
Predicting Training Time Without Training: Supplementary Material

In the Supplementary Material we give the pseudo-code for the training time prediction algorithm
(Appendix A) together with implementation details, show additional results including prediction of
training time using only a subset of samples, and comparison of real and predicted loss curves in a
variety of conditions (Appendix C). Finally, we give proofs of all statements.

A Algorithm

Algorithm 1: Estimate the Training Time on a given target dataset and hyper-parameters.
1: Data: Number of steps T to simulate, threshold ε to determine convergence, pre-trained weights
w0 of the model, a target dataset with images X = {xi}Ni=1 and labels Y = {yi}Ni=1, batch size
B, learning rate η, momentum m ∈ [0, 1).

2: Result: An estimate T̂ε of the number of steps necessary to converge within ε to the final value
Tε := min{t : |Lt − LT | < ε}.

3: Initialization: Compute initial network predictions f0(X ), estimate Θ using random
projections (Section 4), compute the ELR η̃ = η/(1−m) to use in eq. (1) instead of η;

4: if B = N then
5: Get f lin

t (X ) solving the ODE in eq. (1) (only the deterministic part) for T steps;
6: else
7: Get f lin

t (X ) solving the SDE in eq. (1) for T steps (see approximation in Section 4);
8: end if
9: Using f lin

t (X ) and Y compute linearized loss Llint ∀t ∈ {1, ..., T}
10: return T̂ε := min{t : |Llint − LlinT | < ε};

We can compute the estimate on training time based also on the accuracy of the model: we straight-
forwardly modify the above algorithm and use the predictions f lin

t (X ) to compute the error instead of
the loss (e.g. fig. 10).

We now briefly describe some implementations details regarding the numerical solution of ODE and
SDE. Both of them can be solved by means of standard algorithms: in the ODE case we used LSODA
(which is the default integrator in scipy.integrate.odeint), in the SDE case we used Euler-Maruyama
algorithm for Ito equations.

We observe removing batch normalization (preventing the statistics to be updated) and removing data
augmentation improve linearization approximation both in the case of GD and SGD. Interestingly
data augmentation only marginally alters the spectrum of the Gram matrix Θ and has little impact
on the linearization approximation w.r.t. batch normalization. [12] observed similar effects but,
differently from us, their analysis has been carried out using randomly initialized ResNets.

B Target datasets

Dataset Number of images Classes Mean samples per class Imbalance factor
cifar10 [19] 50000 10 5000 1
cifar100 [19] 50000 100 500 1
cub200 [30] 5994 200 29.97 1.03
fgvc-aircrafts [24] 6667 100 66.67 1.02
mit67 [26] 5360 67 80 1.08
opensurfacesminc2500 [4] 48875 23 2125 1.03
stanfordcars [18] 8144 196 41.6 2.83

Table 2: Target datasets.

12



C Additional Experiments

Prediction of training time using a subset of samples. In Section 4 we suggest that in the case
of MSE loss, it is possible to predict the training time on a large dataset using a smaller subset of
samples (we discuss the details in Appendix D). In Figure 7 we show the result of predicting the loss
curve on a dataset of N = 4000 samples using a subset of N = 1000 samples. Similarly, in Figure 11
(top row) we show the more difficult example of predicting the loss curve on N = 1000 samples
using a very small subset of N0 = 100 samples. In both cases we correctly predict that training on a
larger dataset is slower, in particular we correctly predict the asymptotic convergence phase. Note in
the case N0 = 100 the prediction is less accurate, this is in part due to the eigenspectrum of Θ being
still far from its limiting behaviour achieved for large number of data (see Appendix D).

Comparison of predicted and real error curve. In Figure 8 we compare the error curve predicted
by our method and the actual train error of the model as a function of the number of optimization steps.
The model is trained on a subset of 2 classes of CIFAR-10 with 150 samples. We run the comparison
for both gradient descent (left) and SGD (right), using learning rate η = 0.001, momentum m = 0
and (in the case of SGD) batch size 100. In both cases we observe that the predicted curve is
reasonably close to the actual curve, more so at the beginning of the training (which is expected,
since the linear approximation is more likely to hold). We also perform an ablation study to see the
effect of different approximation of SGD noise in the SDE in eq. (1). In Figure 8 (center) we estimate
the variance of the noise of SGD at the beginning of the training, and then assume it is constant to
solve the SDE. Notice that this predicts the wrong asymptotic behavior, in particular the predicted
error does not converge to zero as SGD does. In Figure 8 (right) we rescale the noise as we suggest in
Section 4: once the noise is rescaled the SDE is able to predict the right asymptotic behavior of SGD.

Prediction accuracy in weight space and function space. In Section 3 and Section 6 we argue that
using a differential equation to predict the dynamics in function space rather than weight space is not
only faster (in the over-parametrized case), but also more accurate. In Figure 9 we show empirically
that solving the corresponding ODE in weight space leads to a substantially larger prediction error.

Effective learning rate. In Section 3.1 we note that as long as the effective learning rate η̃ =
η/(1−m) remains constant, runs with different learning rate η and momentum m will have similar
learning curve. We show a formal derivation in Appendix E. In Figure 12 we show additional
experiments, similar to Figure 2, on several other datasets to further confirm this point.

Point-wise similarity of predicted and observed loss curve. In some cases, we observe that the
predicted and observed loss curves can differ. This is especially the case when using cross-entropy
loss (Figure 10). We hypothesize that this may be due to improper prediction of the dynamics when
the softmax output saturates, as the dynamic becomes less linear [21]. However, the train error curve
(which only depends on the relative order of the outputs) remains relatively correct. We should also
notice that prediction of the ε-training-time T̂ε can be accurate even if the curves are not point-wise
close. The ε-training-time seeks to find the first time after which the loss or the error is within an ε
threshold. Hence, as long as the real and predicted loss curves have a similar asymptotic slope the
prediction will be correct, as we indeed verify in Figure 10 (bottom).
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Figure 7: Training-time prediction using a subset of the data. (Left) Using the method described
in Appendix D, we predict (green) the loss curve on a large dataset of N = 4000 samples (orange)
using a subset of N0 = 1000 samples (blue). In Figure 11 we show a similar result using a much
smaller subset of N0 = 100 samples. (Right) Corresponding estimated training time on the larger
dataset at different thresholds ε compared to the real training time on the larger dataset.
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Figure 8: (Left) Comparison of the real error curve on CIFAR10 using gradient descent and the
predicted curve. (Center) Same as before, but this time we train using SGD and compare it with
the prediction using the technique described in Section 4 to approximate the covariance of the SGD
noise that appears in the SDE in eq. (1). (Right) Same as (center), but using constant noise instead of
rescaling the noise using the value of the loss function as described in Section 4. Note that in this
case we do not capture the right asymptotic behavior of SGD.

Overestimation vs underestimation error. Up to now we focused on prediction error rates (see
e.g. table 1 and fig. 6), in this section we will briefly describe how the errors are distributed: are
we overestimating or underestimating training time with our method? In Figure 10 we compare
training time predictions and actual training time values for different thresholds ε and datasets. While
for high thresholds ε the errors distribution does not seem to be particularly skewed (consider both
MIT-67 and CIFAR-10) the situation is different for small thresholds ε: our method tends to slightly
overestimate training time. In particular overestimation is due to the non-linearity and high capacity
of the network which might not be entirely captured by the linearization approximation (the non-linear
model decreases its loss faster w.r.t. its linear approximation).

Different training time definitions: Our method to predict training time can be extended to other
training time definitions. We started defining training time as the first time the (smoothed) loss is
below a given threshold (which we then normalized w.r.t. the total computational budget allowed, see
section 5). Similarly one can define training time as the first time training error decreases by less than
ε over the last T epochs. With this definition we achieve 13% avg. relative prediction error and 0.94
Pearson’s correlation between predicted and ground-truth time in the same experimental setting we
used in section 5.

D Prediction of training time on larger datasets

In Section 4 we suggest that, in the case of MSE loss, it is possible to predict the training time on
a large dataset using a subset of the samples. To do so we leverage the fact that the eigenvalues of
Θ follows a power-law which is independent on the size of the dataset for large enough sizes (see
Figure 4, right). More precisely, from Proposition 2, we know that given the eigenvalues λk of Θ and
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Figure 9: Comparison of prediction accuracy in weight space vs. function space. We compare
the result of using the deterministic part of eq. (1) to predict the weights wt at time t and the outputs
ft(X ) of the networks under GD. The relative error in predicting the outputs is much smaller than the
relative error of predicting the weights at all times. This, together with the computational advantage,
motivates the decision of using eq. (1) to predict the behavior in function space.
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Figure 10: Training time prediction is accurate even if loss curve prediction is not. (Top row)
Loss curve and error curve prediction on MIT-67 (left) and CIFAR-10 (right). (Bottom row) Predicted
time to reach a given threshold (orange) vs real training time (blue). We note that on some datasets
our loss curve prediction differs from the real curve near convergence. However, since our training
time definition measures the time to reach the asymptotic value (which is what is most useful in
practice) rather than the time reach an absolute threshold, this does not affect the accuracy of the
prediction (see Appendix C).

the projections pk = δy · vk it is possible to predict the loss curve using

Lt =
∑
k

pke
−2ηλkt.

Let Θ0 be the Gram-matrix of the gradients computed on the small subset of N0 samples, and let Θ
be the Gram-matrix of the whole dataset of size N . Using the fact that, as we increase the number of
samples, the eigenvalues (once normalized by the dataset size) converge to a fixed limit (Figure 4,
right), we estimate the eigenvalues λk of Θ as follow: we fit the coefficients s and c of a power law
λk = ck−s to the eigenvalues of Θ0, and use the same coefficients to predict the eigenvalues of Θ.
However, we notice that the coefficient s (slope of the power law) estimated using a small subset of
the data is often smaller than the slope observed on larger datase (note in Figure 4 (right) that the
curves for smaller datasets are more flat). We found that using the following corrected power law
increases the precision of the prediction:

λ̂k = ck−s+α
(

N0
N −1

)
.

Empirically, we determined α ∈ [0.1, 0.2] to give a good fit over different combinations of N and N0.
In Figure 11 (center) we compare the predicted eigenspectrum of Θ with the actual eigenspectrum of
Θ .

The projections pk follow a similar power-law – albeit more noisy (see Figure 11, right) – so directly
fitting the data may give an incorrect result. However, notice that in this case we can exploit an
additional constraint, namely that

∑
k pk = ‖δy‖2 (‖δy‖2 is a known quantity: labels and initial

model predictions on the large dataset). Let pk = δy · vk and let p′k = δy · v′k where vk and v′k
are the eigenvectors of Θ and Θ0 respectively. Fix a small k0 (in our experiments, k0 = 100). By
convergence laws [28], we have that p′k ' pk when k < k0. The remaining tail of pk for k > k0

must now follow a power-law and also be such that
∑
k pk = ‖δy‖2. This uniquely identify the

coefficients of a power law. Hence, we use the following prediction rule for pk:

p̂k =

{
p′k if k < k0

ak−b if k ≥ k0

where a and b are such that p̂k0 = p′k0 and
∑
k p̂k = ‖δy‖2.

In Figure 11 (left), we use the approximated λ̂k and p̂k to predict the loss curve on a dataset of
N = 1000 samples using a smaller subset of N0 = 100 samples. Notice that we correctly predict
that the convergence is slower on the larger dataset. Moreover, while training on the smaller dataset
quickly reaches zero, we correctly estimate the much slower asymptotic phase on the larger dataset.
Increasing both N and N0 increases the accuracy of the estimate, since the eigenspectrum of Θ is
closer to convergence: In Figure 7 we show the same experiment as Figure 11 with N0 = 1000 and
N = 4000. Note the increase in accuracy on the predicted curve.
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Figure 11: Training time prediction using a subset of the data. (Left) We predict the loss curve
on a large dataset of N = 1000 samples using a subset of N0 = 100 samples on CIFAR10 (similar
results hold for other datasets presented so far). (Center) Eigenspectrum of Θ computed using
N0 = 100 samples (orange), N = 1000 samples (green) and predicted spectrum using our method
(blue). (Right) Value of the projections pk of δy on the eigenvectors of Θ, computed at N0 = 100
(orange) and N = 1000 (blue). Note that while they approximatively follow a power-law on average,
it is much more ‘noisy’ than that of the eigenvalues. In green we show the predicted trend using our
method.

E Effective learning rate

We now show that having a momentum term has the effect of increasing the effective learning rate in
the deterministic part of eq. (1). A similar treatment of the momentum term is also in [29, Appendix
D]. Consider the update rule of SGD with momentum:

at+1 = mat + gt+1,

wt+1 = wt − η at+1,

If η is small, the weights wt will change slowly and we can consider gt to be approximately constant
on short time periods, that is gt+1 = g. Under these assumptions, the gradient accumulator at
satisfies the following recursive equation:

at+1 = mat + g,

which is solved by (assuming a0 = 0 as common in most implementations):

at = (1−mt)
g

1−m.

In particular, at converges exponentially fast to the asymptotic value a∗ = g/(1−m). Replacing
this asymptotic value in the weight update equation above gives:

wt+1 = wt − ηa∗ = wt −
η

1−mg = wt − η̃ g,

that is, once at reaches its asymptotic value, the weights are updated with an higher effective learning
rate η̃ = η

1−m . Note that this approximation remains true as long as the gradient gt does not change
much in the time that it takes at to reach its asymptotic value. This happens whenever the momentum
m is small (since at will converge faster), or when η is small (gt will change more slowly). For
larger momentum and learning rate, the effective learning rate may not properly capture the effect of
momentum.

F Proof of theorems

F.1 Proposition 1: SDE in function space for linearized networks trained with SGD

We now prove our Proposition 1 and show how we can approximate the SGD evolution in function
space rather than in parameters space. We follow the standard method used in [13] to derive a general
SDE for a DNN, then we speciaize it to the case of linearized deep networks. Our notation follows
[21], we define fθt(X ) = vec([ft(x)]x∈X ) ∈ RCN the stacked vector of model output logits for all
examples, where C is the number of classes and N the number of samples in the training set.

To describe SGD dynamics in function space we start from deriving the SDE in parameter space. In
order to derive the SDE required to model SGD we will start describing the discrete update of SGD
as done in [13].

θt+1 = θt − η∇θLB(θt) (6)
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Figure 12: Additional experiments on the effective learning rate. We show additional plots
showing the error curves obtained on different datasets using different values of the effective learning
rate η̃ = η/(1−m), where η is the learning rate and m is the momentum. Each line is the observed
error curve of a model trained with a different learning rate η and momentum m. Lines with the same
color have the same ELR η̃, but each has a different η and m. As we note in Section 3.1, as long as η̃
remains the same, training dynamics with different hyper-parameters will have similar error curves.

where LB(θt) = L(fθt(XB),YB) is the average loss on a mini-batch B (for simplicity, we assume
that B is a set of indexes sampled with replacement).

The mini-batch gradient ∇θLB(θt) is an unbiased estimator of the full gradient, in particular the
following holds:

E[∇θLB(θt)] = 0 cov[∇θLB(θt)] =
Σ(θt)

|B| (7)

Where we defined the covariance of the gradients as:

Σ(θt) := E
[
(gi∇ft(xi)L)⊗ (gi∇ft(xi)L)

]
− E

[
gi∇ft(xi)L

]
⊗ E

[
gi∇ft(xi)L

]
and gi := ∇wf0(xi). The first term in the covariance is the second order moment matrix while the
second term is the outer product of the average gradient.

Following standard approximation arguments (see [7] and references there in) in the limit of small
learning rate η we can approximate the discrete stochastic equation eq. (6) with the SDE:

dθt = −η∇θL(θt)dt+
η√
|B|

Σ(θt)
1
2 dn (8)

where n(t) is a Brownian motion.

Given this result, we are going now to describe how to derive the SDE for the output ft(X ) of the
network on the train set X . Using Ito’s lemma (see [13] and references there in), given a random
variable θ that evolves according to an SDE, we can obtain a corresponding SDE that describes the
evolution of a function of θ. Applying the lemma to fθ(X ) we obtain:

dft(X ) = [−ηΘt∇ftL(ft(X ),Y) +
1

2
vec(A)]dt+

η√
|B|
∇θf(X )Σ(θt)

1
2 dn (9)

where ∇θf(X ) ∈ RCN×D is the jacobian matrix and D is the number of parameters. Note A is a
N × C matrix which, denoting by f (j)

θ (x) the j-th output of the model on a sample x, is given by:

Aij = tr[Σ(θt)∇2
θf

(j)
θ (xi)].

Using the fact that in our case the model is linearized, so fθ(x) is a linear function of θ, we have that
∇2
θf

(j)(x) = 0 and hence A = 0. This leaves us with the SDE:

dft(X ) = −ηΘt∇ftLdt+
η√
|B|
∇θf(X )Σ(θt)

1
2 dn (10)

as we wanted.

17



F.2 Proposition 2: Loss decomposition

Let ∇wfw(X ) = V ΛU be the singular value decomposition of ∇wfw(X ) where Λ is a rectangular
matrix (of the same size of ∇wfw(X )) containing the singular values {σ1, . . . , σN} on the diagonal.
Both U and V are orthogonal matrices. Note that we have

S = ∇wfw(X )T∇wfw(X ) = UTΛTΛU,

Θ = ∇wfw(X )∇wfw(X )T = V ΛΛTV T .

We now use the singular value decomposition to derive an expression for Lt in case of gradient
descent and MSE loss (which we call Lt). In this case, the differential equation eq. (1) reduces to:

ḟ lin
t (X ) = −ηΘ(Y − f lin

t (X )),

which is a linear ordinary differential equation that can be solved in closed form. In particular, we
have:

f lin
t (X ) = (I − e−ηΘt)Y + e−ηΘtf0(X ).

Replacing this in the expression for the MSE loss at time t we have:

Lt =
∑
i

(yi − f lin
t (xi))

2

= (Y − f lin
t (X ))T (Y − f lin

t (X ))

= (Y − f0(X ))T e−2ηΘt(Y − f0(X )).

Now recall that, by the properties of the matrix exponential, we have:

e−2ηΘt = e−2ηV ΛΛTV T t = V e−2ηΛΛT tV T ,

where e−2ΛΛT t = diag(e−2ηλ1t, e−2ηλ2t, . . .) with λk := σ2
k. Then, defining δy = Y − f0(X ) and

denoting with vk the k-th column of V we have:

Lt = δyTV e−2ηΛΛT tV T δy

=

N∑
k=1

e−2ηλkt(δy · vk).

Now let uk denote the k-th column of UT and gi the i-th column of∇wfw(X )T (that is, the gradient
of the i-th sample). To conclude the proof we only need to show that λkvk = (gi · uk)Ni=1. But this
follows directly from the SVD decompostion∇wfw(X ) = V ΛU , since then V Λ = ∇wfw(X )UT .
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