
S1 Physical Scene Graphs
A PSG is a vector-labelled hierarchical graph whose nodes are registered to non-overlapping locations
in a base spatial tensor. Formally, for any positive integer k let [k] := {0, . . . , k − 1}. A physical
scene graph of depth L + 1 is a hierarchical graph G = {(Vl, Al, El, Pl)|l ∈ [L + 1]} in which
Vl = [|Vl|] are layer l vertices, Al : Vl → RCl are Cl-vector-valued attributes, El is the set of
(undirected) within-layer edges at layer l, and for l ∈ [L], Pl : Vl → Vl+1 is a function defining
child-parent edges. We also require that for some tensor F ∈ RT⊗H⊗W⊗C0 , V0 = [T · H ·W ]
and A0[H ·W · t + W · i + j] = F [t, i, j, :] for t ∈ [T ], i ∈ [H], j ∈ [W ], and call F the base
of G. Due to the definition of G, the nodes Vl at any layer define a partition of the base tensor,
defined by associating to v ∈ Vl the set p(v) = {(i, j)| ©l′<l Pl′((i, j)) = v}. We call the map
Sl : v 7→ p(v) the spatial registration at layer l. Thus, the set of SRs {Sl|l = 1, ..., L} forms a
hierarchical segmentation of the base tensor and the input scene from which it is constructed. An
intuitive depiction of an example PSG is shown in Fig. 1. The base tensor itself is considered
level-0 of a PSG, containing |V0| = T · H ·W vertices, the trivial partition S0 that assigns each
spatiotemporal position (t, h, w) to its corresponding vertex, and the attribute vectors defined by
indexing into the base tensor, A0 : (t, h, w) 7→ F [t, h, w, :]. By convention, we always prepend to
the attribute vector Al(v) of a vertex v its relative time index tv ∈ [T ] and the image centroid (cvh, c

v
w)

of its corresponding segment in Sl.

S2 PSGNet Architecture
The PSGNet architecture consists of three stages: feature extraction, graph construction, and graph
rendering. In the first stage, a spatially-uniform feature map is created for any input movie by
passing it through a Convolutional Recurrent Neural Network (ConvRNN) FΘ0

. The tensor of
feature activations from one convolutional layer of the ConvRNN is then used as the base tensor
for constructing a spatiotemporal PSG. Taking these features as the “Level-0” nodes, the higher
levels of a PSG are built one at a time by applying a learned Graph Constructor GCΘ1

. This stage
itself contains two types of of module, Graph Pooling and Graph Vectorization. Thus the final PSG
representation of an input movie has L + 1 levels after applying L (Pooling, Vectorization) pairs.
Finally, the PSG is the passed through a decoderR, which renders graph node attributes (and spatial
registrations for the top level of graph nodes) into RGB, depth, normal, segment, and RGB-change
maps for each frame of the input movie.

Formally, then, we define the parameterized class of neural networks FPSG
Θ as functions of the form

FPSG
Θ = R ◦ GCΘ1

◦ FΘ0
, (1)

where F is the ConvRNN-based feature extractor, GC is the graph constructor, R is the graph
rendering, and Θ = Θ0 ∪Θ1 are the learnable parameters of the system.

Note that the decoder does not have any learnable parameters of its own: it takes as input only
the spatial registrations produced by Graph Pooling and the node attributes produced by Graph
Vectorization, using them to “paint-by-numbers” (Quadratic Texture Rendering, QTR) or “draw
shapes” (Quadratic Shape Rendering, QSR) as described in the main text. This strong constraint
on decoding is what allows PSGNet to learn explicit representations of scene properties. Without
additional parameters to convert a latent code into a rendered image, the latent codes of a PSG (i.e.
the node attribute vectors) are optimized to have the same encodings as their (self-)supervision signals
– color, depth, surface normal vectors, etc.

Below we describe each component of the PSGNet architecture in detail and give further background
for its motivation. We then give the specific hyperparameter choices used in this work.

S2.1 ConvRNN Feature Extraction
A convolutional recurrent neural network (ConvRNN) is a CNN augmented with both local recurrence
at each layer and long-range feedback connections from higher to lower layers. Such local recurrent
and long-range feedback connections are ubiquitous in the primate visual system, where it is hypothe-
sized that they play a role in object recognition and scene understanding [23, 49, 52]. Large-scale
neural network implementations of ConvRNNs optimized for ImageNet categorization have been
shown achieve performance gains on a per-parameter and per-unit basis, and make predictions of
neural response dynamics in intermediate and higher visual cortical areas [37]. Moreover, models
with both local and long-range recurrence are substantially more parameter-efficient than feedforward
CNNs on a variety of perceptual grouping tasks, which suggested that multiple forms of recurrence
could provide useful inductive biases for scene decomposition [24, 34, 35, 14].
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ConvRNNs prove useful in our application because they naturally integrate high- and low-level visual
information, both of which are critical to understand scene structure. The bottom-up-and-top-down
ConvRNN architecture is related to the standard U-Net structure (e.g. [4].) Long-range feedback
in a ConvRNN plays a role analogous to the upsampling layers of a U-Net, while locally recurrent
cells are similar to “skip-connections” in that they combine features of the same spatial resolution.
However, the ConvRNN provides more flexibility than a U-Net in terms of how information from
multiple layers is integrated. First, it can be unrolled for any number of “passes” through the full
network (the operation of each feedforward, locally recurrent, and feedback connection), with more
passes producing more nonlinear feature activations at each layer. Second, we can take advantage of
this change in features over time by performing different stages of PSG construction after differing
numbers of passes. In particular, the initial construction of Level-1 spatial registration from ConvRNN
features (Level-0 nodes) yields the sharpest partition of the scene into “superpixel”-like segments
when done after a single ConvRNN pass; this is because further perturbations to the ConvRNN
features by recurrent local and long-range convolution tend to smooth them out, degrading the precise
boundaries between scene elements. On the other hand, features obtained after multiple passes have
integrated more mid- and high-level information about the scene – including across the larger spatial
receptive fields found in higher ConvRNN layers – making them more accurate at predicting mid-
and high-level PSG attributes, like depth and surface normals (data not shown.)

Implementation. Formally, let F pk be the ConvRNN feature activations at layer k of the backbone
CNN after pass number p. Long-range feedback connections combine features from a higher layer
k + k′ with this lower, potentially spatially larger layer k. This takes the form

F̃ pk = ReLU(Uk
′

k ∗Resize(F
p−1
k+k′)), (2)

where Uk
′

k is a convolution kernel and Resize is bilinear upsampling to the resolution of the target
layer. On the initial pass (p = 0), F p−1

k+k′ are defined to be a tensor of zeros.

Local recurrent connections combine features within a CNN layer, which necessarily have the same
spatial dimension:

F pk = Combine{Wk,Uk}(F
p
k−1, F

p−1
k , F̃ pk ), (3)

where Wk and Uk are, respectively, the feedforward and recurrent convolution kernels at that layer,
F̃ tk are any features produced by feedback to that layer, and Combine(a, b, c) is a nonlinear function
that combines the convolved features, such as ReLU(a+ b+ c). The functional form of Combine
defines a “Local Recurrence Cell” (such as a modified Vanilla RNN or LSTM Cell [37].) As with
feedback, locally recurrent features F p−1 are defined to be zero on the initial pass.

Thus, a ConvRNN architecture is fully specified by its backbone CNN, its list of feedback connections
[(k0, k0 + k′0), (k1, k1 + k′1), . . . ], the structure of its Combine functions, and hyperparameters of
all convolution kernels.

In this work. Here we use a backbone CNN with 5 feedforward layers. The layers have
(40, 64, 96, 128, 192) output channels, respectively, each followed by 2× 2 max pooling with stride
2 to downsample the spatial dimensions by a factor of two per layer. There are feedback connections
from all higher layers to the first layer, whose feature activations become the Level-0 PSG nodes.
The locally recurrent “Cell” installed at each layer is what we call an EfficientGatedUnit (EGU), as it
was inspired by the parameter-efficient, feedforward architecture EfficientNet [48] and designed to
satisfy two properties: (i) learned gating of convolutional inputs, and (ii) pass-through stability, i.e.
on the initial pass through the ConvRNN, outputs from the convolution operation are unaffected by
the recurrent cell before being passed to the next layer. Together, these properties mean that local
recurrence produces a dynamical perturbation to the feedforward activations, which was previously
found to help performance on ImageNet classification [37]. The EGU Combine function has the
form

F
p

k = F p−1
k + F̃ pk +ReLU(Uk ∗ (W in

k ∗ F
p
k−1 + F p−1

k )), (4)

F pk = W out
k ∗ [σ(W e

k ∗ReLU(W r
k ∗ < F

p

k >))� F pk], (5)
where equation (5) is a “Squeeze-and-Excitation” gating layer [20]: it takes mean of input features
across the spatial dimensions, < F >, reduces and expands their channel dimensions with the 1× 1
kernels W r

k and W e
k , then multiplicatively gates the input F with the sigmoid function σ of this

spatially broadcast tensor. The final layer output is a feedforward convolution of this tensor with the
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kernel W outk. Other than W r
k and W e

k , all feedforward kernels Wk are 3× 3; All local recurrent
kernels Uk are 5 × 5; and all feedback kernels Uk

′

k are 1 × 1. The “efficiency” of this cell comes
from making the kernels W in

k and Uk depth-separable, i.e. a convolution that operates per feature
channel with the full spatial kernel dimensions followed by a 1× 1 convolution that mixes channels.
Following the original EfficientNet structure, we have the W in increase the channel dimension by a
factor of 6 at each layer and the W r reduce it by a factor of 4. This fully determines the required
output channel dimensions of all other convolution kernels.

Given a RGB movie x written in channel-minor form with shape (T,H0,W0, 3), we form the
backward temporal difference δx = x[1 : T ]−x[0 : T − 1] (where a block of 0s is padded on the end
of x[1 : T ] and the beginning of x[0 : T − 1]), and then form the channel-wise concatenation ∆(x) =
x⊕ δx, so that the input data layer has 3*2 = 6 channels. The ConvRNN is then run independently on
each input frame of ∆(x) for nunroll = 3 passes. We take outputs from the first convolutional layer in
FΘ0(∆(x)) after each up-down pass, forming a tensor of shape (T, nunroll, H,W,C), where H,W,C
are the output dimensionalities of the Conv1 layer. This is used as input to the graph constructor.
PSGNetS is trained on static images (i.e. movies of length T = 1) while PSGNetM is trained on
movies of length T = 4; either model can be evaluated on movies of arbitrary length. All ConvRNN
parameters are optimized end-to-end with respect to the QSR and QTR losses on the final PSG.

S2.2 Learned Perceptual Grouping and Graph Pooling
The features extracted from ConvRNN layer k after a chosen number of passes p are considered, for
each input movie frame t, the Level-0 vertex/node sets V t0 . Thus |V t0 | = H ·W and the attribute map
A0 : V0 → RC is defined as

A0(v) = A0(W · i+ j) = [t]⊕ [i, j]⊕ Fk[t, p, i, j, :], (6)

that is, simply indexing into each spatial position of the base feature activation tensor and prepending
the movie time step and spatial coordinates. At this stage, there are no within-layer edges or parent
edges (because there are no higher-level nodes) and the spatial registration R0 is the trivial partition
of singleton nodes. As described in the main text, building a new set of child-to-parent edges P0 from
V0 – or more generally, Pl from Vl – requires three computations: (1) a function Dφ (which may
have learnable parameters) that assigns a nonnegative affinity strength to each pair of nodes (v, w);
(2) a thresholding function ε (which has no learnable parameters) that converts real-valued affinities
to binary within-layer edges, El; and (3) an algorithm for clustering the graph (Vl, El) into a variable
number of clusters |Vl+1|, which immediately defines the child-to-parent edge set Pl as the map that
assigns each v ∈ Vl its cluster index. These operations are illustrated on the left side of Figure S1.

Formally, we define a k-dimensional affinity function to be any symmetric function Dφ : Rk ×Rk →
R≥0, parameterized by φ, and a threshold function to be any symmetric function ε : 2R × 2R → R≥0.
Given a set graph vertices Vl, corresponding attributes Al : Vl → Rkl we then construct
the within-layer edges El = {{v, w}|Dφ(Al(v), Al(w)) > ε(D(v), D(w))}, where D(v) =
{Dφ(A(v), A(w′))|w′ ∈ Vl}.
We use four pairs of affinity and threshold functions in this work, each meant to implement a
human vision-inspired principle of perceptual grouping. These principles are ordered by increasing
“strength,” as they are able to group regions of the base tensor (and thus the input images) that are
increasingly distinct in their visual features; this is because the higher principles rely on increasingly
strong physical assumptions about the input. The stronger principles P3 and P4 are inspired by the
observation that infants initially group visual elements into objects based almost exclusively on shared
motion and surface cohesion, and only later use other features, such as color and “good continuation”
– perhaps after learning which visual cues best predict motion-in-concert [45]. For graph clustering,
we use the Label Propagation algorithm because it does not make assumptions about the number of
“true” clusters in its input and is fast enough to operate online during training of a PSGNet. However,
any algorithm that meets these requirements could take its place.

Implementation. The four types of affinity and thresholding function are defined as follows:

Principle P1: Feature Similarity. Let v := Al(v) denote the attribute vector associated with node v
at graph level l (excluding its time-indexing and spatial centroid components.) Then the P1 affinity
between two nodes v, w is the reciprocal of their L2 distance, gated by a binary spatial window

D1(v,w) =
1(||c(v)− c(w)||m < δdist)

||v −w||2
, (7)
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where c(v) is the centroid of node v in (i, j) coordinates given by its spatial registration and || · ||m
denotes Manhattan distance in the feature grid. The P1 affinities are thresholded by the reciprocal of
their local averages,

ε1(D1(v), D1(w)) = min

(
1

D
1
(v)

,
1

D
1
(w)

)
, (8)

where D1(v) denotes the set of nonzero affinities with node v (i.e. affinities to nodes within its spatial
window) and D

1
(v) its mean. Thus P1 produces binary edges D1(v,w) > ε1 between nodes whose

attribute L2 distance is less than the spatially local average, without learned parameters.

Principle P2: Statistical Co-occurrence Similarity. This principle encodes the idea that if two nodes
appear often in the same pairwise arrangement, it may be because they are part of an object that moves
(or exists) as a coherent whole. Thus it is a way of trying to infer motion-in-concert (the ground truth
definition of an object that we use in this work) without actually observing motion, as when visual
inputs are single frames. This is implemented by making D2

φ2
(v,w) inversely proportional to the

reconstruction error of a Variational Autoencoder (VAE, [26]) Hφ2 , so that common node attribute
pairs will tend to be reconstructed better (and have higher affinity) than rare pairs. Formally,

evw := |v −w|, (9)

êvw := Hφ2(evw), (10)

D2(v,w) =
1

1 + ν2 · ||evw − êvw||2
, (11)

where ν2 is a hyperparameter and both evw and êvw are vectors of the same dimension as v and w.
This and all other VAEs in this work (see below) are trained with the beta-VAE loss [18],

LVAE = ||evw − êvw||2 + βLKL(µ̂vw, σ̂vw), (12)

where β is a scale factor and LKL is the KL-divergence between the standard multivariate unit normal
distribution and the normal distributions defined by the input-inferred µ and σ vectors (VAE latent
states.) The D2 affinities are thresholded at 0.5 for all node pairs to produce binary edges.

Principle P3: Motion-driven Similarity. Parts of a scene that are observed moving together should
be grouped together, according to our physical definition of an object. This could be implemented
by tracking nodes across frames (e.g. finding nearest neighbors in terms of nodes’ attributes) and
then defining co-moving nodes as those whose relative Eucldean distance (according to their (x, y, z)
attributes) changes less than some threshold amount. Because spatial and motion inference may
have different amounts of observation noise for different nodes, though, we instead extend the VAE
concept above to compute “soft” node affinities across and within frames. Let Hw

φw
3

and Ha
φa
3

be
two new VAE functions and νw3 and νa3 two new hyperparameters. Then, just as above, these define
affinity functions D3w(v,w) and D3a(v,u) between nodes within each frame (“spatial”) and across
adjacent frames (“temporal,” i.e. v ∈ V tl , u ∈ V

t+1
l ), respectively. The only difference between the

P2 and P3 affinities (other than having separate parameters) is that the latter are trained and evaluated
only on nodes whose motion attributes, ∆(v), are greater than a fixed threshold. This means that the
P3 VAEs only learn which nodes commonly move together, not merely appear together. Grouping
via the P3 edges (affinities thresholded at 0.5) then proceeds by clustering the entire spatiotemporal
graph, Gl = (

⋃
t V

t
l ,
⋃
t(E

3w
t ∪ E3a

t )).

Principle P4: Self-supervised Similarity from Motion. The final principle is based on the assumption
that if two nodes are seen moving together, then nodes with similar attributes and relationships should
be grouped together in future trials – even if those nodes are not moving. This implies a form of
self-supervised learning, where the signal of motion-in-concert acts as an instructor for a separate
affinity function that does not require motion for evaluation. In principle, any supervision signal
could be used – including “ground truth” physical connections, if they were known – but here we
assume that motion-in-concert provides the most accurate signal of whether two visual elements
are linked. We therefore implement the P4 affinity function as a multilayer perceptron (MLP) on
differences between node attribute vectors,

D4(v,w) = σ(Yφ4
(|v′ −w′|)), (13)
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Figure S1: Schematics of the generic process for building a new PSG level and of the actual PSGNet architectures
used in this work. (Left) To build nodes Vl+1, existing nodes Vl (here shown as their spatially registered color
rendering) are passed through pairwise affinity and thresholding functions to Add Edges El. The resulting graph
(Vl, El) is clustered according to Label Propagation; here nodes are colored by their assigned label (cluster
index) at each iteration, which is updated by taking the most common label among graph neighbors. (Ties are
resolved randomly.) After M iterations, the kernels for Pooling nodes are defined by the final cluster assignments.
This determines the child-to-parent edges Pl and the new spatial registration Rl+1. Graph Vectorization, which
constructs the new attributes Al+1, is not shown here. (Right) The set of operations and perceptual grouping
principles used to build PSGs in PSGNetM and PSGNetS (red outline.) Other than grouping by motion-in-
concert (P3), all grouping constructs per-frame PSG nodes V t

l . P3 builds Level 2M nodes that extend temporally
across all input frames. Extr indicates ConvRNN feature extraction.

where v′ is the attribute vector of node v with its motion attribute ∆(v) removed, Yφ4
is an MLP, and

σ(·) is the standard sigmoid function, which compresses the output affinities into the range (0, 1).
The MLP weights are trained by the cross-entropy loss on the self-supervision signal from P3,

LP4 =
∑
v,w

CE(D4(v,w),1(P3(v) = P3(w))), (14)

where the “ground truth” is the indicator function on whether v and w have the same parent node,
P3(v) = P3(w), according to a round of P3 grouping from motion. The binary P4 edges are obtained
by thresholding the affinities at 0.5.

Label Propagation. To construct new parent edges, nodes are clustered according to within-layer
edges from one of the four affinity functions using the standard Label Propagation (LP) algorithm [47]
(Fig. S1 left, middle column.) This algorithm takes as input only the edges El, the number of nodes at
the current graph level |Vl|, and a parameter setting the number of iterations. Each node is initialized
to belong in its own cluster, giving a set of labels [|Vl|]. Then for q > 0, iteration-q labels are
produced from iteration q − 1-labels by assigning to each node v ∈ Vl the most common stage-q − 1
label among nodes connected to v by an edge. Ties are resolved randomly. Let Pl : Vl → [m] denote
the final converged label-prop assignment of nodes in V to cluster identities, where m is the number
of clusters discovered. Effectively, the new child-to-parent edges Pl define input-dependent pooling
kernels for Vl (Fig. S1 Left, right column.) The final stage of building a new PSG level, Graph
Vectorization, uses these pooling kernels to aggregate statistics over the resulting partition of Vl,
resulting in new nodes Vl+1 with |Vl+1| = m (see below.)

In this work. Two PSGNet architectures are used in this work: PSGNetS, which sees only static
images (single-frame movies), and PSGNetM, which sees true movies and therefore can detect and
learn from object motion. PSGNetS builds a three-level PSG by applying P1 grouping on the Level-0
nodes (ConvRNN features) to build Level-1 nodes, followed by P2 grouping on the Level-1 nodes
to build Level-2 nodes (Fig. S1 right, red outline.) PSGNetM builds a branched four-level PSG by
adding additional rounds of grouping to PSGNetS: P3 grouping from motion-in-concert builds a set
of spatiotemporal Level-2 nodes (called Level-2M) from the Level-1 nodes; and these self-supervise
a round of P4 grouping on the original Level-2 nodes to build Level-3 nodes (Fig. S1 right.) Other
PSGNet architectures could build PSGs with different hierarchical structures by applying these (or
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new) grouping principles in a different pattern. For instance, models that grouped from motion at
different scales could, in principle, learn hierarchical decompositions of objects into their flexibly
moving parts [56].

The VAEs used in P2 and P3 grouping are MLPs with hidden layer dimensions (50, 10, 50); the 10
dimensions in the latent state are considered as 5 pairs of (µ, σ) parameters for independent normal
distributions. The β scaling factor for each KL loss is 10. The slope hyperparameters were set at
ν2 = 3.5, νw3 = νa3 = 10.0 by grid search on a validation subset of Playroom. The P4 MLP used in
PSGNetM has hidden layer dimensions (250, 250) and an output dimension of 1. In the P2 binary
affinity function variant (BAff, Table 2 [21]), affinities are predicted by an MLP with hidden layer
dimensions (100, 100) and an output dimension of 1. All applications of LP proceed for 10 iterations,
which is enough to reach convergence (i.e., unchanging label identity with further iterations) for the
majority of nodes.

S2.3 Graph Vectorization
Given nodes Vl and pooling kernels defined by Pl from the previous stage, Graph Vectorization
constructs a new level of nodes Vl+1 and their associated attributes Al+1 : Vl+1 → RCl+1 . This also
specifies a new spatial registration Rl+1, which maps each spatial index into the Level-0 nodes, (i, j),
to the index of its unique parent in Vl+1. We call this process “Vectorization” because it encodes
the group properties of a set of entities (here, lower-level graph nodes) as components of a single
attribute vector.

New node attributes are created in two ways: first, through permutation-invariant aggregation
functions of the lower-level nodes in each segment, and second, by applying MLPs to these aggregates.
The reason for computing the latter set of attributes is that aggregate statistics are unlikely to provide
the direct encoding of scene properties (color, depth, normals, etc.) needed for Graph Rendering. The
use of MLPs allows these direct encodings to be learned as nonlinear functions of the aggregates,
with parameters shared across nodes (much as standard convolution kernels share parameters across
spatial positions.)

Implementation. For a vertex v ∈ Vl+1, let P−1
l (v) denote the set of vertices in Vl whose parent is v,

according to the Graph Pooling operation; let Segl+1[v] denote the set of spatiotemporal positions in
the base tensorF that belong to the segment associated with v, that is {(t, h, w) | Sl+1[t, h, w] == v}.
Then the Graph Vectorization module computes the new attribute vector Aagg

l+1 (v) as the summary
statistics of Al over the domain P−1

l (v), concatenated with the summary statistics of A0 ≡ F over
the domain Segl+1[v]. This process is depicted in Fig. 1. In the context of standard neural network
architectures, aggregation can be understood as various pooling operations over the input-dependent
pooling kernels induced by Pl and Sl+1, rather than over typical fixed-size kernels (e.g. 2 × 2
windows on the feature grid.) Though the size of the input kernels is variable, the output attribute
vectors have a fixed number of components because each summary statistic maps a set of attributes in
Al to a single number.

For aggregation, we compute the mean of the first and second power of each lower-level node attribute
as described in the main text. In addition to aggregating over the set Segl+1[v] for each node, we
also compute aggregates over nine subsets of Segl+1[v] defined with respect to spatial slices of
the registration Sl+1: its boundary, i.e. the set of nodes w ∈ Segl+1[v] whose registrations in the
base tensor are adjacent to those of a node from a different segment Segl+1[v′], v′ 6= v; its four
“quadrants,” the subsets of nodes whose registered centroids are above and to the right, above and to
the left, etc., of the centroid of Segl+1[v]; and the four boundaries of those quadrants. Thus if nodes
in Vl have Cl attribute components (including their spatial centroids), the new aggregates Aagg

l+1(v)
will have 2 · 10 · Cl.
Two MLPs produce new attributes from these aggregates: A “unary” function HU

l+1(Aagg
l+1(v)), which

operates on each aggregate in Vl+1; and a “binary” function HB
l+1(|Aagg

l+1(v) − Aagg
l+1(w)|), which

operates on pairs of aggregates. (This latter operation is a type of graph convolution on the fully-
connected graph of the Level-l + 1 aggregates. Both operations can be merged into one by doing
graph convolution with self-edges, but the implementation is simpler when keeping them separate.)
The final set of new attributes Hnew(v) is given by

Hnew
l+1(v) = HU

l+1(v) +
1

|Vl+1|
∑

w∈Vl+1

HB
l+1(v, w), (15)
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that is, by summing the unary MLP outputs and the mean of the binary MLP outputs across node
pairs. The aggregate attributes and the learned attributes are concatenated to give the full attribute
labeling maps, Al+1 : v 7→ Aagg

l+1(v)⊕Hnew
l+1(v).

In this work. All MLPs used for Graph Vectorization have hidden layers with dimensions (100, 100).
The number of output dimensions is based on how many attributes are needed for rendering (QSR
and QTR). Each channel of an output QTR feature map requires 6 components, and each of 6
QSR constraints requires 4 components. Because the full vectorization process would cause the
number of node attributes to grow geometrically in the number of PSG levels, we compute only
mean attributes and perform only constant texture rendering (requiring a single component per output
channel) for Level-1 nodes; in practice, these nodes have “superpixel”-like spatial registrations with
little feature variation across their aggregation domains and with similar shapes.

S2.4 Decoding
Two types of decoder render PSG nodes into images, allowing for (self-)supervision on other image-
like tensors. These decoders both have fixed functional forms, where the rendered outputs depend only
on the input PSG components. Since the decoders do not have learnable parameters, no information
would be lost in performing downstream tasks with the PSG encodings themselves, rather than the
decoder outputs. The lack of parameters also forces all learning to happen in the PSG encoder and
forces the PSG nodes to represent scene properties with a direct, explicit encoding (rather than an
entangled, nonlinear function of an abstract latent state.)

Quadratic Texture Rendering. Given the nodes and attributes of layer of a PSG, Vl, Al, together with
the layer’s spatial registration Sl, quadratic texture rendering (QTR) creates an image by inpainting
the value of an attribute for node v onto the pixels in Segl[v]. However, rather than paint uniformly
throughout Segl[v], QTR paints a quadratic function of attributes. Let a, ah, aw, ahh, aww, and ahw
denote six attribute dimensions from Al(v), and let (cvh, c

v
w) denote the centroid of Segl[v] in image

coordinates. Then define the quadratic form qtr[v](i, j) = a+ ah(i− cvh) + aw(j− cvw) + 1
2ahh(i−

cvh)2 + 1
2aww(j − cvw)2 + 1

2ahw(i− cvh)(j − cvw). The (single-channel) image rendered from these
attributes is then given by QTRa

l : (i, j) 7→ qtr[Sl[i, j]](i, j). Rendering an RGB image with a
QTR decoder therefore takes 18 components of Al. See Fig. 1 and S3 for examples of QTR.

When rendering a QTR that will be supervised with a depth map, we distinguish two additional
attributes x and y at each graph level so that its nodes will have a representation as a 3D point
cloud. To compute a projective 2D-3D self-consistency, we treat our system as a pinhole camera. We
compute the loss Lproj(X) =

∑
v∈Vl(X),t ||proj[atx(v), aty(v), atz(v)]− (cv,th , cv,tw )||2 where atz(v) is

the predicted depth (from the depth-supervised channel z) and proj : R3 → R2 denotes the pinhole
camera perspective projection. The camera focal length parameter is provided on a per-dataset basis
in training.

Quadratic Shape Rendering. A Quadratic Shape Rendering (QSR) decoder renders predic-
tions of what 2D silhouette a PSG node produces in the input scene, elaborating on a proce-
dure developed in [7] to “draw” a shape as the intersection of signed distance function con-
straints. Let D be the number of constraints and pdx, p

d
y, p

d
ρ, p

d
α, d ∈ [D] be 4D components

from Al(v). For each d ∈ [D], let qsrd[v](i, j) be the scalar field defined by taking nor-
malized signed distance of point (i, j) to the locus of a 2D parabola, i.e. qsrd[v](x, y) =
σ
(
pdα[y cos(pdρ)− x sin(pdρ)− pdx]2 − [x cos(pdρ) + y sin(pdρ)− pdy]

)
where σ is the standard sig-

moid function. Let qsr[v](i, j) = mind∈[D] qsr
d[v](i, j)). Define the segment map QSRl : (i, j) 7→

arg maxv∈Vl
qsr[v](i, j) and the segment “confidence map” QSRc

l : (i, j) 7→ maxv∈Vl
qsr[v](i, j).

In this work, we use D = 6. See Fig. 1 and S3 for examples of QSR and note that the rendered
shapes do not depend directly on the segmentations Sl, unlike in QTR. This means that the attributes
vectors of a PSG are sufficient to generate an image via QSR, a property we use below to demonstrate
the symbolic structure of the PSG representation.

Training Losses. For the reconstruction of RGB and prediction of depth and normal maps, we distin-
guish at each layer six QTR attribute dimensions for each attribute a ∈ {R,G,B, z,Nx, Ny, Nz}.
The associated loss is La(θ,X) =

∑
i,j,l,t(QTR

a(X)
θ,l,t (i, j)− gtc(X)(i, j))2, where gta(X) is the

ground-truth value of attribute a associated with input X . For reconstructing RGB difference mag-
nitude when movies are given, we distinguish a channel ∆ (and its associated QTR attributes),
self-supervising on |

∑
r,g,b(δX)2| for ground-truth. We also compute losses for QSR predictions,
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taking the softmax cross-entropy between the shape map for each predicted object and the self-
supervising “ground truth” indicator function of whether a pixel is in that object’s segment, i.e.
LQSR(θ,X) =

∑
t,i,j,v∈VL(Xt)

SoftMaxCE(qsr[v](i, j),1[(i, j) ∈ SL(v)]).

S3 Datasets, Baseline Models, and Evaluation Metrics
S3.1 Datasets
Primitives. This dataset was generated in a Unity 2019 environment by randomly sampling 1-4
objects from a set of 13 primitive shapes (Cube, Sphere, Pyramid, Cylinder, Torus, Bowl, Dumbbell,
Pentagonal Prism, Pipe, Cone, Octahedron, Ring, Triangular Prism) and placing them in a square
room, applying a random force on one object towards another, and recording the objects’ interaction
for 64 frame-long trials. The textures and colors of the background, lighting, and each object were
randomly varied from trial to trial. The training set has in total 180,000 frames with 2 and 3 objects.
The test set has in total 4,000 frames with 1-4 objects. Each frame includes an image, a depth map,
a surface normals map, a segmentation map of the foreground objects (used only for evaluation),
and the camera intrinsic parameters (which are constant across each dataset.) During training and
evaluation of MONet, IODINE, and PSGNetS, individual frames across different trials are randomly
shuffled, so object motion is not apparent from one frame to the next.

Playroom This dataset was generated using the same Unity 2019 environment as Primitives with
two differences: first, the floor and walls of the room were given naturalistic textures (including
natural lighting through windows in the walls and ceiling); and second, the objects were drawn from
a much larger database of realistic models, which have naturalistic and complex textures rather than
monochromatic ones. For each of 1000 training trials or 100 test trials, 1-3 objects were randomly
drawn from the database and pushed to collide with one another. Each trial lasts 200 frames, giving a
total of 200,000 frames in the training set and 20,000 in the testing set. 100 of the training trials were
randomly removed to be used as a validation set. When presented to PSGNetM and OP3, multi-frame
clips from each trial were randomly selected and shuffled with clips from other trials, so object
motion was apparent in a subset of training examples. Both datasets will be made available upon
request, and the Unity 2019 environment for generating these data (ThreeDWorld) will be available
upon publication.

Gibson. We used a subset of the Gibson 1.0 environment*. The subset is scanned inside buildings
on the Stanford campus, and is subdivided into 6 areas. We used area 1, 2, 3, 4, 6 for training, half
of area 5 for validation, and the other half of area 5 for testing. The training set has 50,903 images
and the validation and test set each have 8,976 images, along with depth maps, surface normals
maps (computed approximately from the depth maps), full-field instance segmentation labels, and the
camera intrinsic parameters.

CLEVR6 and MultiDSprites. For zero-shot transfer experiments, we tested PSGNets and baselines
on two datasets used in the unsupervised object discovery literature: CLEVR and MultiDSprites
(MDS) [4, 17]. We evaluated each Playroom or Primitives-pretrained model on the first 2000
examples of each dataset, in the case of CLEVR evaluating only on scenes with six (“CLEVR6”)
or fewer objects as in [17]. Qualitatively, the CLEVR dataset is similar to our Primitives but with
no background scene components and with a narrower range of object shapes; MDS consists of 2D,
monochromatic shapes that sometimes overlap each other on a solid background.

S3.2 Model and Training Implementations
We implemented MONet, IODINE, and OP3 as described in the original papers and publicly available
code [4, 17, 54]. We used the same convolutional encoder and decoder for all three models. The
encoder has 4 layers with (32, 32, 64, 64) channels each. The decoder also has 4 layers with (32, 32,
32, 32) channels each. The number of object slotsK is set to 7 for all models on the synthetic datasets
and 12 for Gibson. MONet uses a 5-block U-Net for attention. It has in total 14.9M parameters.
IODINE and OP3 use 5-step iterative inference [17, 54]. IODINE has 1.7M parameters. OP3 has
1.6M parameters. PSGNetS has 1M parameters and PSGNetM 1.3M.

For Quickshift++, we used 1000 images from each training set to search for the best hyperparameters.
Table S1 shows the hyperparameters we found for each dataset.

Training. We trained baseline models with the Adam optimizer [27] with learning rate 0.0001 and
batch size 128. Gradients with norm greater than 5.0 were clipped. MONet was trained with 4

*http://buildingparser.stanford.edu/dataset.html

21



Table S1: Quickshift++ hyperparameters for each dataset.

Dataset k β

Primitives 20 0.9
Playroom 20 0.95
Gibson 80 0.95

Titan-X GPUs. IODINE and OP3 were each trained with 8 GPUs. The training took between 48
and 96 hours to converge, depending on the model and dataset. PSGNetS and PSGNetM each
were trained with batch size 4 on a single Titan-X GPU for 24 hours using the Adam optimizer
[27] with learning rate 0.0002. All models are based on CNN backbones, so can take images of
any size as input; however, training on images > 64× 64 was computationally prohibitive for the
baseline models, so we trained all models and report all evaluation metrics on images of this size.
PSGNets take significantly less time and resources to train than the baselines, so for visualization
we trained and evaluated versions of PSGNetS and PSGNetM on 128× 128 images. This increases
segmentation metric performance by 5-10% (data not shown.) To measure the effect of random
weight initialization, we developed a PSGNetM-RGB model and trained five copies on movies from
Playroom with different random seeds. These models scored (mean +/- stdev) of (Recall 0.65 +/
0.01, mIoU 0.59 +/- 0.01, BoundF 0.60 +/- 0.01) on held-out images, suggesting that performance
is quite consistent across random seeds. We therefore report only the performance of single trained
models in the rest of this work. Tensorflow [1] code for training and evaluating PSGNet models is
available at github.com/neuroailab/PSGNets. Because PSGs can have a variable number of nodes per
input scene at any level above the base tensor, but Tensorflow code generally operates on rectangular
arrays, we distinguish a single “valid” attribute vector component at each PSG level that indicates
whether a given node is real (part of the PSG) or being masked out.

S3.3 Evaluation
We use standard metrics for object detection and segmentation accuracy with minor modifications, due
to the fact that all tested models output full-field scene decompositions rather than object proposals:
each pixel in an input image is assigned to exactly one segment. The mIoU metric is the mean
across ground truth foreground objects of the intersection over union (IoU) between a predicted
and ground truth segment mask (a.k.a. the Jaccard Index.) Because one predicted segment might
overlap with multiple ground truth segments or vice versa, for this and the other metrics we found the
optimal one-to-one matching between predictions and ground truth through linear assignment, using
1.0−mIoU as the matching cost. The Recall metric is the proportion of ground truth foreground
objects in an image whose IoU with a predicted mask is > 0.50. BoundF is the standard F-measure
(a.k.a. F1-score) on the ground truth and predicted boundary pixels of each segment, averaged across
ground truth objects. ARI (Adjusted Rand Index) is the Permutation Model-adjusted proportion
of pixel pairs correctly assigned to the same or different segments according to the ground truth
segmentation, as used in [17] – except that we do not restrict evaluation to foreground objects. Linear
assignment, ARI, and segment boundary extraction are implemented in Scikit-learn [40].

In the main text we report metrics on each test set for single model checkpoints, chosen by where
Recall on each validation set peaks (within 400 training epochs for the baselines and 5 training
epochs for PSGNets.) Variation in PSGNet performance due to random weight initialization was
<2% across 5 models.

S4 Comparing PSGNet to Baseline Models
Here we further describe the qualitative and quantitative differences between PSGNets and the CNN
baselines as unsupervised scene decomposition methods. At a high level, these methods produce
such different results because (1) they make different assumptions about how scenes are structured
and (2) they use different architectures (and therefore have different “inductive biases”) to learn
segmentations. The CNN-based models MONet [4], IODINE [17], OP3 [54], and related methods
[9] all assume that the visual appearance of a scene is generated by the combined appearances of
up to K latent factors. In essence, each model tries to infer the the parameters of the latent factors
using a CNN encoder (or “de-renderer”) and then reconstructs the scene with a decoder (“renderer”)
that operates on each factor and combines their results into an output image. These models therefore
learn which scene components (i.e., segments of scenes with a certain 2D shape and appearance) are
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Input Normals Segments Input Normals Segments Input Normals Segments Input Normals Segments

Figure S2: Examples (one per row) of the CNN-based models’ RGB, normals, and segmentation predictions on
Playroom. (All models also receive supervision and make predictions in the depth channel, not shown here.)
Unlike on Primitives, the baselines generally do not capture the shapes and textures of the objects in this dataset.

Input QTR QSR Input QTR QSR

Figure S3: Six examples of PSGNetS top level (Level2) quadratic texture renderings of color (QTRs) and
quadratic shape rendering (QSRs) on Primitives. Here the QSRs are filled in with the color of their associated
nodes’ color attributes, but they could be filled in with any other attribute. The QSRs are able to capture many of
the simple silhouettes of objects in this dataset (compare to th QTRs, which are colored according to the Level2
unsupervised segmentations of each image.) Some silhouettes, such as that of the dumbbell (middle row, right
column) are approximated by simpler shapes; adding additional quadratic constraints to the QSRs could produce
more complex shapes.

common across a dataset; over the course of training, they get better at detecting and reconstructing
these components.

In contrast, PSGNets do not learn via the assumption that scenes can be decomposed into the
appearance of several latent factors. They instead assume that pairs of visual elements are physically
connected, and therefore can be represented as parts of a single, higher-level entity. This difference in
assumptions is subtle but yields a dramatically different optimization problem for PSGNets, because
they do not need to learn which object silhouettes (segmentation masks) or global appearances are
common across a dataset; the only need to learn which pairwise relationships appear frequently or
persist through time (e.g. during object motion.) Whereas silhouettes and global appearances vary
widely even for the same object across different views and contexts, pairwise relationships (such as
differences in color, texture, or surface normal vectors) are highly constrained by the physics of real,
solid objects: many are made of similar material and have smoothly changing shape across broad
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Figure S4: Six examples of PSGNetM renderings and segmentations on Playroom. Only the top-level (Level3)
quadratic texture renderings and spatial registration are shown, along with the ground truth for each input image.
Note that the ground truth segmentations are not provided during training and only the color image is input to
the model. The main failure mode of PSGNetM is undergrouping of large, static regions (e.g. first row, right
column) or of objects with regions of very different textures (e.g. second and third rows, right column.)

regions of their surfaces. In cases where objects have visually and geometrically distinct subregions,
their concerted motion should reveal the “ground truth” of their underlying cohesion.

In addition to this difference in assumptions for learning, PSGNets have a major architectural
difference with CNN-based methods: they produce segments by spatially non-uniform grouping of
scene elements rather than fixed-size convolution kernels whose weights are shared across visual space.
It has previously been recognized that spatially uniform convolutions are poorly suited to produce
sharp scene segmentations, motivating post-processing algorithms like conditional random fields
for sharpening CNN outputs [5]. At heart, this is because region borders and interiors tend to have
different CNN feature activations (as spatially uniform receptive fields inevitably cross boundaries)
even when they have the same visual appearance. This problem is greater in the unsupervised
setting, where there are no segmentation labels to indicate exactly where a boundary occurs. Thus,
we hypothesized that the perceptual grouping mechanisms of PSGNets would produce sharper
boundaries and be less prone to overfitting common object shapes than the CNN-based methods. This
is consistent with the large previous body of work on unlearned graph-based perceptual grouping and
scene segmentation (e.g. [44, 2]). We extend the ideas behind hierarchical graph-based segmentation
by learning image features and affinity functions according to physical properties of scenes.

Qualitative comparison of model error patterns. Each model makes characteristic errors that can
be explained by their respective architectures and loss functions. MONet reconstructs the input image
(and here predicts depth and normals feature maps) by producing one segmentation mask at a time
from a U-Net CNN [4], but imposes no further constraints on the structure of its outputs or latent
states. As a result its segmentations and predictions can have high spatial resolution and low pixel-
wise reconstruction error even when inferring clearly non-physical "objects," such as segments split
across disconnected regions of the image; moreover, it learns to lump together disparate background
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Table S2: Training epochs before peak validation set object recall.

Dataset MONet IODINE OP3 PSGNetS PSGNetM

Primitives 200 350 - 2.0 -
Playroom 38 83 24 1.8 1.0

regions because the expressive U-Net decoder can easily output single segment feature maps that
adequately reconstruct predictable chunks of the scene (Fig. S2, second column.)

IODINE (and its dynamics-modeling successor OP3) instead jointly infers all the parameters of all
scene latent factors in parallel and "spatially broadcasts" them over an intermediate feature map at
the same resolution as its output [17]. This encourages each predicted "object" to occupy a single,
spatially contiguous region, but also appears to degrade information about its shape; most foreground
segment predictions resemble "blobs" that lack the distinguishing features of the shapes they represent
(Fig. S2, third and fourth columns.)

Finally, PSGNetS segments the scene into regions that are both contiguous and high-resolution, but
sometimes oversegments – that is, undergroups during learnable graph pooling. This is especially
apparent for scene elements that are large (likely because learned affinities tend to fall off with
distance) or contain strong shadows or reflections (because pairwise affinities may be low across a
large change in appearance; see Figs. S3 and S4.) Some of these errors are reduced in PSGNetM,
which can group visually distinct regions that have been observed moving together. However, the
addition of P3 and P4 in this model can lead to overgrouping when two scene elements with similar
appearance are or have been seen moving together (see Fig. 2C in the main text.) These two principles
also do not provide learning signals about how to group scene elements that rarely or never move
(such as floors and walls.) In future work, we will explore additional grouping principles that can
apply to these scene elements and can better distinguish moving objects even when they share similar
appearance.

Learning efficiency and generalization. Beyond the gap between PSGNets and CNN baselines in
segmentation performance, the substantially greater learning efficiency and generalization ability
of PSGNets suggest that their bottom-up perceptual grouping architecture is better suited for scene
decomposition than the latent factor inference architectures of the baselines. On Primitives, where all
models were able to decompose scenes reasonably well, peak object detection performance (Recall)
on the validation set occurred after 200 and 350 training epochs for MONet and IODINE, respectively,
but after only 2 epochs for PSGNetS (Table S2.) The difference was less pronounced when training
on Playroom, where MONet, IODINE, and OP3 peaked after 38, 83, and 24 epochs – compared
to 1.8 and 1.0 for PSGNetS and PSGNetM; however, the poor performance of the baselines on this
dataset (<0.30 test set Recall) makes their learning efficiency a less important metric. For the same
reason, it is hard to assess the across-dataset generalization of the baselines, since they all underfit one
of the two synthetic datasets used in this work. Given that none of them achieved >0.10 Recall when
tested on the dataset they were not trained on, we consider their generalization ability limited. In
contrast, both Primitives-trained PSGNetS and Playroom-trained PSGNetM achieved >50% of their
within-distribution test performance on their converse datasets, suggesting that a significant portion
of their learned perceptual grouping applies generically to objects that have never been seen before.
This is our expectation for algorithms that purport to learn “what objects are” without supervision,
rather than learning to detect a specific subset of objects they have seen many times. Future work
will explore what constitutes an optimal set of training data for the PSGNet models.

The CLEVR6 and MDS datasets, which were used to develop MONet and IODINE [4, 17], do
not have the structured background or nearly the variety of object shapes as the TDW or Gibson
datasets (though individual CLEVR objects are qualitatively similar to Primitives objects, with
greater photorealism.) Thus, we expected that these datasets would be somewhat easier to segment
than the ones we developed our models on. This was born out both by the PSGNets’ zero-shot
transfer performance (see main text) and by training on the datasets, where PSGNetS-RGB (with no
further architecture modifications) reached recall of 0.73 on CLEVR6 and 0.80 on MDS – higher
than on any of the TDW or Gibson datasets. Interestingly, the MONet and IODINE models did even
better when trained directly on CLEVR and MDS, reaching recalls of (0.80, 0.84) on the former and
(0.94, 0.96) on the latter. On the one hand, this could indicate that PSGNets would perform better
on these much smaller and simpler datasets if their architectures were further constrained to avoid
overfitting (as was required to find the NoDN* and PSGNet-RGB architectures.) On the other hand,
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the fact that PSGNets perform almost equally well on these datasets without ever seeing them – and
dramatically outperform baselines on more realistic images – demonstrates their lack of overfitting to
dataset-specific objects, which we see as a relative strength of our approach. Nevertheless, there may
be fruitful ways to combine the mask-prediction architectures of these baselines with the perceptual
grouping inductive biases of PSGNets to get the best of both.

Assessing the dependence of baselines on geometric feature maps. Finally, because the CNN
baselines were all developed to solve an autoencoding (or future prediction) problem on RGB input
only, we wondered whether the task used in this work – reconstruction of supervising RGB, depth,
and normals maps – might have have stressed these models in unintended ways (even though they
were given strictly more information about input scenes during training.) Surprisingly, neither giving
depth and normal maps as inputs (in addition to the RGB image) nor reconstructing RGB alone
substantially changed the performance of MONet or IODINE on Primitives: both autoencoding
variants of both models yielded performance within 10% of what they achieved on the original RGB
to RGB, depth, and normals task. It is unclear why the baseline methods do not learn to decompose
scenes better when given more information about their geometric structure (cf. the NoDN PSGNetM
ablation.) One possible explanation is that color cues alone are highly predictive of object boundaries
in Primitives, whereas the depth and normals channels only rarely indicate boundaries that are not
easily detected in the color channels.

S5 Visualizing PSGNet Outputs
Here we provide additional examples of components of predicted PSGs. Figure S3 compares the
PSGNetS top-level (Level-2) color QTRs to the top-level QSRs on images from Primitives. The
former are colored by quadratic “painting by numbers” in the Level-2 spatial registration inferred for
each image, so better reconstruct both high-resolution details and smooth changes in color across
large regions. The latter are shapes “drawn” by intersecting 6 predicted quadratic constraints per
node, colored by each node’s RGB attribute.

Figure S4 shows PSGNetM top-level (Level-3) QTRs for color, depth, and normals, as well as the
top-level spatial registration, for single images in Playroom. Despite the wide variety of object sizes,
shapes, and textures in this dataset, PSGNetM is largely able to segment and reconstruct the attributes
of most. Undergrouping (oversegmentation) failures tend to occur when objects have sharp internal
changes in color. Interestingly, human infants seem not to perceptually group visual elements by
color in their first few months of life, relying instead on surface layout and motion [45]; it is possible
that PSGNetM could better learn to group parts of these complex objects by explicitly ignoring the
color and texture attributes of their nodes, which is feasible because of their direct and disentangled
encoding.
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