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Abstract

Neural-Matrix style, high-density electrode arrays for brain-machine interfaces
(BMIs) and neuroscientific research require the use of multiplexing: Each recording
channel can be routed to one of several electrode sites on the array. This capability
allows the user to flexibly distribute recording channels to the locations where the
most desirable neural signals can be resolved. For example, in the Neuropixel probe,
960 electrodes can be addressed by 384 recording channels. However, currently
no adaptive methods exist to use recorded neural data to optimize/customize the
electrode selections per recording context. Here, we present an algorithm called
classification-based selection (CBS) that optimizes the joint electrode selections
for all recording channels so as to maximize isolation quality of detected neurons.
We show, in experiments using Neuropixels in non-human primates, that this
algorithm yields a similar number of isolated neurons as would be obtained if all
electrodes were recorded simultaneously. Neuron counts were 41-85% improved
over previously published electrode selection strategies. The neurons isolated from
electrodes selected by CBS were a 73% match, by spike timing, to the complete
set of recordable neurons around the probe. The electrodes selected by CBS
exhibited higher average per-recording-channel signal-to-noise ratio. CBS, and
selection optimization in general, could play an important role in development of
neurotechnologies for BMI, as signal bandwidth becomes an increasingly limiting
factor. Code and experimental data have been made available1.

1 Introduction

Modern neurotechnologies operate across a range of physical modalities (such as light, electricity,
magnetism) and offer the potential to record the activity of thousands or even millions of neurons [7].
High performing brain-machine interfaces (BMIs), a type of neurotechnology, require simultaneous

1https://github.com/pesaranlab/neuro_cbs
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Figure 1: Signal channel selection problem. A: Brain-machine interfaces must record from large
numbers of signal channels simultaneously, and therefore face a bottleneck. B: “Recording channels”
are sub-sampled from a larger set of “signal channels.” C: Adaptive selection maximizes the number
of recorded neurons, while naïve selection strategies fail in this regard.

recording and processing of large populations of neurons, and therefore suffer a bandwidth bottleneck:
Engineering requirements constrain the number of signal channels that can be acquired simultaneously
(Fig. 1A).

Bandwidth bottlenecks lead to an inherent problem of how to select from the available signal channels
in order to optimally monitor the neural population of interest [20] (Fig. 1B). For example, selecting
maximally informative populations for muscle activation can improve BMI system performance
[6, 21], which requires maximizing the size of the recorded neuronal ensemble. Such selection is
constrained by the nuances of engineering solutions, such as power for wireless arrays [27], optical
paths and dwell times for microscopes [22] and wiring constraints for electrode arrays [23, 17, 1].

If there were no constraints, one could simply measure from all available signal channels. There would
be no selection problem. If there were too many constraints, there would be very few simultaneously
recordable signal channels. For most modern neurotechnologies, however, the space of possible
selections is combinatorial. For example, Neuropixel probes [5] contain 960 electrodes (signal
channels). However, only 384 recording channels can be acquired simultaneously. Subject to other
constraints (see below), for this array, there are 2.5149 different possible selections.

In the face of such combinatorial explosion, heuristics have prevailed. For example, previously pub-
lished heuristics for the Neuropixel array either route all recording channels to groups of contiguous
electrodes in order to densely sample from a small segment of the probe or skip every other electrode
to form a checkerboard or a sparse linear pattern (Fig. 1C).

These heuristics are limited for several reasons. Neither selects electrodes to maximize neuronal
ensemble size based on where detected neurons appear. The density of sampling is uniform for dense
and checkerboard patterns, leading to surplus density in some regions and lack of density in others.
Also, the selection does not consider signal quality or waveform variability. If one electrode is noisier
than similar neighbors, then it should not be recorded.

Optimal selection of recording sites is a general problem when designing a sensing system with costly
engineering constraints, such as RADAR arrays [15], seismic wavefield sensing [13] and magnetic
resonance imaging [11]. Many applications reduce to determining optimal sensor placements for
any signal from a given class, e.g., randomized compressive sampling for sparse data [3]. Recording
channel selection instead must be optimized for a set of signal sources, and so is more related to
subspace identification (e.g., PCA) and optimal design [16]. Specifically, the subspace of signal
channels that are best captured by the limited number of recording channels must be determined. The
unique constraints in Neural Matrix-style recording devices [1], which implement subset selection
through multiplexing, require more specialized algorithms. Moreover, the typical cost functions used
in subspace estimation and optimal design fail to capture the information of importance to neural
recordings: isolating many single neurons. It is therefore necessary to create a new class of algorithms
that can meet the needs of optimal adaptive sub-sampling in next-generation neural recording devices.

With the philosophy of optimal channel selection in mind, we demonstrate efficient, automated
procedures for electrode selection applied to a state-of-the-art commercially available probe, the
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Neuropixel (Imec). Using these methods, we show channel selections that are able to simultaneously
resolve most spiking neurons present around the probe in recordings of macaque premotor cortex.

2 Adaptive electrode selection

Modern electrode arrays [5, 1] implement subset selection in the form of multiplexing, as depicted
in Figure 2A. Under this scheme, a recording channel can be assigned to one of several electrode
sites on the probe, corresponding to “banks” of spatially adjacent electrodes. For example, on the
Neuropixel Phase 1 probe, each of 384 channels can be assigned to one of 2-3 banks spanning 960
electrodes, with the number of possible selections given by (3192)(2192) ∼ 2.5 × 10149. In this
report, we discuss the problem of optimally assigning channels to banks so as to jointly maximize
the number of neurons resolved by the array. We present a data-driven method and describe several
benchmark heuristics.

We first denote a multichannel neuronal spike waveform as the sequence of random vectors v(t) ∈ RE
for t = 1, ..., T , where T is the number of time points in the waveform, and E is the total number
of available electrodes. We can never observe all elements of v(t) simultaneously, and instead we
can only observe Nc < E recording channels at a time. Since these channels require hardware
multiplexing, the available electrodes are subdivided into B banks. Hence each channel c can be
addressed to one of B distinct sites. We represent the address state of every channel with a data
structure θ we refer to as the selection map, which contains Nc assignments of the form θc→b, where
b ∈ {1, · · · , B}. For example, in Figure 2A, a channel is shown addressed to the lowermost bank,
thereby “enabling” the corresponding electrode.

If an electrode is not addressed to, i.e., it is “disabled,” then the corresponding entries of v are
removed, and we denote the remaining vector by vθ. We then stack voltages from all time points to
form a feature vector xθ = [vθ(1)T , ..., vθ(T )T ]T . Examples of xθ serve as input to an automated
spike sorter. For a given recording using θ as a selection map, the spike sorter returns the spike times
and neuron identities for Nθ discriminated neurons.

The ultimate goal is to find a θ that maximizes Nθ. This objective is time-consuming to evaluate
for each candidate selection map θ, since one evaluation requires gathering a recording using θ and
sorting the spikes from the recording. Therefore, we seek a proxy that allows us to optimize the
selection map efficiently.

Herein, we describe a method (Fig. 2B) that initially takes B dense pilot recordings of relatively
short duration, where each recording samples an entire bank at full resolution. That is, for the bth
recording, for all channels c addressable to bank b, the selection map contains θc→b. These pilot
recordings are then spike sorted, and the spike waveforms from Ns randomly chosen spikes from
each isolated neuron serve as input to our selection method.

2.1 Classification-based selection (CBS)

A selection algorithm chooses which electrodes on the array to enable and disable. This choice affects
the ultimate ability to detect and discriminate waveforms from neurons present around the array.
Therefore, we seek to choose the selection based on how well the enabled electrodes differentiate
spikes from one neuron from spikes from all other neurons. This would maximize neuron separability
but would also prioritize channels with higher signal-to-noise, since they would be more reliable for
discrimination.

We therefore approximate the optimization of Nθ with an optimization of discriminability across all
available neurons. Here, we estimate the total number of available neurons with those extracted from
dense recordings of each bank, thereby yielding N available neurons (Fig. 2B). We denote J(.) as a
metric of discriminability across these N neurons. The problem then becomes:

max
θ
J(θ).

In other words, we pose the problem of electrode selection as constrained feature selection. The
“features” are the enabled electrodes. We can train a classifier to predict neuron labels from xθ using
a candidate selection and use the classifier’s objective as a measure of the selection’s quality. We
can then perform a greedy search over each channel’s bank assignments. This, however, involves
evaluating the classifier’s objective repeatedly, perhaps requiring thousands of evaluations. Therefore,
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Figure 2: Electrode selection process. A: Diagram of spatial multiplexing, a type of subset selection
found in modern electrode arrays. B: Experimental procedure for using dense single bank recordings
as input to a selection algorithm. C: Illustration of waveform separability as a function of electrode
selection. Three exemplar neurons’ spike waveforms in a small segment of an array can be more
separable depending on the electrodes that are selected. (left panel) Mean spike waveforms. (right
panel) Three different selections on this array segment (white pixels indicate enabled electrodes)
and low-dimensional projections of the spike waveforms. D: Example relative amplitude scores
accumulated for every electrode. Dotted lines indicate bank boundaries, and the red line shows the
estimated pial surface level. E-F: The corresponding enabled (white pixels) electrode selections for
the µCBS and CBS methods.

although any separability criterion can be used, desirable criteria are ones that can be evaluated
quickly for different subsets of electrodes.

xθ, for a desirable selection map, will exhibit low variability across spikes from the same neuron
and high variability across spikes from different neurons. Since spike waveforms are often Gaus-
sian given the neuron label, with known exceptions due to bursting, drift, and overlapping spikes,
class discriminability can be completely summarized by using the within-class and between-class
covariances, and therefore, the metric of discriminability J should be a function of their ratio.

More precisely, denoting spike waveforms from neuron i as xθi , we define the within- and between-
neuron “scatter” matrices as

Sθw =
1

N

N∑
i=1

E
[
(xθi − µθi )(xθi − µθi )T

]
=

1

N

N∑
i=1

Σθi ,

Sθb =
1

N

N∑
i=1

(µθi − µθ)(µθi − µθ)T ,

where µθi , Σθi are the within-class sample mean and covariance of xθi , and µθ is the sample mean
waveform across all neurons. We then define the objective as

J(θ) = Tr
[
(Sθw)−1Sθb

]
. (1)

This objective can be interpreted as a signal-to-noise ratio (SNR), where the between-class covariance
is the “signal” and the within-class covariance is the “noise.” This objective is the trace criterion
commonly used in Linear Discriminant Analysis (LDA) [4]. For classification or visualization,
we can define zθ = UTxθ as a projection of xθ into a subspace that maximizes this SNR. The
matrix U ∈ Rn×m,m = N − 1 is formed from the m leading eigenvectors of (Sθw)−1Sθb arranged
horizontally as columns. See Figure 2C, where examples of zθ are plotted for three neurons under
different selections.
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This objective needs to be evaluated for every candidate selection map, θ. Importantly, evaluating
a new selection does not require recomputing the scatter matrices. If we were able to form scatter
matrices with all electrodes enabled, denoted without superscripts as Sw and Sb, then evaluating J(θ)
amounts to simply removing the rows and columns of Sw and Sb corresponding to disabled electrodes
prior to solving the linear system in (1), which requires O(T 3E3) flops. Sw and Sb of course cannot
be fully computed due to the problem’s constraints. However, we can approximate these matrices
with the dense pilot recordings: If we assume for the neurons identified in the bth recording, that
unrecorded portions of v(t) are 0, then Sw, Sb are block diagonal along bank boundaries. Therefore,
each bank can be treated independently and J(θ) can be evaluated for each bank separately and
accumulated, i.e., J(θ) = J1(θ) + ... + JB(θ), where Jb(.) is the objective evaluated for subsets
of elements of x, Sw and Sb as well as for subsets of neurons that correspond with bank b. This
simplification reduces the run time to O(BT 3N3

c ) per iteration. Since these operate on pre-formed
scatter matrices, the run time does not depend on the number of spikes.

To optimize J(θ), we perform a random greedy swap search in the space of selection maps. First, we
initialize θ randomly or with one of the preset selection maps (e.g. a checkerboard map). Then, in a
manner similar to Gibbs sampling, we pick a channel c at random (without replacement) and evaluate
J(.) for each value in σ(θ, c) = {θc→1, ..., θc→B}, where θc→b is the selection θ, but with the cth
channel routed to bank b. Then, on each iteration,

θ ← argmaxλ∈σ(θ,c)J(λ). (2)

This channel-by-channel maximization is repeated for multiple passes through all channels until
J ceases to change within a pass. This algorithm requires that each subproblem (2) have a unique
minimum, i.e., no ties, in order to converge in θ as well as converging in J . However, it is unlikely,
for an array that has at least B − 1 banks monitoring distinct sets of neurons, that this uniqueness
condition is ever violated.

Despite the recording-wise parallelizations, the evaluation of (1) remains high-dimensional and
computationally intensive. We thus introduce the two simplifications that greatly improve tractability
for typical problem sizes.

Simplification 1: using channel-wise PCA to reduce dimensionality Temporal autocorrelations
in the spike waveform mean that the dimensionality of x, n = TE is unnecessarily large (for
the Neuropixel Phase 1 probe using a 2 ms spike waveform window, n = (61)(960) = 58, 560),
and solving the system in (1) can be infeasible. As is commonly done in spike-sorting algorithms
[2, 14, 18], principal component analysis (PCA) is first performed on each channel’s waveforms
across all spikes that involve this channel. We can then choose the first r principal component scores
for each channel, thereby reducing the dimensionality to n = rE.

Simplification 2: exploiting bandedness With large banks, the linear system in (1) can be quite
large. In this case, we can exploit the spatial layout of the bank. Specifically, the effective extent of
the voltage from one neuron does not spread across an entire bank. If a neuron’s spread within a bank
is limited, and all channels are ordered according to their spatial arrangement, then Sθw is sparse and
banded. With both simplifications, solving the system in (1) only requires O(kBr2N2

c ) flops, where
k is the bandwidth.

2.2 Fast approximation to CBS using diagonal covariance (µCBS)

Optimizing J(θ) in general requires multiple passes through the array, since optimizing one channel,
as in (2), might alter the decision to reassign another channel. For applications that require deter-
ministic run times, we also describe a variant of CBS called µCBS that approximately maximizes
(1) assuming only diagonal covariance structures. This simplification lets us treat each channel’s
selection problem as independent from other channels. Therefore, repeated passes through the array
are not required.

We first apply a diagonal assumption on Sw, i.e., [Sw]ij → 0 if i 6= j. Then, the full trace (no
selection map applied yet) in (1) becomes

Tr
[
S−1w Sb

]
=

n∑
j=1

∑N
i=1(µ

(j)
i − µ(j))2∑N

i=1 E[(x
(j)
i − µ

(j)
i )2]

,

5



where µ, µi denotes full (not subset-selected) averages of x, and superscript (j) denotes index-
ing the jth element. For simplicity of notation, we define the ratio as R(j) =

∑N
i=1(µ

(j)
i −

µ(j))2/
∑N
i=1 E[(x

(j)
i − µ

(j)
i )2], which can be interpreted as a signal-to-noise ratio for each element

j. For a given selection map θ, we can modify J(θ)→ Jµ(θ) as

Jµ(θ) =
∑

e∈Enabled(θ)

∑
j∈φ(e)

R(j), (3)

where Enabled(θ) is the set of electrodes enabled by θ, and φ(e) = {e, e+ E, ..., e+ (T − 1)E} is
the set of indices of x that pertain to electrode e. Enabling (or disabling) an electrode amounts to
including (or excluding) that electrode’s contribution to Jµ(θ). Importantly, the effect on Jµ(θ) does
not depend on the enabled-state of any other electrodes. Therefore, (3) can be optimized for every
channel independently. This observation enables a simple algorithm. First, we assign all electrodes e
a score we call AmpScore(e) based on the sum of R values observed on that electrode:

AmpScore(e) =
∑
j∈φ(e)

R(j). (4)

Then, for each channel, we choose the bank assignment that corresponds with an electrode with the
highest available AmpScore. After a single pass, Jµ(θ) is fully optimized. Since solving the full
system in (1) is no longer required, there is less need for reducing the dimensionality of x with PCA,
and µCBS can operate in full waveform space.

2.3 Benchmark selection methods

Single-bank In this method, all channels are assigned to one contiguous bank of electrodes, thereby
densely sampling it (Fig. 1C). This strategy has maximum electrode density, but has poor spatial
coverage. Depending on the probe design, a dense selection might oversample some areas.

Line This method corresponds to selecting one contiguous column of contacts for each bank of
electrodes. This sacrifices resolution in one dimension for coverage in another.

Checker This method forms a checkerboard pattern of enabled electrodes. This halves the resolu-
tion evenly throughout the sampled area, but doubles the spatial coverage.

3 Empirical assessment

The sampling methods were tested and compared on Neuropixel (Imec, Phase 1) recordings from the
premotor cortex of an awake macaque. We made dense recordings of each bank and simulated an
experimental procedure where the first two minutes of data would be used as a training set for the
selection algorithms, as depicted in Figure 2B. After optimization, the selection would be tested by
simulating the selection on full-length bank recordings by removing channels that were not assigned
to by the algorithm. Both the training and full-length recordings were spike-sorted automatically
using Kilosort2 (https://github.com/MouseLand/Kilosort2). The complete bank recordings
ranged from 2 to 17 minutes, across 10 recording sessions and 3 banks. Probes were lowered to 6-7
mm below the cortical surface, and only encountered spiking activity in the deepest two-thirds of
electrodes (see Figure 2D). Analysis was restricted to the first two banks, numbered 0 and 1.

In every bank recording, for each neuron discovered by the automated spike sorter, Ns = 100 spike
waveforms were extracted at random. Neurons with average firing rate less than 100 spikes per 2
minutes (0.8 Hz) were excluded from CBS and from the validations described below. Each spike
waveform’s DC offset was removed by subtracting the median voltage across the duration of the
waveform (2 ms). This was followed by high-pass filtering at 150 Hz and applying a spatial whitening
matrix to the voltage as in [14] to spatially sharpen the multi-channel waveforms. Herein, when we
discuss the spike waveforms, we are referring to the preprocessed waveforms. For the channel-wise
PCA step, we set r ← 3. µCBS was used in full-waveform space (no PCA) and its waveforms were
conditioned with median subtraction and high-pass filtering with the same parameters as CBS.
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Figure 3: Selection method comparisons. A: (top panel) CBS-based optimization criterion J(θ) trace
for a representative session. Different shades of green indicate different initialization methods, and
each curve is a realization (see text). (bottom panel) shows the corresponding correct classification
rate under cross-validation. Each point in a group represents one session. Bars show median with
quartiles. Bracket: p<0.05, *: p<0.01, Wilcoxon signed rank test. B: (top panel) Number of available
neurons detected on all banks (All), and the number of neurons discovered for each selection method.
B0,1: dense selection of bank 0 or 1. Only significant differences from CBS and µCBS are shown.
(bottom panel) Human-curated neuron yield. C: Proportion of available neurons “recovered” by
each selection method. Vertical axis is the proportion recovered by CBS, and the horizontal is the
recovery rate for all other selection methods. All differences from CBS were significant. D: Empirical
cumulative distribution functions (CDFs) over the SNR of each channel-neuron pair observed for
each selection method. All pairs of distributions were found to have different medians (p<0.0001,
2-sample KS test and rank-sum test). E: CDF for the Victor-Purpura (V-P) interval distance from
each All neuron to the nearest sub-sampled neuron in spike train space. Double-sided arrow indicates
statistically significant difference in distributions (p<0.001, 2-sample KS test). Unmarked differences
greater than this effect were also significant. F: Neuronal spike amplitudes for each selection method.
Bars indicate median with quartiles. Notches signify 95% confidence intervals of the median.

3.1 CBS electrode selections

Typical selections for the CBS and µCBS algorithms are shown in Figure 2E-F. Figure 2D shows
AmpScores as in (4) accumulated across the electrode array. Figure 2E shows the resulting µCBS
selection. The CBS algorithm’s resulting selection is shown in Figure 2F.

The CBS-based algorithm’s trace of the objective, J(θ), over 25 realizations are shown in Figure 3A
for a representative recording. Realizations were generated from different randomly chosen sets of
Ns spikes per neuron and different sequence of channels chosen for (2). The terminal selection was
found within 2-5 passes of the array. Notably, most of the improvement occurred in the first pass.

Waveform separability We also measured how well a spike waveform could be classified as
belonging to a certain neuron under different selection strategies. In this assessment, the neuron
classes are determined from the dense recordings, and hence waveform separability is solely a
function of the strategy’s selection map θ. For each map, we trained a nearest-mean classifier in
LDA-projected space (the space of zθ) using N − 1 dimensions. Figure 3A (bottom panel) compares
the classification accuracy (10 Monte-Carlo selections of 75% train, 25% test) resulting from different
selection strategies. CBS achieved a median test accuracy of 93.1% correct, which was significantly
higher than Checker’s performance of 89.6% (p=0.002, signed rank test, n=10 sessions). CBS’s
terminal performance did not significantly depend on the initialization method (p=0.557, signed rank
test). Across realizations, the standard deviation of classification accuracies was 0.25%, showing
only a slight dependence on initialization.
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Neuron yield and properties Under automated spike-sorting, the CBS and µCBS methods yielded
similar numbers of discovered neurons as would be detected if the whole array were densely recorded
(a fictitious selection we refer to as “All”), while the preset heuristics discovered substantially fewer.
The number of available neurons for each session, along with the neuron yields for each algorithm,
is shown in Figure 3B. Each point in a group represents a recording session. The median number
of discovered neurons across sessions was 368.5 for All. CBS and µCBS had a median yield 361
and 291.5 neurons, respectively. This was 41% and 14% more neurons than discovered using
Checker (256 neurons), and 84.7% and 49.1% more than when sampling bank 0 densely (195.5
neurons, abbreviated B0 in Figure 3B). Line and Checker methods both discovered significantly fewer
neurons than existed in the All case (p=0.002, signed rank test, FDR=0.0033 for Line, and p=0.014,
FDR=0.017 for Checker, n=10 sessions), but no significant difference from All was detected for
CBS or µCBS (p=0.25 for µCBS, p=1.0 for CBS, signed rank test). When taken as a percentage of
All’s yield for each recording, CBS’s neuron yield was 99.7± 10.3% (mean ± std. dev.), which was
significantly higher (p=0.0039, signed rank test) than Checker’s yield of 74.3± 14.9% and Line’s
yield of 63.8± 5.6%.

These trends were also present when spike sorting was followed by human curation. A labeler was
instructed to use a graphical curation tool (Phy) to split/merge neuron identities, and to label a subset
as “good,” well-isolated single neurons. The median number of curated units was 245. CBS yielded
211, whereas Checker yielded 153 (see Figure 3B lower panel). Both methods yielded significantly
less than All (p=0.011 for CBS, p=0.002 for Checker, signed rank test). When taken as a percentage of
All’s curated yield from each session, CBS’s neuron yield was 89.9± 8.5%, which was significantly
(p=0.002, signed rank test) higher than Checker’s yield of 71.0± 13.7%.

We then examined how many All neurons could be “recovered” by the different algorithms. We define
an All neuron to be recovered if its temporal spiking pattern overlaps with that of a sub-sampled
neuron at least 80% of the time, up to 2 ms accuracy. An All neuron can only be recovered once. The
neuron recovery rate for CBS was found to be 73.0% (median). CBS performed 8.4% better in this
regard than µCBS (67.3%, p=0.013, signed rank test), 29.2% better than Checker (56.5%, p=0.002),
and 47.0% better than Line (49.6%, p=0.002). This comparison is shown in Figure 3C. CBS also
recovered more All neurons than B0 or B1, outperforming them by 11.7% and 111.7%, respectively.
The difference with B0 was only detected to a 91.6% confidence level (signed rank test).

The neurons discovered by CBS had higher per-channel SNR than those discovered other selection
methods. For every channel-neuron pair identified by the spike sorter, we define the SNR as the
log10 of the squared norm of the waveform mean divided by the waveform variance. The median
SNR across channel-neuron pairs was 1.6 dB higher for the CBS selection than for All (p<0.00001,
rank-sum test). The distribution function over SNR values is shown in Figure 3D. All methods had
statistically different distribution functions (p<0.00001, 2-sample KS test) from each other.

As further confirmation, we compared each method’s spike times with All neuron spike times through
the Victor-Purpura (V-P) interval distance [25] (related to the Earth-Mover’s distance). For each
All neuron, we computed the nearest sub-sampled neuron in spike-train space. We used q = 0.75
(cost/second factor in [25]) and a duration of analysis set to the time of the 100th (minimum spike
count across recordings) spike. The distribution of minimum distances for each selection method is
shown in Figure 3E. CBS’s median distance was 32.8% lower than Checker’s (p<0.00001, signed
rank test).

If a selection method undersamples a neuron, then it is quite possible that estimates of the neuron’s
spike amplitudes will be lower than when the neuron is sampled densely. To test if this occurred, we
measured neuron amplitude distributions for each method (Fig. 3F). We define the spike amplitude
as the scaling factor that would need to be applied to a unit-norm multichannel template to recreate
the spike waveform, as in [14]. Median neuron amplitudes for CBS (µCBS) were 98.2% (100.8%)
that of All’s median amplitude. Heuristic methods showed lower neuronal amplitudes: 91.2% for
Checker and 93.7% for Line. These were both significantly lower than with CBS/µCBS (p<0.00001,
rank-sum test).

4 Discussion

We have examined several selection methods for efficiently recording from a multiplexed electrode
array. Existing heuristic methods like the Checker pattern, although offering better spatial coverage
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than sampling densely, do poorly in recovering the gamut of neurons accessible via the electrode
array. The CBS routing method, in contrast, yields approximately the same number of neurons that
would have resulted if every electrode had been recorded simultaneously, yielding 41% more neurons
than the best-performing heuristic. CBS and µCBS also used electrodes more efficiently than other
selection methods, favoring electrodes with higher SNR.

In CBS, recording electrodes are selected based purely on the neurons’ waveforms, and not on the
information content of their spike trains. Although this strategy is unbiased and desirable in some
settings, we present another method that prioritizes neurons with utility in decoding variables of
interest, such as sensory stimulus properties, cognitive states, and movement kinematics. A modified
algorithm can be found in the supplementary materials.

The random greedy swap approach used in CBS to optimize the selection map was used primarily for
its efficiency. Future work might use other combinatorial search methods such as simulated annealing
that trade off speed and quality of the selection map.

This work is related to channel selection methods developed for EEG [9, 19] and ECoG [26]
applications. These existing methods select channels to reduce dimensionality as a preprocessing
step for decoding or to identify physiologically active channels. CBS, in contrast, does not attempt
to reduce the number of recording channels, but instead chooses how to route a fixed number
of channels to available electrode sites given wiring constraints. CBS also chooses selections to
maximize waveform separability in single unit recordings, whereas the existing methods operate
on field potentials. Another related area of work deals with high-dimensional feature selection
using a separability criterion. Lei et al. [10] showed that features could be selected using an
approximate pairwise LDA criterion. In CBS, we avoided using a simplified objective and instead
increased efficiency by reducing waveform dimensionality using PCA and exploiting bandedness
when inverting Sθw. These measures are appropriate since spike waveforms are well approximated by
a small number of components, and spikes are physically limited in their spatial extent.

In this work, we use Kilosort2 for spike sorting because it represents the current state-of-the-art [12].
All spike sorting algorithms approximate the ground truth set of neurons, and our results should
be interpreted with the capabilities of Kilosort2 in mind. We have mitigated concerns solely due
to spike sorting algorithm performance by determining neuron yields following a step of human
curation. Another concern is that serial validation may overestimate neuron counts compared to true
simultaneous recordings due to edge effects at bank boundaries. This concern applies equally to all
selection methods and only affects interpretation of the absolute values for neuron counts. We note,
however, that only 2.0% of neurons contacted a bank boundary (had boundary-adjacent channels
with amplitude > 20% of max). We mitigated other concerns about the influence of probe drift on our
results by stabilizing the brain surface, waiting 30-60 minutes after probe insertion before recording,
and studying relatively short duration recordings (average 6.3 minutes).

CBS can straight-forwardly be incorporated into existing recording workflows with relatively minimal
time burden. For example, in our Neuropixel experiments, the training recordings took 6 minutes,
spike sorting took ∼ 5 minutes, and the CBS-based optimization took ∼ 3 minutes on a consumer
PC, for a total typical run time of 14 minutes.

We have discussed CBS in terms of finding a single best selection map. CBS can also generalize to
finding multiple non-overlapping selection maps. These could be particularly useful in a time division
multiplexing (TDM) scheme [24, 17, 2], in which a sequence of maps θ1, ..., θM is repeated every
TDM cycle. CBS potentially allows M to be far less than the naïve number of electrodes needing to
be sampled, thus increasing the available sampling rate per channel. Another area that merits further
work involves periodically updating selection maps to account for probe drift or the emergence of
new neurons.
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Broader Impact

This report describes a technique that can improve the effectiveness of brain-machine interfaces.
As devices such as electrode arrays scale up in their capabilities and their safety, new opportunities
emerge for treating neuropsychiatric conditions. Treatments that monitor the activity of thousands
or millions of neurons to deliver precise feedback control of aberrant activity could address a host
of brain disorders when treatment is pharmacologically intractable. This strategy is already being
applied in experimental treatments for movement disorders and the early detection and prevention
of seizures, potentially improving the quality of life for tens of millions of patients globally. We
envision that eventually, mood disorders or conditions where inter-areal communication channels
in the brain are lost or dysfunctional could one day be repaired using large-scale neural recording
and stimulation techniques. However, new devices that record massive amounts of neural data could
expose the user to breaches of privacy in a way that has not been encountered previously. Rich brain
activity data, unfiltered by intention or the bounds of normal communication, could be accessed
covertly by malicious actors or state surveillance. Developing a security model should be a high
priority for these devices as they continue to translate into the clinic, especially as these devices will
likely be connected in some way to the internet.

More broadly, optimal channel selection could benefit other areas of neuroscientific research. Our
method leads to the recording of 41-85% more neurons per unit time over previous methods when
using the Neuropixel probe. The Neuropixel is being widely adopted in labs across the field, and
it is being used as a standard tool in large collaborative efforts such as the International Brain Lab
[8]. Other neural-matrix style probes for neural spike-band recordings [17] as well as high-density
electrocorticographic (ECoG) arrays can benefit from electrode selection [1]. In all cases, our method
can shorten the amount of recording time needed for producing the same scientific conclusions.
Reduction of required experimental time, or reduction in the number of animals needed for a study,
would also be welcome from an animal welfare perspective.

Our algorithm confers the most benefit to specific neurotechnologies that face a physical bottleneck,
which in the case of the Neuropixel, is wiring. Many of these new devices are an order of magnitude
more costly than previous low-bandwidth counterparts. As with all new neurotechnologies, our
method might most immediately benefit labs or individuals with more financial resources. In the
long-term, however, we hope that these new technologies will become more widely accessible.
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