)‖ ≤ Lε+ C ∗ L(t− 1) ∗ βmax

9



We can use these two bounds and plug them in here

max
{
Eβ

(
inf
k
‖Θ(k) −Θ(β)‖

)
, Ek

(
inf
β
‖Θ(k) −Θ(β)‖

)}
≤ max

{
Eβ
(
Lε+ C ∗ L(t− 1) ∗ βmax + L ∗ βmax ∗ [t2 − 1]

)
,

Ek (Lε+ C ∗ L(t− 1) ∗ βmax‖)
}

(t,ε)→(1,0)−−−−−−−→ 0

One can observe that as t, ε→ to (1, 0) both the expectation terms reduce to 0 individually.

11 User Study Material

Figure 6 is a screenshot of the user study in the LIME condition. The visual explanations show the
feature contribution, likelihood of repayment, and feature importance calculated using the SP-LIME
method. The top left graph shows that the classifier groups loan applicants into four clusters (y-axis)
based on several key features (x-axis). The color of the squares indicates the average contribution of a
feature to the classifier’s prediction for a cluster, with orange colors indicating increasing probability
of full repayment, whereas blue indicating decreasing probability. The numbers in the colored
squares show the average feature value for that cluster. The top right graph shows the average of
the classifier’s predicted probability of loan repayment of each cluster. The bottom graph shows the
overall importance of the features used in the top left graph. The longer the bar, the more important it
is to the classifier. The same set of visual explanations was used throughout each condition as it does
not change from trial to trial.

Below the explanation is a table showing the 22 financial records for a loan applicant. It is divided
into two segments. The top segment shows the features used in the visual explanation, which are also
the most important features deemed by the explanation algorithm. The bottom segment shows the
rest of the features. At the bottom of the page are two questions that the participant had to answer
for every trial. The participant could access a written instruction any time during the experiment by
clicking the "SEE INSTRUCTIONS" button at the top of the web page.

12 Computational Complexity Analysis

We provide the computational complexity for running one set of iterations given in (4)-(8). This is
the same as obtaining solutions for one β value if we use the AR-based method. Let us consider the
five steps individually.

For (4), we use conjugate gradients to obtain the solution. If we assume the number of edges
|E| = O(n), and the number of CG iterations to be s, the dominant complexity of this step is
O(p2ns) +O(pn2s). For (5), the update involves a soft-thresholding step which incurs a complexity
of O(pn). The update step (6), similarly incurs a complexity of O(pn), assuming |E| = O(n).
Updates for Z1 and Z2 in (7) and (8) respectively involve complexities of O(pn) each. If we assume
s to be very small (we use 10 in our experiments), the dominant complexity for one ADMM iteration
is hence O(pn(p+ n)).
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Figure 6: A screenshot of the user study in the LIME condition.
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