
We would like to thank all reviewers for their detailed, thoughtful and valuable feedback. We are encouraged that1

the reviewers are convinced by our motivation [R1, R2], methodical contribution [R3, R4], experimental results [R1,2

R2] and the thorough comparison to related work [R2, R3, R4]. We address the reviewers’ comments below by3

first clarifying the derivation of our proposed ELBO, followed by a detailed explanation of certain aspects of our4

experimental setup. Lastly, we address individual questions.5

Dynamic Prior and generalized JS-Divergence. [R1, R2, R4] There are two major reasons for using a PoE as6

distribution for the dynamic prior: 1) The KL-divergence between a Gaussian distribution and a PoE of Gaussians7

can be calculated in closed-form, as mentioned in Section 3.4. 2) PoE-based models [27] are able to approximate the8

joint posterior distribution well which we would like to utilize. Instabilities in training and overconfident experts as9

mentioned in [21] are mainly due to difficulties in the optimization of unimodal posterior approximations. In our case,10

the JS-divergence allows us to optimize the unimodal and multimodal approximation functions jointly, leading to a11

stable training of the PoE approach. The fact that the standard JS-divergence is defined via mixture distribution was the12

main reason to use the MoE in the derivations. As such, the derivation based on the MoE is a special case, which is13

most familiar to readers, but the result is more general and holds for any abstract mean distribution (as in [18]). We will14

state this more clearly in the final version of the paper.15

[R2, R3] Derivation of ELBO (Eq. 9): Similar to [24], the dynamic prior is defined by a data-dependent function. In the16

general formulation of Eq. (6), there are not yet any additional assumptions on the prior distribution. The dynamic17

prior defines a valid distribution for the MoE- as well as for the PoE-variant (see appendix B.2 and B.3) and hence is18

a well-defined prior. This makes the first line of Eq. (9) a valid ELBO - independent of the exact formulation of the19

dynamic prior as long as it is a proper distribution. We would like to emphasize that Eq. (9) is not meant to be a lower20

bound to Eq. (6). As stated in Section 3.2 and 3.3 and proven with Lemma 2, we only claim the validity of the proposed21

ELBO using the JS-divergence. As proven in [18], the derivation can be generalized to any abstract mean distribution,22

including the geometric mean that defines the PoE. We will point this out in the final version of the paper. [R2] The23

references for the JS-divergence for M distributions [1,14] are given in the introduction, we will add them in Section 324

as well. The reference for the extension to generalized means in [18] is given in Section 3.4.25

Experiments. [R1, R2] We highlight the advantage of modality-specific (MS) subspaces using conditional generation26

plots (cf. Figure 1) instead of latent traversals. For conditional generation, MS subspaces allow to mix and match27

different shared and MS encodings. The columns show that the shared and MS spaces disentangle (every row is a28

different random sample from the MS latent subspace). The shared information (digit number) is invariant per column,29

while the MS information is invariant per row. This gives empirical evidence that MS and shared latent spaces encode30

different information. We will include a visualization of low-dimensional embeddings of the shared and MS latent31

spaces in the Appendix. [R4] We already describe the details of all the models incl. MS spaces in the Appendix (Section32

C.2.2). To this, we will add the respective ELBOs utilizing MS subspaces. [R3, R4] To the best of our knowledge,33

we are the first to perform an experiment with three different types of modalities. In our opinion, different modalities34

should contain information that is specific to each modality. In [27]’s vision study, the different modalities are filtered35

versions of the original modality which prevents them from having true modality-specific information.36

[R4] In our opinion, the quality of generated samples is only one side of the coin to evaluate multi-modal generative37

models. We are convinced that only its combination with the coherence of generated samples allows for a valid38

assessment. Although the MVAE model is able to generate high quality samples, comparing Table 3 and 4 shows39

that the quality of samples comes at the cost of reduced coherence accuracy (for conditional generation) which is40

significantly lower than MMVAE’s and ours. Additionally, by introducing MS subspaces, we find a solution to generate41

samples of high quality which are coherent between modalities - random generation and all subsets of samples. [R3] We42

report the NLL-numbers for completeness as it is a de-facto standard evaluation method for VAE-based models despite43

the known weaknesses. [R1] The introduction of modality-specific subspaces leads to a small overhead regarding the44

hyperparameters (incl. priors). In our experiments, we used standard Gaussian priors - as it is common for VAE-based45

models - for the modality-specific subspaces which work very well in practice. [R3] A comparison of runtimes can be46

found in the Appendix (Table 8, Section C.2.4) which highlights the inefficiency of IWAE-based models (3x longer47

training time) as mentioned in the related work Section.48

Further Questions. [R3] "Comparison to JMVAE": The introduction of the JS-divergence has a similar motivation as49

JMVAE [22] which we discuss in the related work. By using the JS-divergence the unimodal posterior approximations50

are automatically optimized for being close to a joint posterior distribution (the dynamic prior in our case). We are able51

to solve this in a scalable way while [22] have to use an exhaustive approach. [R4] "Ablation studies in the Appendix":52

Our hypothesis for the stable random coherence in this experiment is that the unimodal posteriors are learned in a way53

that their mean distribution is similar to static prior (we have no final hypothesis for the dip yet). [R4] "Calculation54

of coherence for random generation": The generated samples were evaluated using a pre-trained classifier for each55

modality. If all modalities show the same content/shared information, this is a coherent generation. From there, we56

calculate accuracy/precision recall.57


