Appendices

A Symbol definition

Table 1: Symbol definition. Some of the symbol are overloaded. We make sure each term is clearly
defined given the context.

Symbol Definition Dimension
S state space RY:
A action space RN
T transition function RNs+Na _y RN
To initial state distribution RN — [0, 1]
R reward function RNeFNatNe R
H horizon Ny
M MDP M = (S, A, T, Ty, R, H), which defines a task -
p(M) task distribution -
Ny dimension of the policy parameter N4
K number of task I\
™ trajectory generated by interacting with M -
St state at time step ¢ RNs
at action selected at time step ¢ RNa
a corrected action RNa
s state at time step ¢ RYN:
o policy function, parameterized by 6 RNs — RNa
N number of transition tuples from one task batch N4
B; batch of transition tuples for task ¢ -
R, learned reward function for task 4 RNsH+NatNs R
N, number of transition tuples in a context set Ny
ci context set for task ¢ RWVs+Nat+Ns)*Ne
Cisi relabeled context set by uing R; RNs+Nat+No)xNe
¢ Union of relabeled context set by uing R; RWVs+NatNe)xNex(K-1)
Z; task identity for task ¢ RN=
de task inference module, parameterized by ¢ RWeFtNatNo)*Ne _y (N, N.,)
S, A, R, Z | random variables: states, actions, rewards, task identity | -
Jar,; (m9) expected sum of rewards inM; induced by policy 7y RM - R
J (o) expected sum of rewards in p(M) induced by policy 7 | R0 — R
Q Q value function RNs+Nae 4 R
Q; Q value function for task ¢ RNs+Ne 4 R
Qp distilled Q value function RNs+NatN= R
G candidate action generator RNsH1 5 RNa
G candidate action generator for task ¢ RNs+1 _y RNa
Gp distilled candidate action generator RNs 14Nz s RNa
13 perturbation generator RYstNa _ RNa
& perturbation generator for task ¢ RNs+Na _y RNa
ép distilled perturbation generator RNs+NatNz _y RNa
N(0,1) standard Gaussian distribution -
v noise sampled from standard Gaussian distribution R
m triplet margin R
d() divergence measure -
KL KL divergence -
v stop gradient operation -
Lqg loss function to distill @ p -
La loss function to distill G p -
Le loss function to distill £ép -
Laistill total distillation loss -
i'riplet triplet loss for task ¢ -
triplet mean triplet loss across all tasks -

final loss: £ = £t'riplet + Edistill -

15



B Action selection of BCQ policy

&(s, am)
¢
am + & (s, am)
S —»
Vyp ——» G Am
m(s) = argmax Q(s,am +£(s,am)), {am = G (s,vm)},, Vm ~ N(0,1).
am+E(s,am)

Figure 9: Action selection procedure of BCQ.

In this section, we provide the detailed action selection procedures for BCQ. To pick action given
a state s, we first sample a set of small noises {v,, },, from the standard Gaussian distribution. For
each v,,, the candidate action generator GG will generate a candidate action a.,, for state s. For each
of the candidate actions a,;,, the perturbation model £ will generate a small correction term (s, a, )
by taking as input the state-candidate action pair. Therefore, a set of corrected candidate actions
{am + &(s, am) }m Will be generated for the state s. The corrected candidate action with the highest
estimated @ value will be selected as 7 (s).

16



C Hyper-parameters

C.1 Hyper-parameters of our proposed models

Table 2: Hyper-parameters of our proposed model

Hyper-parameters Value

Number of evaluation episodes 5

Task identity dimension 20

Number of candidate actions 10

Learning rate 0.0003

Training batch size 128

Context set size 64

KL regularization weighting term 3 0.1

Triplet margin m 2.0

Reward prediction ensemble Tinreshold AntDir, AntGoal: 0.1

WalkerParam: 0.1
HumanoidDir-M: 0.2
HalfCheetahVel: 0.05
UmazeGoal-M: 0.02
Next state prediction ensemble Tinreshold | 0.1

Q) p architecture MLP with 9 hidden layers, 1024 nodes each, ReLU activation
G p architecture MLP with 7 hidden layers, 1024 nodes each, ReLU activation
&p architecture MLP with 8 hidden layers, 1024 nodes each, ReLU activation
Table 3: Hyper-parameters of reward and next state prediction ensemble
Hyper-parameters Value
Learning rate 0.0003
Training batch size 128
Reward prediction ensemble size 20
Reward prediction network architecture MLP with 1 hidden layers, 128 nodes, ReL.U activation
Next state prediction ensemble size 20
Next state prediction network architecture | MLP with 6 hidden layers, 256 nodes each, ReLU activation

[Table 2] provides the hyper-parameters for our proposed model and all of its ablated versions (Sec.
3l Sec. [5.2). The hyper-parameters for the reward ensembles and next state prediction ensembles
are provided in Our model uses the task inference module from PEARL with the same
architecture, described in Since the scale of the reward in different task distributions are
different, we need to use different values for the reward prediction ensemble threshold oreshold-

We did not conduct extensive search to determine the hyper-parameters. Instead, we reuse some
default hyper-parameter settings from the other multi-task learning literature on the MuJoCo bench-
marks [11} 26]. As for the architecture of the distillation networks, we select reasonably deep
networks.

When using BCQ to train the single-task policies in the first phase of the distillation procedure,
we use the default hyper-parameters in the official implementation of BCQ, except for the learning
rate, which decreases from 0.001 to 0.0003. We find lowering the learning rate leads to more stable
learning for BCQ.

C.2 Hyper-parameters of Contextual BCQ

For Contextual BCQ, the value function, decoder, and perturbation model have the same architecture
as Qp, Gp,&p in our model. The encoder also has the same architecture as the decoder. The task
inference module has the same architecture as the task inference module in PEARL, described in

Table 41

The context set size used during training Contextual BCQ is 128, twice the size of the context set in
our model. This is because during training of our model, we use the combination of context transitions
and the same number of relabelled transitions from the other tasks to infer the posterior over task
identity, as detailed in Sec. and pseudo-codes provided in Alg. 4] Therefore, the effective number
of transitions that are used as input into the task inference module during training are the same for
our model and Contextual BCQ.

17



Unless stated otherwise, for the remaining hyper-parameters, such as the maximum value of the
perturbation, we use the default value in BCQ.

C.3 Hyper-parameters of PEARL

Table 4: Hyper-parameters of PEARL
Hyper-parameters Value
Task inference module architecture | MLP with 3 hidden layers, 200 nodes each, ReLU activation

We use the default hyper-parameters as provided in the official implementation of PEARL. For
completeness when discussing the hyper-parameters of our model, we provide the architecture of the
task inference module in[Table 4]

C.4 Hyper-parameters of ablation studies of the full model

Table 5: Hyper-parameters of No transition relabelling

Hyper-parameters Value
Number of sampled context sets N | 10
Context set size 128

Table 6: Hyper-parameters of No triplet loss
Hyper-parameters | Value
Context set size 64

Table 7: Hyper-parameters of Neither
Hyper-parameters | Value
Context set size 128

Table 3| [Table 6] and [Table 7] provide the hyper-parameters for the ablated versions of our full
model No transition relabelling, No triplet loss, and Neither, respectively. Without the transition
relabelling techniques, No transition relabelling and Neither set the size of training context size to
128 as Contextual BCQ to use the same effective number of transitions to infer the posterior over the
task identity as our full model. Note that the remaining hyper-parameters of these methods are set to
be the same as our full model, described in

C.5 Hyper-parameters when we initialize SAC with our multi-task policy

Table 8: Hyper-parameters of SAC when initialized by our multi-task policy

Hyper-parameters Value

Q function architecture MLP with 9 hidden layers, 1024 nodes each, ReLU activation
Q function target smoothing rate | 0.005

policy target smoothing rate 0.1

The architecture of the Q function network is the same as the distilled Q function @ p in[Table 2} The
Q function target smoothing rate is the same as the standard SAC implementation [40]]. The policy
target smoothing rate is searched over {0.005,0.01,0.1,0.5}. For the SAC trained from random
initialization baseline (Appendix [J.2)), we also change the sizes of the value function to the same value
in For the remaining hyper-parameters, we use the default hyper-parameter settings of SAC.

18



D Reward prediction ensemble

Algorithm 2 Training procedure of reward function approximator

Input: data batch B5;; Ri’l with randomly initialized parameters.
1: for a fixed number of iterations do

2 Sample a transition (s, a,r, s") from B;

3 Obtain the predicted reward # = R; (s, a)

4: Update parameters of R; 1 to minimize (7 — r)? through gradient descent.
5: end for

Output: trained reward function approximator Ri, !

Algorithm 3 Relabel transition from task j to task 7

Input:an ensemble of learned reward functions {R;;};; context set ¢; = {(sj.ta56,75.6,5).1) }t
from task j, a threshold Treshold-

3: if StdA({Ri,l(sj,ta aj,t)}l) < Othreshold then

4 Ri(sj4,a5,0) < mean({R; (54,05, 11)
5: Add (8,1, a5t Ri(55,0505,1), 854) 10 €5
6 end if

7: end for

Output: relabelled transitions c;_;

In we propose to train a reward function approximator R, for each training task ¢ to
relabel the transitions from the other tasks. To increase the accuracy of the estimated reward, for each
task 7, we use an ensemble of learnt reward functions {f%l 1}1, where 7 indexes the task and [ indexes
the function in the ensemble. The training procedures for each reward function approximator in the
ensemble are provided in Alg.

The pseudo-code for generating relabelled context set c;_,; from context set c; of task j is given in
Alg. 3] We use the output of the ensemble as an estimate of the epistemic uncertainty in the reward
prediction [63]. Concretely, for each transition in c;, we only include it in the relabelled set c;_,; if
the standard deviations of the ensemble output is below a certain threshold (line 3). We also use the
mean of the outputs as the estimated reward (line 4).

We conduct ablation study of the reward prediction ensemble in Appendix [[.2] where we show that
the use of reward prediction ensemble improves the performance when initializing SAC with our
multi-task policy.

19



E Detailed pseudo-codes of the two-phases distillation procedures

In this section, we provide the detailed pseudo-code in Alg. [ for the two-phases distillation
procedures introduced in Sec. [3] The basic idea is that we first obtain single-task policy for each
training task using BCQ. In the second phase, we distill the single-task policies into a multi-task
policy by incorporating a task inference module. Note that the task inference module is trained by
minimizing the Q value function distillation loss (Eq. [3)) and the triplet loss (Eq. [9).

Line 1 describes the first phase of the two-phases distillation procedure. We use BCQ to learn a
state-action value function ();, a candidate action generator G; and a perturbation generator &; for
each training batch ;.

We next enter the second phase. We first sample context set c; of size Neopgexe from B;, i =1,... K
in line 3. Line 5-10 provide the procedures to calculate the triplet loss. For each task ¢, we relabel
the reward of each transition in all the remaining context set c; using R; and obtain Cji,Vj F#iin
line 5. From the union of the relabelled context set U;c;_,;, we sample a subset C; of size Neopgex In
line 6. Denote transitions in ¢; originated from c; as x;_,;. Further denote transitions in x;_,; before
relabelling as x;, we thus have x; € c;. These sets of transitions have the following relationships:

Sample .

Uj €ji — Cy, c; = UjXj i
Relabel
Xj i € Cji, Xj ——> Xj (12)

To calculate the triplet loss for task 7, in line 9 we sample a subset c; ; with the same number of
transitions as x; from c;, i.e. |c; ;| = |x;| for each j # i. Therefore, the triplet loss for task 7 can be

given by Eq. [13]
Line 11-13 provide the procedures to infer the task identity for each task :. We use the union

of the context set ¢; and the relabeled context set ¢; sampled from Ujc;_,; to infer the posterior
¢4(z|{c;, €;}) over task identity. We next sample the task identity z; from ¢4 (z|{c;,¢;}).

To calculate the distillation loss of each distilled function, in line 14 we sample the training batch
of N transitions from B;. With z; and the training transition batch, we can calculate the value
function distillation loss UQ of task ¢ using Eq. To calculate the distillation loss of the candidate
action generator GG and perturbation generator £ of task ¢, we first sample N noises v; from the
standard Gaussian distribution A/ (0,1) in line 16. In line 17, we then obtain the candidate actions
a; = Gj(st, ;) for each state s; in the training batch. The calculations to derive Eg and Eé for task
i follow Eq.[I5]and Eq. [16] respectively.

After repeating the procedures for all the training tasks, in line 21-24 we average the losses across
tasks and obtain Liyipiet, Lo, Lg, and L¢. At the end of each iteration, we update § and ¢ by
minimizing £ = Liripier + Lo + Lo + L¢ in line 25.

20



Algorithm 4 Two-phases distillation procedure with novel triplet loss design

Input: Batches {5, }/,; trained reward function {R;}X ; randomly initialized Qp, Gp and &p
jointly parameterized by 0; task inference module g, with randomly initialized ¢; context set size

Neontext; training batch size N; triplet margin m

1: Learn single task policy @);, G, and ; from each data batch B; using BCQ, Vi

2: repeat
3: Sample context set c; from B;, Vi
4: fori=1,...,Kdo
5: Obtain the relabelled context set c;_,; from c; with R; according to Alg. 3| Vj # ¢
6: Sample a subset of relabelled context set €;: €; ~ U;c¢j, |€;] =
7: Denote transitions in ¢; originated from c; as X;_,;
8: Denote transitions in x;_,; before relabelling as x;, x; € ¢;
9: Sample a subset c; ; from c; with |c;| = |x;|, Vj # ¢
10: Calculate the triplet loss £j,.; .,
K
i 1
briplet = 71 D 1dgs (%), a0 (€ig)) — dlgs (Xj5i) , go (x;)) + m],
i=1g#i
11: Combine ¢; and €; to form the new context set {c;, ¢;}
12: Infer the posterior g4 (z|{c;, €;}) over task identity from {c;, ¢;}
13: Sample task identity z; ~ g, (z|{c;,¢;})
14: Sample training batch: {(s¢, as, ¢, s3) Y,
15: Calculate the value function distillation loss
| N
L =+ 2 [Qilsear) = Qolsiar,2))?] + BKL(go(2l{es, &1 IV (0, 1))
t=1
16: Sample N noises: vy ~ N (0,1),t=1,..., N
17: Obtain candidate action from G;: d; = G;(s¢, 1), t=1,...,N
18: Calculate the candidate action generator distillation loss
1 N
EzG = N Z |:||dt — GD(St7 Vg, Zl)||2:|
t=1
19: Calculate the perturbation generator distillation loss
| N
£i = o 3 [l6ls0r0) — (st 20|
t=1
20: end for Ko
21: Calculate Lypipier = 7 > pey L yiniet

22: Calculate L = ZtK:l L
23:  Caleulate Lo = = S0 | £L
24: Calculate £¢ = Zfil Eé

25: Update 6, ¢ to minimize £ = Lyyipiet + Lo + Lo + Le
26: until Done

(13)

(14)

(15)

(16)

21



Algorithm 5 Evaluation procedures of our model
Input: unseen task M; learned multi-task policy

1: Initialize context set ¢ <— {}; initialize ¢, (z|c) = N(0, 1)

2: repeat

3: Sample task identity z ~ g4(z|c).

4 Collect one episode of transitions {(s¢, as, 7, s;)}+ from task M with multi-task policy
conditioned on z.

Add {(St, A, Tt S;)}t to c.

6: until Done

Output: average episode returns, not counting the first two episodes

b

F Action selection and evaluation of the multi-task policy

Uy —»

Gp
C —» q.'f) E—/}
} Oy + 51) (’q: (],,,,,Z)
S
£p £p (5,am, )
7(s,z) = argmax Qp (8, 0m + Ep (S, U, Z) . Z) vy~ N(0,1)

am~+Ep(8,am,a)

Figure 10: Action selection. Given context set c, g, infer the posterior over task identity, from which
we sample the task identity z. With the task identity z, G p generates multiple candidate actions a,
for state s. £p generates small corrections £p (s, a,,,, z) for the candidate actions a,,. The policy
takes the corrected action a,, + £p (8, anm, z) with the highest value as estimated by Q p.

In this section, we will describe the action selection procedures from the multi-task policy as shown
in Fig. [10] and how we evaluate its performance.

Sampling action given a state from the multi-task policy is similar to the procedures of BCQ
(Appendix B). The main difference is that the networks also take an inferred task identity z as input.
Concretely, given a state s, the distilled candidate action generator G p generates multiple candidate
actions {a,, = Gp($,Vm,2)}m, with random noise v,, ~ N (0,1). The distilled perturbation
generator {p generates a small correction term £p (s, am,, z) for each state-candidate action pair. We
take the corrected action with the highest value as estimated by the distilled value function Q. The
action selection procedures can be summarized by:

n(s,z) = argmax Qp(s,am +E&p (S,am,2),2), {am = Gp (8,Vm,2)},,, Vm ~ N(0,1).
a7n+€D(Saa7n~,z)

7)

We elaborate the evaluation procedures in Alg. [5] When testing on a new task, we do not have the
ground truth task identity or any transition from the task to infer the task identity. We thus sample
the initial task identity from the standard Gaussian prior in line 1. The task identity is kept fixed for
the duration of the first episode. Afterwards, we use the collected transitions to infer the posterior
and sample new task identities before each new episode as described in line 3. When calculating the
average episode returns, we do not count the first two episodes’ returns as what is done in [[L1].

22



G On Modifying the original HumanoidDir task distribution

We are concerned the original HumanoidDir task distribution is not suitable as a benchmark for
multi-task RL because a policy trained from a single task can already obtain the optimal performance
on unseen tasks. In particular, we train BCQ with transitions from one task and it obtains a similar
return, as measured on unseen tasks (993 £ 33), to SAC trained from scratch separately for each task
(988 £ 19).

In the HumanoidDir task distribution, each task is defined by a target running direction. The intended
task is for the agent to run with maximal velocity in the target direction. The reward of each task can
be defined as below:

R(s,a,s’) = alive_bonus + « * achieved_velocity - target_direction
— quad_ctrl_cost — quad_impact_cost, (18)

where - denotes the inner product. Note that the two cost terms tend to be very small thus it will
be reasonable to omit them in analysis. The alive_bonus is the same across different tasks and is
a constant. The target_direction is different across tasks. « weights their relative contribution to
the reward. If « is too small, the reward is dominated by the constant alive_bonus. In this case, to
achieve good performance, the agent does not need to perform the intended task. In other word, the
agent does not need to infer the task identity to obtain good performance and only needs to remain
close to the initial state while avoiding terminal states to maximize the episode length.

Prior works that use HumanoidDir set alive_bonus = 5.0 and o = 0.25. With such a small value for
the reward coefficient «, the reward is dominated by the alive_bonus. We provide video to illustrate
that in different tasks, the SAC-trained single-task policies display similar behaviors even though
the different tasks have different running directiong’} In most tasks, the SAC-trained policy controls
the Humanoid to stay upright near the initial state, which is enough to obtain high performance. If a
single policy that controls the agent to stay upright can achieve high performance in all tasks sampled
from this task distribution, we argue that the learned multi-task policy in this task distribution can
achieve near-optimal performance across tasks without the need to perform accurate task inference. In
other word, this task distribution is not suitable to demonstrate the test-time task inference challenge
identified in our work.

Therefore, we set o = 1.25, which is the value used in the OpenAl implementation of Humanoicﬂ
and denote the modified task distribution as HumanoidDir-M. As is shown in the video, the SAC-
trained agent in our case runs with significant velocity in the target direction. The optimal behaviors
among the different tasks are thus sufficiently different such that the multi-task policy needs to infer
the task identity to obtain high performance.

*Videos are provided: https://www.youtube . com/channel/UCWrYNNRgZzqxnhf 0YbgNmkA
5OpenAl implementation of Humanoid-v2 is provided here https://github.com/openai/gym/blob/
master/gym/envs/mujoco/humanoid.py

23


https://www.youtube.com/channel/UCWrYNNRgZzqxnhfOYbgNmkA
https://github.com/openai/gym/blob/master/gym/envs/mujoco/humanoid.py
https://github.com/openai/gym/blob/master/gym/envs/mujoco/humanoid.py

H Details of the environmental settings and baseline algorithms

In this section, we will first provide the details of environmental settings in Appendix [H.1} and then
describe the baseline algorithms we compare against in Sec[5] We explain PEARL in Appendix [H.2]
and Contextual BCQ in Appendix

H.1 Environment setups

We construct the task distribution UmazeGoal-M by modifying the maze-umaze-dense-v1 from
D4RL. We always reset the agent from the medium of the U shape maze, while the goal locations is
randomly initialized around the two corners of the maze.

The episode length is 1000 for HalfCheetahVel, which is the episode length commonly used when
model-free algorithms are tested in the single-task variant of these task distributions. We use the
same episode length 300 as D4RL for UmazeGoal-M. In the remaining task distributions, we set the
episode length to be 200 due to constrained computational budget.

provides details on each task distribution, including the number of training tasks and number
of testing tasks. Note that the set of training tasks and the set of testing tasks do not overlap. The
column "Interactions" specifies the number of transitions available for each task. With the selected
number of interactions with the environment, we expect the final performance of training SAC in
each task to be slightly below the optimal performance. In other word, we do not expect the batch
data to contain a large amount of trajectories with high episode returns.

Num train tasks ~ Num test tasks  Interactions  SAC returns BCQ returns

HalfCheetah Vel 10 8 60K —121.3435.3 —142.T129.9
AntDir 10 8 200K 920.9485.4 956.64-83.8
AntGoal 10 8 300K —99.6+33.9 —127.8436.7
WalkerParam 30 8 300K 671.14+106.4 692.6+97.0
HumanoidDir-M 10 8 6OOK 21 16~1i38846 2190~9i370.9
UmazeGoal-M 10 8 30K 252.846.5 258.349.1

Table 9: Details of the experimental settings

H.2 PEARL under Batch RL setting

Our works are very much inspired by PEARL [[11]], which is the state-of-the-art algorithm designed
for optimizing the multi-task objective in various MuJoCo benchmarks. By including the results for
PEARL, we demonstrate that conventional algorithms that require interaction with the environment
during training does not perform well in the Multi-task Batch RL setting, which motivates our work.

To help readers understand the changes we made to adapt PEARL to the Batch RL setting, we reuse
the notations from the original PEARL paper in this section. Detailed training procedures are provided
in Algorithm[6] Without the privilege to interact with the environment, PEARL proceeds to sample
the context set c* from the task batch 5; in line 5. The task inference module gy, parameterized by ¢
takes as input the context set ¢’ to infer the posterior g4(z|c’). In line 6, we sample the task identity
z; from g, (z|c?). In line 7-9, the task identity z; combined with the RL mini-batch b’ is further input
into the SAC module. For task i, £ ,,, defines the actor loss, and L£¢ ,,;. defines the critic loss.
L%, constrains the inferred posterior g(z|c?) over task identity from context set ¢’ to stay close to
the prior 7(z). As shown in line 11, gradients from minimizing both £ ;.. and L%, are used to
train the task inference module q4. We refer the readers to the PEARL paper for detailed definitions
of these loss functions.

In PEARL, the context set is sampled from a replay buffer of recently collected data, while the
training RL mini-batches (referred to as the RL batches in PEARL) is sampled uniformly from the
replay buffer. This is not possible in the Multi-task Batch RL setting since all transitions are collected
prior to training and are ordered arbitrarily. There is thus not a well-defined notion of "recently
collected data".

24



Algorithm 6 PEARL under Multi-task Batch RL setting (modified from Algorithm 1 in PEARL)

1: Require: Batches {B;}X ,, learning rates a1, az, a3
2: while not done do

3 for step in training steps do

4: fori=1,..., K do

5: Sample context ¢! ~ B¢ and RL batch b ~ B¢
6 Sample z ~ ¢, (z|c?)

7 E;ctor = ‘CaCtOT(bZ; Z)

8: zq»im‘c = Lecritic\U', 2

9: Ly = BDxi(q(z|c")||r(z))
10: end for ‘
11: ¢ — ¢ - 0[1V¢ Zz (‘Céritic + ‘CZKL)
12: Or 4 0r — 2V 3, Lhpon
13: QQ A 0@ - OZ3VG Zz ‘Céritic

14: end for
15: end while

Algorithm 7 Contextual BCQ (modified from Algorithm 1 in BCQ [9])

1: Input: Batches {B,,}X_,, horizon T, target network update rate 7, mini-batch size N, max
perturbation ®, number of sampled actions n, minimum weighting A.

2: Initialize task inference module g, Q-networks Qg, , Qg,, perturbation network 4, and VAE
Gy = {Eu,, Dy, }, with random parameters v, 61, 02, ¢, w, and target networks Qor, Qoy» Egr
with 0] < 01,60} < 02, ¢' + ¢.

3: repeat

4: form=1,..., Kdo

5: Sample N transitions {(s,a,r,s’),}, from each B,,

6: Sample context set c,, from B,

7: Sample task identity z,, from the inferred posterior gy (z|c,,)
8: w0 =FE, (s,a,2m), a=Dy,(5V,2m), v~N(u,o)
9w argming > (a - @) + D (N (1 ) N (0,1))

10 Sample n actions: {a; ~ G, (s, zm) 1,

11: Set value target y (Eq. 20)

12: 0 argmin@ Z(y - QG(Sv a, z7n))2

13: ¢ < argmaxy > Qp, (5,0 +&4(5,0,2m, ), 2m), a ~ Gu(S,Zm)
14: ¥ < argmin, 3-(y — Qo(s, a,zm))?

15: Update target networks: 6} <— 70 + (1 — 7)0,

16: o —1d+(1—71)¢

17: end for
18: until iterates for T times

H.3 Contextual BCQ

We reuse the notations from the original BCQ paper [9] to help reader understand how we modify
modify BCQ to train multi-task policy by incorporating a task inference module. We refer to this
method as Contextual BCQ and use it to serve as our baseline methods. By comparing this baseline,
we argue that the problem we are facing cannot be solved by simply combining the current Batch RL
algorithm with a simple task inference module. Next, we will start by providing a brief introduction
of the training procedures of BCQ.

Batch Constrained Q-Learning (BCQ) is a Batch RL algorithm that learns the policy from a fixed
data batch without further interaction with the environment [9]. By identifying the extrapolation
error, BCQ restricts the action selection to be close actions taken in batch. Specifically, it trains a
conditional variational auto-encoder G [19] to generate candidate actions that stay close to the batch
for each state s. A perturbation model £ will generate a small additional correction term to induce
limited exploration for each candidate action in the range [—®, ®]. The perturbed action with the
highest state action value as estimated by a learned value function @) will be selected.

25



By modifying BCQ to incorporate incorporate module detail, the training procedures of Contexual
BCQ can be detailed in Alg. [/| As the original BCQ algorithm, we maintain two separate Q function
networks Qy, , Qg, parameterized by 61, 02, a generative model G,, = {E,,,, D.,, } parameterized
by w, where E,,, , D,,, are the encoder and decoder, and a perturbation generator s parameterized
by ¢. For the Qg,, Qp, and {4, we also maintain their corresponding target networks Q; , (g, and
&4 . Compared with the original BCQ, all these networks will take in the inferred task identity z as
an extra input, which is generated by the task inference module as g, parameterized by ).

We use m to index the task. From each task batch B,,, in line 5, we sample a context set c,,, and N
transitions {s¢, at, 11, ;) }+, where ¢ indexes the transition. For simplicity, we denote the transitions
with the shorthanded {(s,a,r,s"):};. In line 7, ¢, takes as input the context set c,, and infer a
posterior gy (z|c,,,) over the task identity, from which we sample a task identity z,,.

Line 8-9 provide the procedures to train the generative model G, = {E,,,, D.,, }. Specifically, E.,,
takes as the input the state-action pair (s, a) and task identity z,,, and output the mean 4 and variance
o of a Gaussian distribution N (u, ). That is, u, 0 = E,, (s, a,Zm,). From N (u, o), we sample a
noise v and input it to the decoder D,,, together with s and z,, to obtain the reconstructed action
a = Dy, (s,V,2y,). We train G,, by minimizing

> (a—a)’ + D (N (1, 9)|IN(0,1)). (19)

Line 10-12 provide the procedures to train the Q value functions. For each next state s’ in the
training batch, we can obtain n candidate actions {a; ~ G, (s, zy,)}?, from the generative model
G, This is done by sampling n noises from the prior A/(0, 1) and input to decoder D,,, together
with s/, as shown in line 10. For each of the candidate action a;, the perturbation model &y will
generate a small correction term £4(s’, a;, Z,,, @) € [—P, ®]. We denote the perturbed actions as
{a; = a; + &4(§', ai, Zm, P) }1_,. Therefore, the learning target for both of the Q function network
is given by

y=r + /yIr(lza-JX )\Jn_lirl? QQ; (8/7 ag, Zm) + (1 - )‘) ]IE?}g Q@; (SI7 A, Zm) 5 (20)
where a; is selected from the set of perturbed actions and the minimum weighting A can be set to
control the overestimation bias and future uncertainty. We also use Eq. 20]to train the task inference
module gy, in line 14.

In line 13, &, is trained to generate a small perturbation term in range [—®, ®] so that the perturbed
candidate actions a+&4(s, a, zm, ) can maximize the state action value estimated by the Q function.
Note that the candidate actions a are output by the generative model GG,. The loss function to train
&4 thus can be formulated as

ZQ&I(S,G+§¢(S,G,Zm,¢‘),zm)7 aNGw(S;Zm) 21

26



AntDir AntGoal

900 —200
] e R p
c 800 ‘F’WW% _300 _ bt e e
= 700 I
2 ’
o
“ 500 —400 4
] f / -
o 500 ) —— margin = 0.0
® -500 .
o 400 —— margin = 2.0
Z 300 ~600 margin = 4.0
200 f margin = 8.0
. ‘ . i i i i -700 _ . . : i i i
] 100 200 300 400 500 600 0 100 200 300 400 500 600
Epochs Epochs
WalkerParam HumanoidDir-M
500 2250
2000
n e e Y
400 £ 1750 f:/ SN
=
£ 1500 o
300 v ﬁ’“ i
1250 f
v |
200 o 1000
P j
@ 750
>
100 < 500 /
250
0 T T T T T T T
0 100 200 300 400 500 600 0 loo 200 Ep?)oghs 400 500 600

Epochs
Figure 11: Ablation study of the triplet margin on four task distributions. The horizontal axis indicates

the number of epochs. The vertical axis indicates the average episode return. The shaded areas denote
one standard deviation.

I Additional experimental results

In addition to the results already presented in Sec. [5.2} this section presents more experimental results
to further understand different design choices of our model. We evaluate the performance of our
model when we set different values of the triplet margin in Appendix[[.I We present the ablation
study of the reward ensemble in Appendix [[.2}

I.1 Ablation study of the triplet margin

Recall the triplet loss for task ¢ defined in Sec. 3.2

K

. 1
triplet = -1 Z {d(% (cjmi)ras (ci)) — d(ag(cjni)ras(cs)) + m| ,
=L Ensure c;_,; and c; infer Ensure c;_,; and c; infer
similar task identities different task identities

where c;_,; denotes the set of transitions relabelled by the reward function Ri of task 7, and c;
denotes the context set for task . We include a positive term m referred to as triplet margin when
calculating the triplet loss. With this term, we expect that d(gg (cj—), g (c;)) is at least smaller

than d(Q¢ (Cjﬁi) NP (Cj)) by m.
Here, we examine how the performance of our algorithm changes when varying the value of the
triplet margin m. Specifically, we set m = 0.0, 2.0,4.0, 8.0 and show the results on the five task

distributions. As can be seen in the performance of our model is in-sensitive to the value
of the triplet loss margin.

27



HumanoidDir-M

2500

2000

1500

1000

Average returns

—— Randomly initialized SAC
—— SAC init by our method
Without ensemble

[I) 50 1(50 15IO 2(IJO 25I0 3{IJO 35I0
Interactions (K)
Figure 12: Results on HumanoidDir-M. When we use the multi-task policy trained without a reward
ensemble to initialize SAC, performance has higher variance and converges to a lower value compared

to using the ensemble. The horizontal axis indicates the number of training epochs. The vertical axis
indicates the average episode return. The shaded areas denote one std.

I.2 Ablation study of reward prediction ensemble

In Sec. [D] we describe the use of a reward ensemble to increase reward prediction accuracy when
relabelling transitions. In this section, we demonstrate the benefit of the reward ensemble. Recall
that in Sec. [5.3] we use the trained multi-task policy as an initialization when further training is
allowed on the unseen tasks. Using the reward ensemble when training the multi-task policy leads
to higher performance when the trained multi-task policy is used as an initialization. Training our
model without using a reward ensemble means we use one instead of an ensemble of networks to
approximate the reward function for each training task. As shown in[Figure T2] if the multi-task policy
is trained without using the reward ensemble, when the multi-task policy is used as an initialization,
the performance has high variance and has smaller asymptotic value.

28



Algorithm 8 Imitation procedures
Input: Unseen testing task M trained multi-task policy; randomly initialized single-task policy my;
1: Sample 10K transitions R = {(s¢, a, ¢, s;) }+ from M using the multi-task policy and infer the
task identity z.
2: while not done do
3 Sample a transitions (s, a,r, s’) from R
4 Obtain pig, X5 = my(s)
5
6
7

Calculate the log likelihood 7 = — 1 log || — 1 (a — ps)" 571 (a — ps) + constant

Y P+ VyT
end while

Output: Initialized single-task policy 7, ; inferred the task identity z

J Details of using multi-task policy to initialize SAC

In this section, we provide more detailed illustrations of using the learned multi-task policy to
initialize training on unseen tasks (Sec. [5.3). We provide the pseudo-code for the SAC initialized by
our methods in Appendix [J.I} To demonstrate that the acceleration of convergence is really thanks to
the transferability of our multi-task policy, we compare it against the variation of SAC, where we
train the identically initialized two Q functions with different different mini-batch sampled from the
replay buffer and also maintain a target policy network to stabilize the training process.

J.1 Pseudo-code for SAC initialized by our methods

To help readers understand the changes we made, we reuse the notations from the original SAC paper
[40] in this section. We first provide the pseudo-codes for initializing the new single-task policy 7,
parameterized by v via imitation learning procedures in Alg. 8} The whole training procedures are
detailed in Alg. [0|by modifying pseudo-code provided in [64].

As is commonly done, the policy 7, outputs the mean ps and X, of a Gaussian distribution for each
state s, which characterizes the pdf of action selection, i.e. p(als) ~ N (ps, X5)). In line 1 of Alg.
we first collect 10K transitions using the multi-task policy in the unseen testing task M. In line 2-7,
We train 7, to maximize the log likelihood of the action selections inside the collected data. Note
that we also infer a task identity z from the 10K transitions in line 1. Its usage will be illustrated next.

With the initialized single-task policy m,, and inferred the task identity z, we now turn to elaborate the
whole process of the SAC initialized by the learnt multi-task policy. We detail the training procedures
in Alg.[0] Compared with the standard SAC, in line 1 we initialize both the two Q function networks
o, and Q)p, identically with () p. Howeyver, in line 11-15, we train them using different batch data
B; and B, sampled from the replay buffer D to stabilize the training process [44]. In addition to
maintain target networks Qy,,, , and Qg , for each Q function, we also maintain a target policy
network 7y, .

Note that we perform imitation learning to initialize a new single-task policy instead of using the
candidate action and perturbation generator to directly initialize the policy as the Q value function. To
directly transfer the parameters of the candidate action and perturbation generator, we can initialize
the action selection module with the distilled candidate action and perturbation generator and train
them to generate action a for state s that maximizes the expected Q(s,a) over a training batch.
However, we find that this training procedures converge to a lower asymptotic performance.

29



Algorithm 9 SAC initialized by our method
Input: unseen testing task M; initialized single-task policy 7, ; inferred the task identity z; Q
functions Qg, , Qy, both initialized by () p (from the multi-task policy); empty replay buffer D

1: Set target parameters equal to main parameters Orarg 1 < 01, Oarg,2 < 02, Viarg < ¥

2: repeat

3: Observe state s and select action a ~ my (+|s)

4: Execute a in task M

5: Observe next state s, reward r, and done signal d to indicate whether s’ is terminal

6: Store (s, a,r,s’,d) in replay buffer D

7: If s’ is terminal, reset environment state.

8: if it’s time to update then

9: for j in range(however many updates) do
10: fori=1,2do
11: Randomly sample a batch of transitions, B; = {(s, a,r,s’,d)} from D
12: Compute targets for the Q functions:

y(r,s',d) =r+~v(1 —d) (rn%n2 Qb (5,0 2) — oclogm)(d’|s’)> , @ ~ (s
=1,
13: Update Q-functions 7 by one step of gradient descent using
1 2
Vorg 2. (Qu(saz) -yl d)
v (s,a,r,s’,d)EB;

14: end for
15: Using the transitions from Bs, update policy by one step of gradient ascent using

w|B|Z( miny Qo, (5. (s), 2) — alog my, (@ (s)] 5) ).

where Gy (s) is a sample from 7y (+|s) which is differentiable wrt ¢ via the reparametrization
trick [[19]].

16: Update target networks with
Oarg,i < POrarg,i + (1 — p)b; fori=1,2
7vzjtarg — T¢targ + (1 - T)w

17: end for

18: end if

19: until convergence

30



AntDir AntGoal HalfCheetahVel

1200 0
-100
2 1000 ~200
= -200
3
—400
o —300
= —600
@ 60 —200
o
© a0 -500 800
g 1000
Z w0 —600 -
-700 -1200
0
0 5 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 10 20 30 40 50
Interactions (K) Interactions (K) Interactions (K)
HumanoidDir-M o WalkerPram
2500
w
I 800
2000
2
L 100 600
&
2 w00 400
o
g w0
z 200
o
0

o 50 lﬂl‘ﬁtﬁﬂf 700“(75“ 300 350 0 50 100 150 200 250 300 350
nteractions (K) Interactions (K)

— : SAC initialized by our multi-task policy — : A variation of SAC, randomly initialized

Figure 13: Comparison between the SAC initialized by our method and a variation of SAC. This
variation trains two identically initialized Q functions with different mini-batches sampled from the
replay buffer. Moreover, it also maintains a target policy network. The two methods share the same
network sizes and architecture across all settings. In the figures above, the horizontal axis indicates
the number of environment steps. The vertical axis indicates the average episode return. The shaded
areas denote one standard deviation.

J.2 Comparison with a variation of SAC

In Sec. [5.3] we show that SAC initialized by our method can significantly speed up the training on
unseen testing tasks. An astute reader will notice that our implementation of Soft Actor Critic in
Appendix [IT]is different from the reference implementation. We maintain two identically initialized
value functions by training them using different mini-batches. In the reference implementation, the
two value functions are initialized differently but trained using the same mini-batch.

To ensure the performance gain is really thanks to the good initialization provided by the multi-task
policy, we compare its performance with a variation of SAC. Specifically, we initialize the two Q
value functions identically but train them with different mini-batches sampled from the replay buffer.
Moreover, we also maintain a target policy network as what is done in line 17 of Alg.[9} As shown in
we can still observe that the SAC initialized by our methods outperform this variation of
SAC. The unseen tasks used for evaluating the variation of SAC are the same as those used for testing
the SAC initialized by our methods. The two methods share the same network sizes and architecture
across all settings.

31



K Computing infrastructure and average run-time

Our experiments are conducted on a machine with 2 GPUs and 8 CPUs. provides the
runtime for each of the experiment on all the task distributions.

AntDir AntGoal HDir UGoal HalfCheetahVel WalkerParam

Our full model 45 4.6 53 4.0 26.6 21.4
Contextual BCQ 59 59 53 55 17.2 13.1
PEARL 8.2 7.6 8.1 6.9 16.5 11.1
No transition relabelling 4.5 4.6 4.6 4.6 17.1 6.4
No triplet loss 44 5.6 4.1 4.6 17.4 8.2
Neither 4.5 4.6 39 6.2 16.7 7.5
SAC init by our method 4.2 4.3 53 - 0.6 4.2

Table 10: Runtime of each experiment. The unit is hours. When calculating the runtime for algorithms
that learn a multi-task policy, we exclude neither the time to generate the task buffers nor the time
to learn single-task BCQ policies. The abbreviation HDir and UGoal stands for HumanoidDir-M
and UmazeGoal-M, respectively. The runtime for SAC initialized by our methods is calculated by
average across tasks from the corresponding task distribution.

32



