
We thank the reviewers for their time and relevant comments.1

Why we use our architecture to approximate the self-masking Bayes predictor - to rev. #3 and #4: Reviewer #42

mentioned a lack of clarity in the paragraph entitled "Differences between MNAR and M(C)AR predictors" (l.128-133).3

This paragraph actually touches upon a point raised by Reviewer #3: why our method can be used for self-masking4

missingness (also discussed l.190-192). These questions suggest that this paragraph should be more detailed. Hereafter,5

we explain it in more details and give an answer to reviewer #3.6

The expression of the M(C)AR Bayes predictors is given by (eq. 4 in the paper):7

f?(Xobs,M) = β?0 + 〈β?obs, Xobs〉+ 〈β?mis, µmis + Σmis,obs(Σobs)
−1(Xobs − µobs)〉 (1)

The expression of the (MNAR) self-masking Bayes predictor is more complicated (eq. 5 in the paper). To study this8

expression, we approximate DmisΣ
−1
mis|obs by Id. Then, the self-masking Bayes predictor becomes:9

f?(Xobs,M) ≈ β?0 +
〈
β?obs, Xobs〉+ 〈β?mis,

1

2
(µ̃mis + µmis) +

1

2
Σmis,obs (Σobs)

−1
(Xobs − µobs)

〉
(2)

Thus, under this approximation, the self-masking Bayes predictor can be modeled by our proposed architecture (just as10

the M(C)AR Bayes predictor), the only difference being the targeted value for parameter µ of the network (in blue11

in the two models above) and a scaling factor of 1/2 for Wmix (in orange). A less coarse approximation also works:12

DmisΣ
−1
mis|obs ≈ D̂mis where D̂ is a diagonal matrix. In this case, the proposed architecture can perfectly model13

the self-masking Bayes predictor: the parameter µ of the network should target (Id + D̂)−1(µ̃ + D̂µ) and Wmix14

should target (Id + D̂)−1D̂Σ instead of simply Σ in the M(C)AR case. Consequently, our architecture can well15

approximate the self-masking Bayes predictor by adjusting the values learned for the parameters µ and Wmix16

if DmisΣ
−1
mis|obs are close to diagonal matrices. We will add this discussion to the Appendix.17

Experimental results under the MAR scenario - to rev.#3 The results are presented in the figure below:18
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The MAR data was generated as follows: first, a subset of variables with no missing
values is randomly selected (10%). The remaining variables have missing values
according to a logistic model with random weights, re-scaled so as to attain the
desired proportion of missing values on those variables (50%). Note that we cannot
compute the Bayes rate, so instead of showing (R2 - Bayes rate) we show (R2 - best
R2).

As can be seen from the figure, the trends oberved for MAR are the same as those
for MCAR. We will add this figure to the appendix. We have not tested the scenario
where MAR and self-masking missingness happen at the same time.

19

Modeling non linear functions - to rev. #1 and #2 The reviewers pointed out that the proposed architecture is20

limited to linear models. Indeed, our theoretical foundations derive from the study of linear models. However, as a21

differentiable architecture, it can be readily included as a building block in more complex networks. For example, the22

layer Wβ can be replaced by a MLP.23

Robustness to non Gaussian data - to rev. #2 and #3 The crux of the method is to capture the covariance of the24

data, which relates the different slopes of the models on incomplete data. This covariance will be relevant even on25

non-Gaussian data, though we can so far only develop formal arguments under Gaussian assumptions.26

What is ν in eq.(8) - to rev. #1 It is the smallest eigenvalue of the covariance matrix Σ. We apologize, the definition27

was inadequately moved to the appendix; we will move it to the main text.28

What happens with few samples - to rev. #2 Reviewer #2 made a comment related to the number of samples. The29

difficulty of a problem is linked to the ratio # dimensions/# samples, the higher the ratio, the more difficult the problem.30

The highest ratio for which we presented experiments is for dimension 50 and 20000 samples. For such ratio and higher,31

using a depth of 0 for our architecture is enough, more depth triggers overfitting. We showed theoretically in section32

3.4 that the MLP can model a depth-0 Neumann network. Thus the MLP, whether in MCAR or selfmaking, is on par33

or slightly better than the Neumann network for high ratios. As for MICE+LR, it has an advantage over MLP and34

Neumann for high ratios in MCAR, but not in selfmasking, because Mice assumes the data to be M(C)AR.35


