
We thank all reviewers for their comments and insightful reviews. We will address the concerns as follows. Typos will1

be corrected in the final version.2

Reviewer 1 Thank you for your comments. We hope following explanations can answer your questions.3

Related work Model-based algorithms with function approximation have been indeed studied in prior works. What we4

want to claim is that we are the first to study the plug-in solver approach with function approximation. We believe this5

is a nontrivial contribution to the RL community.6

Novelty Although we have applied the anchor-state model from [Yang and Wang] and our technique has certain7

similarity to [Agarwal et al., 2019], we stress that neither of the two papers can be directly applied in our setting for a8

plug-in approach of model-based RL with function approximation. In fact, our technique is highly non-trivial and9

inspires several new understandings in terms of model-based RL with features. Moreover, our results can also be10

applied to the setting without anchor-state by restricting the plug-in solver to value iteration. In addition, turn-based11

stochastic game, a multi-agent extension of MDP, is analyzed by using the optimal response policy in the auxiliary12

MDP to approximate empirical optimal response policy.13

More specifically, the model-free algorithm in [Yang and Wang] relies on monotonicity and variance reduction, which14

cannot be applied to model-based setting with a plug-in solver. The absorbing MDP in [Agarwal et al., 2019] cannot15

be applied to linear MDP as it destroys the linear dependence, which inspired us to invent a new auxiliary MDP.16

This auxiliary MDP fixes the transition of an anchor state-action and changes the entire transition kernel via linear17

dependence (Definition 2). The auxiliary MDP technique we propose can also be applied to tabular MDP, which covers18

absorbing MDP. Another critical disadvantage of the absorbing MDP in [Agarwal et al., 2019] is that it can only recover19

state values, while our technique can recover the entire state-action values (Lemma 6).20

Model-based planning First, we want to emphasize that arbitrary planning algorithm is suitable in our algorithm, so the21

computational complexity of the planning algorithm is not our main focus. It is known that the exactly optimal policy22

in MDP and TBSG can be obtained in strong polynomial time Õ(poly(|S||A|(1− γ)−1)) by policy iteration/strategy23

iteration [Ye, 2011, Hansen et al., 2013]. Approximate dynamic programming methods like LSVI/FQI can utilize24

the features to achieve Õ(poly(K(1 − γ)−1ε−1)) computational complexity . In addition, one can use the learning25

algorithm ‘Optimal Phased Parametric Q-Learning’ in [Yang and Wang] to do planning, which has computational26

complexity of Õ(K(1− γ)−3ε−2) (i.e. same to the sample complexity result in our work and immediately achieves27

minimax computational complexity).28

Anchor states and pseudo-MDP The analysis in [Zanette et al., 2019] requires ‖λ‖1 ≤ 1 + 1
H so that the29

error will not amplify exponentially and fails when ‖λ‖1 is larger than this threshold. Our result shows that30

empirical value iteration (EVI) is a sample efficient algorithm for bounded ‖λ‖1 with sample complexity31

Õ(K maxs,a ‖λ(s, a)‖21poly((1− γ))ε−2), which demonstrate that EVI is sample efficient for ‖λ‖1 > 1 + 1
H . Note32

that [Zanette et al., 2019] assumes linear representation of Q∗, which is different from our assumption. To our best33

knowledge, the minimax sample complexity in linear MDP without anchor state assumption is still unknown.34

Correctness We apologize for the typos in the appendix (proof of Lemma 6). The correct and more detailed version35

is Q̃πuπ = (I − γP̃π)−1(r + Φs,auπ) = (I − γP̃π)−1(r + Φs,aγ(P̂ (s, a) − P (s, a))V̂ π) = (I − γP̃π)−1((I −36

γP̂π)Q̂π + γΦ(P̂K− P̃K)V̂ π) = (I − γP̃π)−1((I − γP̂π)Q̂π + γ(P̂ − P̃ )V̂ π) = (I − γP̃π)−1(I − γP̃π)Q̂π = Q̂π .37

Note that P̂K − P̃K has all zero rows except row (s, a) by the definition of auxiliary MDP.38

Reviewer 2 & Reviewer 3 & Reviewer 4 & Reviewer 5 Thank you for your appreciation. We will fix typos and39

clarify some of the confusions in the next version. Below, we address the common concern about the assumption in this40

paper.41

Strong Assumptions Our assumptions on linear MDP are widely used in literature as discussed in Section 4. Anchor42

state assumption indeed appears a strong assumption, however this is rather general: this assumption essentially43

assumes all the features vectors lie in a convex hull, which is without loss of generality. The number of vertices of the44

convex hull is the number of anchor-state-action pairs. The number of vertices can be small in many cases (see e.g.,45

[Blum et al., 2019] “Sparse approximation via generating point sets” and reference therein). Moreover, our results also46

apply to the approximate model setting (Theorem 2).47

Furthermore, we show that the anchor state assumption is essential to obtain an eligible empirical model by showing an48

hard instance (Proposition 3). Our work also gives a minimax sample complexity algorithm for ‖λ‖1 = 1 (anchor state49

assumption) and efficient algorithm for ‖λ‖1 > 1 but bounded.50

Generative model is a meaningful oracle which receives much attention (see Section 2 for a detailed review) as it51

separates the subtle exploration questions from learning. In many realistic settings we also have a simulator to generate52

samples from arbitrary state-action pair. For instance, learning in physical simulators allows this kind of sampling.53

Moreover, games like Go and chess are turn-based stochastic game that can be viewed as generative model.54

Table of previous results (R4) Due to limited space, we cannot put the table in this rebuttal. A table of previous results55

will be added in the final submission. We will also move some discussion of estimating the transition kernel P in the56

appendix to the main paper.57

58


