Supplementary Materials of “Boundary Thickness and
Robustness in Learning Models”

A Mixup Increases Thickness

In this section, we show that mixup as well as the noisy mixup scheme studied in Section 4.1 both
increase boundary thickness.

Recall that z,- and x5 in (1) are not necessaraily from the training data. For example, z,- and/or x4
can be the noisy samples used in the noisy mixup (Section 4.1). We make the analysis more general
here because in different extensions of mixup [9, 16,30], the mixed samples can either come from the
training set, from adversarial examples constructed from the training set, or from carefully augmented
samples using various forms of image transforms.

We consider binary classification and study the unnormalized empirical version of (1) defined as
follows:

of.af)i= S o —all [Ha<gu(a) < By,)
(wi,75) st yiFy; tefo.1]
where the expectation in (1) is replaced by its empirical counterpart. We now show that the function
which achieves the minimum mixup loss is also the one that achieves minimax thickness for binary
classification.

Proposition A.1 (Mixup Increases Boundary Thickness). For binary classification, suppose there
exists a function [y () that achieves exactly zero mixup loss, i.e., on all possible pairs of points
((@r, yr), (Ts,Ys))s Frniwup(Azr + (1 — Nzs) = Ayr + (1 — N)ys for all X € [0,1]. Then, for an
arbitrary fixed integer ¢ > 1, fuiwp(2) is also a solution to the following minimax problem.:

arg max min O(f, «, 3), 8)

gmax min (f,a.B) (

where the boundary thickness © is defined in Eqn. (7), the maximization is taken over all the 2D
Sunctions f(x) = [f(x)o, f(x)1] such that f(x)o + f(x)1 = 1 for all x, and the minimization is
taken over all pairs of o, B € (—1,1) such that —a = 1/c.

Proof. See Section B.4 for the proof. O

Remark 2 (Why Mixup is Preferred among Different Thick-boundary Solutions). Here, we only
prove that mixup provides one solution, instead of the only solution. For example, between two
samples x, and x, that have different labels, a piece-wise 2D linear mapping that oscillates between
[0,1] and [1,0] for more than once can achieve the same thickness as that of a linear mapping.
However, a function that exhibits unnecessary oscillations becomes less robust and more sensitive
to small input perturbations. Thus, the linear mapping achieved by mixup is preferred. According
to [16], mixup can also help reduce unnecessary oscillations.

Remark 3 (Zero Loss in Proposition A.1). Note that the function fiixp() in the proposition
is the one that perfectly fits the mixup augmented dataset. In other words, the theorem above
needs fixup() to have “infinite capacity,” in some sense, to match perfectly the response on line
segments that connect pairs of points (z,,). If such fmiwp(z) does not exist, it is unclear if an
approximate solution achieves minimax thickness, and it is also unclear if minimizing the cross-
entropy based mixup loss is exactly equivalent to minimizing the minimax boundary thickness for
the same loss value. Nonetheless, our experiments show that mixup consistently achieves thicker
decision boundaries than ordinary training (see Figure 2a).

B Proofs

B.1 Proof of Proposition 2.1

Choose (x,, xs) so that x5 — x,, = cw. The thickness of f defined in (1) becomes

1
O(f, o, B, x5, xr) = cllw|E, UO Ho < goi (2(t)) < B}dt] . ©)

13

Define a substitute variable u as:

u=tw' z, 4+ (1 —t)w z,+b. (10)
Then,
du= (w'z, —w'z,)dt = w' (—cw)dt = —c|lw||*dt. (11)
Further,
fltz,+(1—t)z)o—f(te,+(1—t)zs)1 = 20(tw zp+(1—t)w z,+b)—1 = 20(u)—1 = §(u).
(12)
Thus,
1
6(f.a,8,p) YelulE [[Ha< sty + (0= 00— e, + (1=) < Bt
0
(b) wTa:,,.+b 1
=E Ha < g(u) < —— | d
VMM (e <5 <2 () “} (3)
© 1 . w ! zs+b I{ _
TIENT a<g(u)<6}du)
||w|| wT z,.+b
where (a) holds because g1 (z(t)) = f(z(t))o—f(z(t))1 = f(tz,+(1—t)xs)o—f(txr+(1—t)xs)1,
(b) is from substituting v = tw'x, + (1 — t)w 'z + b and du = —c|wl|?dt, and (c) is from

switching the upper and lower limit of the integral to get rid of the negative sign. Recall that §(u) is a
monotonically increasing function in u. Thus,

meS—&-b

O(f,a,8,p) = 15~ (a) < u< 57 (8)}du
”w” wT xz,.+b (14)
:LE [min(g_l(ﬁ),was +b) — max(§~Ha),w ' z, + b)] .

[[w]]

Further, if [o, 3] is contained in [go1(®,), go1(zs)], we have §g71(B) < g (goi(zs)) =

G Hg(w zs + b)) = w x4 + b, and similarly, g~ (o) > w 'z, + b, and thus

O(f,a,8) = (57 1(8) — g~ (a))/|wll. (15)
B.2 Proof of Proposition 2.2

The conclusion holds if ||z, — x| fol {a < gi;(x(t)) < B}dt equals the ¢, distance from z,
to its projection Proj(x, j) for « = 0 and 8 = 1. Note that when z = z,, g;;(x) = 0, because
x, = Proj(z,, 7). From the definition of projection, i.e., Proj(z, j) = argming cg(;, ;) [|2' — x|, we
have that for all points = on the segment from z, to x5, = is only point with g;;(x) = 0. Otherwise,
s is not the projection. Therefore, all points on the segment satisfy g;;(z) > 0 = «. Since f is
the output after the softmax layer, g;;(z) = f(x); — f(z); < 1 = (. Thus, the indicator function on
the left-hand-side of (4) takes value 1 always, and the integration reduces to calculating the distance
from x, to ;.

B.3 Proof of Proposition 2.3

We rewrite the definition of T'(u) as

T(u) := i Cosine Similarity (v, w*), 16
(U) v St Hv”:ug}(}I;ivT:ciZl,Vi ' y(U v) (16)

where
Cosine Similarity (v, w*) := |va*\/(Hv|| lw* D). a7

To prove T'(u) is a non-increasing function in u, we consider arbitrary uy, us so that uy > ug > ||w*||,
and we prove T'(u1) < T'(ug).

First, consider T'(u2). Denote by ws the linear classifier that achieves the minimum value in the RHS
of (16) when u = usy. From definition, us = ||Jwz||. Now, if we increase the norm of ws to obtain a
new classifier w; = Z—;wQ, it still satisfies the constraint y;wyx; > 1, Vi because

Ul U1
Yiw1T; = —YiwaT; > — > 1. (18)
U2 (5

14

Thus, w; = Z—;wg satisfies the constraints in (16) for u = ||w || = u1, and being a linear scaling of

wa, it has the same cosine similarity score with w* (17), which means the worst-case tilting T'(u1)
should be smaller or equal to the tilting of w; .

B.4 Proof of Proposition A.1

We can rewrite (7) using

o(f,,8):= Y. Ow(f,a, b z.,), (19)

(@i,@5) s.t. yi#Y;

where ©1p(f, «, 8, z, xs) denotes the thickness measured on a single segment, i.e.,

®1D(f7 a?lB?mT7xS) = ”‘r?“ - xé” 0.1] I{O{ < gOl(x(t)) < ﬂ}dt7 (20)
tel0,1

where recall that go1 () = f(z)o — f(2)1 and 2(¢t) = ta, + (1 — t)xs.

Since the proposition is stated for the sum on all pairs of data, we can focus on the proof of an
arbitrary pair of data (x,., xs) such that y,. # ys.

Consider any 2D decision function f(x) = [f(z)o, f(x)1] such that f(x)o + f(x); =1 G.e., f(z)
is a probability mass function). In the following, we consider the restriction of f(x) on a segment
(w,,25), which we denote as f(;, ..)(). Then, the proof relies on the following lemma, which states
that the linear interpolation scheme in mixup training does maximize the boundary thickness on the
segment.

Lemma B.1. For any arbitrary fixed integer c > 0, the linear function
fiin(txr + (1 = t)xs) = [t,1 —t], ¢ € [0,1], (21

defined for a given segment (x, x) optimizes O p(f, a, B, 2, xs) in (20) in the following minimax
sense,

fin(x) = arg max min O;p(f(s,2.)(7), @, B, Tr, Ts), (22)

far,zs) () (a,8)

where the maximization is over all the 2D functions f(y, ».)(2) = [f(z,.2.)(@)0s f(a,,z.)(@)1] such
that the domain is restricted to the segment (., xs) and such that f(, . ()0, f(z,z.)(®)1 € [0,1]
and f(z, +.)(%)o + [z, 2.) (@)1 = 1 for all x on the segment, and the minimization is taken over all
pairs of a, B € (—1,1) such that 8 —a = 1/c.

Proof. See Section B.5 for the proof. O

Now, Proposition A.1 follows directly from Lemma B.1.

B.5 Proof of Lemma B.1

In this proof, we simplify the notation and use f(x) to denote f(, .)(z) which represents f(x)
restricted to the segment (..,). This simple notation does not cause any confusion because we
restrict to the segment (.., z) in this proof.

We can simplify the proof by viewing the optimization over functions f(z) on the fixed segment
(z,,xs) as optimizing over the functions h(t) = f(x(t)); — f(z(t))o ont € [0, 1], where z(t) =
te, + (1 —t)xs.

Thus, we only need to find the function f(z), when viewed as a one-dimensional function h(t) =
flx@®)1— f(zt)o = f(tz,+ (1 —t)xs)1 — f(tz, 4+ (1 —t)zs)0, that solves the minimax problem
(22) for the thickness defined as:

O (f(t) =l — . / T < h(t) < B)dt
t€(0,1]
iz, — 2|2 (@ B))]

(23)

15

where h~1 is the inverse function of h(t). Note that h=1((a, 3)) C [0,1]. To prove the result,
we only need to prove that the linear function hy,(¢) = 2t — 1, which is obtained from h(t) =
f(txr + (1 - t)ms)l - f(txr + (1 - t)xs)O for flin(txr + (1 - t)xs) = [t7 1- t] defined in (21)a
solves the minimax problem

arg max min ©p(h(t)) = arg max min |[h~*((a, ,
8 h(t) (a,B) (1)) & h(t) (a,B)‘ (o, B))] (24)

where the maximization is taken over all h(t), and the minimization is taken over all pairs of
a,B € (—1,1) such that 8 — a = 1/¢, for a fixed integer ¢ > 1.

Now we prove a stronger statement.

Stronger statement:

i [~ (0,)| < 252

when the minimization is taken over all «, 3 such that « — 3 = 1/¢, and for any measurable function
h(t) :[0,1] — [-1,1].

) (25)

If we can prove this statement, then, since hy,(t) = 2t — 1 always achieves h=!((a, 3)) = % —

QT“ = ’BfTa, it is indeed the minimax solution of (24).

We prove the stronger statement above by contradiction. Suppose that the statement is not true, i.e.,
for any « and 3 such that 5 — « = 1/¢, we always have

b —« 1

-1 = —. 2
(B> 25 = o 26)
Then, the pre-image of [—1, 1] satisfies
1>|h=([=1,1])]

i1
h <(c ’8)’ @7

1=—c+1
(@) 1
> 2c ’

where the last inequality holds because of the inequality (26). This is clearly a contradiction, which
means that the stronger statement is true.

C A Chessboard Toy Example

In this section, we use a chessboard example in low dimensions to show that nonrobustness arises from
thin boundaries. Being a toy setting, this is limited in the generality, but it can visually demonstrate
our main message.

In Figure C.1, the two subfigures shown on the first row represent the chessboard dataset and a
robust 2D function that correctly classifies the data. Then, we project the 2D chessboard data to a
100-dimensional space by padding noise to each 2D point. In this case, the neural network can still
learn the chessboard pattern and preserve the robust decision boundary (see the 3D top-down view on
the left part of the second row which contains the chessboard pattern).

However, if we randomly perturb each square of samples in the chessboard in the 3rd dimension
(the z axis) to change the space between these squares, such that the boundary has enough space on
the z-axis to partition the two opposite classes, the boundary changes to a non-robust one instead
(see the right part on the second row of Figure C.1). The shift value on the 2 axis is 0.05 which
is much smaller than the distance between two adjacent squares, which is 0.6. The data are not
linearly separable on the z-axis because each square on the chessboard is randomly shifted up or
down independently of other squares.

A more interesting result can be obtained by varying the shift on the z axis from 0.01 to 0.08. See
the third row of Figure C.1. The network undergoes a sharp transition from using robust decision
boundaries to using non-robust ones. This is consistent with the main message shown in Figure 1,

16

2D chessboard data 2D classifier

aERsvesYn
tsvessreN

3D Robust classifier 3D Non-robust classifier

Front view Top-down view Front view Top-down view

| XM‘“ %’3

Interpolation between robust and non-robust classifier

w"’" ’? “"p‘) ‘l, e"x‘ f- . ‘ i @ 4‘;7 SNy

Figure C.1: Chessboard toy example. The 3D visualizations above use the color map that ranges
from yellow (value 1) to purple (value 0) to illustrate the predicted probability Pr(y = 1|z) € [0, 1]
in binary classification. Each 3D figure draws 17 level sets of different colors from O to 1.

First row: The 2D chessboard dataset with two classes and a 2D classifier that learns the correct
pattern.

Second row: 3D visualization of decision boundaries of two different classifiers. (left) A classifier
that uses robust = and y directions to classify, which preserves the complex chessboard pattern (see
the top-down view which contains a chessboard pattern.) (right) A classifier that uses the non-robust
direction z to classify. When the separable space on the non-robust direction is large enough, the thin
boundary squeezes in and generates a simple but non-robust function.

Third row: Visulization of the decision boundary as we interpolate between the robust and non-
robust classifiers. There is a sharp transition from the fourth to the fifth figure.

i.e., that neural networks tend to generate thin and non-robust boundaries to fit in the narrow space
between opposite classes on the non-robust direction, while a thick boundary mitigates this effect.
On the third row, from left to right, the expanse of the data on z-axis increases, allowing the network
to use only the z-axis to classify.

Details of 3D figure generation: For the visualization in Figure C.1, each 3D figure is generated by
plotting 17 consecutive level sets of neural network prediction values (after the softmax layer) from
0 to 1. The prediction on each level set is the same, and each level set is represented by a colored
continuous surface in the 3D figure. The yellow end of the color bar represents a function value of 1,
and the purple end represents 0. The visualization is displayed in a 3D orthogonal subspace of the
whole input space. The three axes are the first three vectors in the natural basis. They represent the x
and y directions that contain the chessboard pattern, and the z axis that contains the direction of shift
values.

Details of the chessboard toy example: The chessboard data contains 2 classes of 2D points
arranged in 9 x 9 = 81 squares. Each square contains 100 randomly generated 2D points uniformly
distributed in the square. The length of each square is 0.4, and the separation between two adjacent
squares is 0.6. The shift direction (up or down) and value on the z-axis are the same for all 2D points
in a single square, and the shift value is much smaller than 1 (which is the distance between the
centers of two squares). See the third row on Figure C.1 for different shift values ranging from 0.01 to
0.08. The shift value is, however, independent across different squares, i.e., these squares cannot be
easily separated by a linear classifier using information on the z-axis only. The classifier is a neural
network with 9 fully-connected layers and a residual link on each layer. The training has 100 epochs,
an initial learning rate of 0.003, batch size 128, weight decay 5e-4, and momentum 0.9.

17

gi¥)=a g(x)=p

bounda ry —@- Different learning rate

>
tiltin g'j(x)>ﬁ & 0.1025- —>< Different early stopping
g 8 Different weight decay
— 0.1000 - —&— Different 11 regularization
E | Different cutout length
gil_(x)<a . G 0.0975 -
Xr © 0.0950-
gradien G
directio 9 00925~
@ 0.0900 -
[@)]
. E 0.0875 -
Xs [
. > 0.0850 -
<
15 2.0 2.5 3.0 35 40 45 50 55
Boundary thickness
(@) (b)

Figure D.1: Thickness and boundary tilting. (a) The cosine similarity between the gradient
direction and x5 — x, generalizes the measurement of “boundary tilting” to nonlinear functions. (b)
Boundary tilting can be mitigated by using a thick decision boundary.

D A Thick Boundary Mitigates Boundary Tilting

In this section, we generalize the observation of Proposition 2.3 to nonlinear classifiers. Recall that in
Proposition 2.3, we use Cosine Similarity (w,w*) = |w T w*|/(||w]| - ||w*||) between the classifier w
and the max-margin classifier w* to measure boundary tilting. To measure boundary tilting in the
nonlinear case, we use x1 — x2 of random sample pairs (x1, x2) from the training set to replace the
normal direction of the max-margin solution w*, and use Vg;;(x) = V(f(x); — f(z);) to replace the
normal direction of a linear classifier w, where 7, j are the predicted labels of z; and x2, respectively,
and z is a random point on the line segment (1, 23). Then, the cosine similarity generalizes to

|(x1 — @2, Vogij())]
|21 — 22[[[[V2gij ()l

Average Cosine Slmﬂaﬂty =]E(wl,zz)wlraining distribution s.t. i7#j (28)

In Figure D.1a, we show the intuition underlying the use of (28). The smaller the cosine similarity is,
the more severe the impact of boundary tilting becomes.

We also measure boundary tilting in various settings of adversarial training, and we choose the same
set of hyper-parameters that are used to generate Figure 3. See the results in Figure D.1b. When
measuring cosine similarity, we average the results over 6400 training sample pairs. From the results
shown in Figure D.1b, a thick boundary mitigates boundary tilting by increasing the cosine similarity.

E Additional Experiments on Non-adversarial Training

In this section, we provide more details and additional experiments extending the results of Section
3.1 on non-adversarially trained neural networks. We demonstrate that a thick boundary improves
OOD robustness when the thickness is measured using different choices of hyper-parameters. We
also show that the same conclusion holds on two other datasets, namely CIFAR100 and SVHN, in
addition to CIFAR10 used in the main paper.

E.1 Details of measuring boundary thickness

Boundary thickness is calculated by integrating on the segments that connect a sample with its
corresponding adversarial sample. We find the adversarial sample by using an {5 PGD attack of
size 1.0, step size 0.2, and number of attack steps 20. We measure both thickness and margin on
the normalized images in CIFAR10, which introduces a multiplicity factor of approximately 5 when
using the standard deviations (0.2023,0.1994, 0.2010), respectively, for the RGB channels compared
to measuring thickness on unnormalized images.

To compute the integral in (1), we connect the segment from z,. to x4 and evaluate the neural network
response on 128 evenly spaced points on the segment. Then, we compute the cumulative {5 distance

18

ResNet18 ResNet50 densenet VGG13 VGG19

—— normal —— normal —— normal
—— no decay

mixup

—=— normal
—— no decay

&

Train epochs - Tralnepochs ’ » Tramepochs h <Tra"\nelpoAc)hs4) N "Tra'inepthsN

—— normal
—— no decay
mixup

—— no decay
mixup

—— no decay
mixup

; Bofundyary tﬁhick:vessﬁ

; Boundary thickness
Bo»undary thl(kness
ﬁ

‘:‘ Bofundyary tdhick:vess
Boundary thickness

Figure E.1: Thickness on random sample pairs. Measuring the boundary thickness in the same
experimental setting as Figure 2a, but on pairs of random samples. The trend that mixup > normal
training > training without weight decay remains the same.

of the parts on this segment for which the prediction value is between («, 3), which measures the
distance between two level sets g;;(z) = o and g;;(x) = [on this segment (see equation (1)).
Finally, we report the average thickness obtained by repeated runs on 320 segments, i.e., 320 random
samples with their adversarial examples.

E.2 Comparing different measuring methods: tradeoff between complexity and accuracy

In this section, we discuss the choice of distribution p when selecting segments (z,., =) to measure
thickness. Recall that in the main paper, we choose x; as an adversarial example of x,.. Another way,
which is computationally cheaper, is to measure thickness on the segment directly between pairs of
samples in the training dataset, i.e., sample x, randomly from the training data, and sample z as a
random data point with a different label.

Although computationally cheaper, this way of measuring boundary thickness is more prone to the
“boundary-tilting” effect, because the connection between a pair of samples is not guaranteed to
be orthogonal to the decision boundary. Thus, the boundary tilting effect can inflate the value of
boundary thickness. This effect only happens when we measure thickness on pairs of samples instead
of measuring it in the adversarial direction, which we have shown to be able to mitigate boundary
tilting when the thickness is large (see Section D).

In Figure E.1, we show how this method affects the measurement of thickness. The thickness is
measured for the same set of models and training procedures as those shown in Figure 2a, but on
random segments that connect pairs of samples. We use « = 0 and 8 = 0.75 to match Figure 2a.
In Figure E.1, although the trend remains the same (i.e., mixup>normal>training without weight
decay), all the measurement values of boundary thickness become much bigger than that of Figure
2a, indicating boundary tilting in all the measured networks.

Remark 4 (An Oscillating 1D Example Motivates the Adversarial Direction). Obviously, the distri-
bution p in Definition 1 is vital in dictating robustness. Similar to Remark 2, one can consider an
example of 2D piece-wise linear mapping f(z) = [f(x)o, f(x)1] on a segment (z,., z,) that oscil-
lates between the response [0, 1] and [1, 0]. If one measures the thickness on this particular segment,
the measured thickness remains the same if the number of oscillations increases in the piece-wise
linear mapping, but the robustness reduces with more oscillations. Thus, the example motivates the
measurement on the direction of an adversarial attack, because an adversarial attack tends to find the
closest “peak” or “valley” and can thus faithfully recover the correct value of boundary thickness
unaffected by the oscillation.

E.3 Ablation study

In this section, we provide an extensive ablation study on the different choices of hyper-parameters
used in the experiments. We show that our main conclusion about the positive correlation between
robustness and thickness remains the same for a wide range of hyper-parameters obviating the need
to fine-tune these. We study the adversarial attack direction used to measure thickness, the parameters
« and 3, as well as reproducing the results on two other datasets, namely CIFAR100 and SVHN, in
addition to CIFAR10.

19

ResNet18 w ResNet50 w densenet w VGG13 Y VGG19

—— normal

—— no decay
mixup

—— normal
—— no decay
mixup

—— normal
—— no decay
mixup

—— normal
—— no decay
mixup

—— normal
—— no decay
mixup

= 15 15
\’_\fw—l

. Boundary thiiknefs .
) Boundarythic‘\kne“’ss
. Boundary thiiknefs
. Bt?untiary;thiikne:ss
. Bt?un(iary;thiikne:ss)

A o us Bo v ® o us o 1 ® o us o vs 5 b A owe ws wo ws
Train epochs Train epochs Train epochs Train epochs

(a) Results on CIFAR10 with a large attack € = 2.0

ResNet18 . ResNet50 . densenet . VGG13 - VGG19

5 % & w0 bs s v
Train epochs

—— normal
—— no decay

—— normal
—— no decay

—— normal
—— no decay
mixup

—— normal
—— no decay
mixup mixup mixup mixup

j 2 A, : T:: Neore , \Q&x : m«
? 5 N T wWo 125 1O 1S N s 0 5 W0 125 10 15 ? % 0 75 100 15 150 175 ! 3 0 75 100 1S 150 175 3 0 75 100 15 150 175
Train epochs Train epochs Train epochs Train epochs Train epochs

(b) Results on CIFAR10 with a small attack € = 0.6

—— normal
—— no decay

. Boun(jary:thiiknefs .
. Boundary_thiculme\rss
. Boun(iary:thic:knefs
. Boundary:thic:kne:ss
. Bs)undary:thiikne:ss

Figure E.2: Ablation study on different attack sizes. Re-implementing the measurements in Figure
2a using a larger or a smaller adversarial attack.

E.3.1 Different choices of adversarial attack in measuring boundary thickness

To measure boundary thickness on the adversarial direction, we have to specify a way to implement
the adversarial attack. To generate Figure 2a, we used ¢, attack with attack range € =1.0, step size
0.2, and number of attack steps 20. We show that the results and more importantly our conclusions
do not change by perturbing e a little. See Figure E.2 and compare it with the corresponding results
presented in Figure 2a. We see that the change in the size of the adversarial attack does not alter
the trend. However, the measured thickness value does shrink if the € becomes too small, which is
expected.

E.3.2 Different choices of o and § in measuring boundary thickness

In this subsection, we present an ablation study on the choice of hyper-parameters o’s and S in (1).
We show that the conclusions in Section 3.1 remain unchanged for a wide range of choices of o and
5. See Figure E.3. From the results, we can see that the trend remains the same, i.e., mixup>normal
training>training without weight decay. However, when « and 3 become close to each other, the
magnitude of boundary thickness also reduces, which is expected.

Remark 5 (Choosing the Best Hyper-parameters). From Proposition 2.2, we know that the margin
has particular values of the hyper-parameters & = 0 and 5 = 1. Allowing different values of these
hyper-parameters allows us the flexibility to better capture the robustness than margin. The best
choices of these hyper-parameters might be different for different neural networks, and ideally one
could do small validation based studies to tune these hyper-parameters, but our ablation study in this
section shows that for a large regime of values, the exact search for the best choices is not required.
We noticed, for example, setting « = 0 and 5 = 0.75 works well in practice, and much better than
the standard definition of margin that has been equated to robustness in past studies.

Remark 6 (Choosing Asymmetric o and 3). We use asymmetric parameters « = 0 and 8 > 0
mainly because, due to symmetry, the measured thickness when (o, 3) = (0, z) is half in expectation
of that when (o, 8) = (—x, x).

We have discussed alternative ways of adversarial attacks to measure boundary thickness on sample
pairs in Section E.2. For completeness, we also do an ablation study for choice of hyper-parameters
« and g for this case. The results in Figure E.4, and this study also reinforces the same conclusion —
that the particular choice of «, 5 matters less than the fact that they are not set to 0 and 1 respectively.

E.3.3 Additional datasets

We repeat the experiments in Section 3.1 on two more datasets, namely CIFAR100 and SVHN. See
Figure E.S. In this figure, we used the same experimental setting as in Section 3.1, except that we

20

ResNet18 w ResNet50 w densenet w VGG13 w VGG19

—— normal

—— normal

—— normal

—— normal —— normal

) Iy Iy « «
0 s 0 s h s h 35 u a5
g —— no decay g —— no decay g —— no decay g —— no decay g —— no decay
R mixup S 2 S - mixup S 2 mixup S 20 mixup N 20 — mixup
= 1 = of = = T B i i = i
S S S y S S
D D D D D
I © S © S
3 [3 [[
S > > > >
g 0 o5 0 o5 S os 0 os
@ @ @ \\"’\—M‘ @ @
oo X S0 75 00 125 150 1S o s 0 75 W0 125 10 175 oo z 0 75 W0 125 150 175 oo 5 s0 75 00 125 150 175 o 5 S0 75 00 125 150 175
Train epochs Train epochs Train epochs Train epochs Train epochs
(a) Results on CIFAR10 for« = 0 and 8 = 0.9
ResNet18 ResNet50 . densenet . VGG13 - VGG19
n —— normal 0 —— normal 0 —— normal 0 —— normal 0 —— normal
0 o 0 o 0 o 0 s 0 s
g —— no decay g —— no decay g —— no decay g —— no decay g —— no decay
% 20 —— mixup % 20 —— mixup % 20 —— mixup % 20 —— mixup % 20 mixup
£ . £ £ = A\ = N\ AN
s N /) s s , Py s / s A
- >t - - - S R = \/
fa AN < 2 \ / — D -
S N B S v S S
c X c c c c
> =] =] =] =]
0 os 5o 0 os 5 o5 S o5
@ @ @ \\\‘MW\LNW “ @
oo % S0 75 00 125 150 1S o s 0 5 W0 125 10 15 oo) 5 00 125 150 175 oo E-I) 5 100 125 10 175 o0 3 0 75 100 15 150 175
Train epochs Train epochs Train epochs Train epochs Train epochs
(b) Results on CIFAR10 for « = 0 and 8 = 0.8
. ResNet18 . ResNet50 . densenet . VGG13 . VGG19
0 —=— normal 0 —=— normal 0 —=— normal 0 —=— normal 0 —=— normal
@ 25 & 25 0 s 0 55 0 55
g —— no decay g —— no decay g —— no decay g ‘ —— no decay g ’ —— no decay
Af) 20- —— mixup Af) 20 —— mixup Aé 20 —— mixup Aé 20 —— mixup Aé 20 —— mixup
<= <= <= <= <=
s s s s s
> > > > >
2 2 - 2 -
310 310 e B 10 el N - B0 310
2 2 S 2 N 2 2
3 3 ¥ 3 ¥ 3 3
S os 5o S os S os S os
@ @ @ m@: @ @
s & B ow B s us ®T A s s w0 us s s s s B a0 b s U s s B b b s U R
Train epochs Train epochs Train epochs Train epochs Train epochs
(c) Results on CIFAR10 for « = 0 and 5 = 0.7
B ResNet18 - ResNet50 . densenet . VGG13 . VGG19
9 —— normal 9 —— normal 9 —— normal 9 —— normal 9 —— normal
g = —— nodecay 2 > —— nodecay 2 > —— nodecay 2 > —— nodecay 2 > —— no decay
S 2 —— mixup S 20- 1 —— mixup S 2 —— mixup S 2 —— mixup R —— mixup
<= <= <= <= <=
s s s s s
fal Py ey Py fy
© © © © ©
Jao- L 3 10 3 10 - 3 10 3 10
< e c c NN < c
E] N E] > o G- S5
3 os s 3 os 3 os S 3 os 3 os
@ \Q::Lz&m “ “ :::kﬁqm “ “

00

w0 s 180 15 s

I B 0 B W0 15 150
Train epochs Train epochs

(d) Results on CIFAR10 for « = 0 and 5 = 0.6

uo s o s s vis

0 7 o 5 s 75 10 25 10 5 S 5 100 15 150
Train epochs Train epochs Train epochs

Figure E.3: Ablation study on different o and . Re-implementing the measurements in Figure 2a
for different choices of « and (8 in Eqn.(1).

train with a different initial learning rate 0.01 on SVHN, following convention. We reach the same
conclusion as in Section 3.1, i.e., that mixup increases boundary thickness, while training without
weight decay reduces boundary thickness.

E.4 Visualizing neural network boundaries

In this section, we show a qualitative comparison between a neural network trained using mixup
and another one trained in a standard way without mixup. See Figure E.6. In the left figure, we
can see that different level sets are spaced apart, while the level sets in the right figure are hardly
distinguishable. Thus, the mixup model has a larger boundary thickness than the naturally trained
model for this setting.

For the visualization shown in Figure E.6, we use 17 different colors to represent the 17 level sets.
The origin represents a randomly picked CIFAR10 image. The xz-axis represents a direction of
adversarial perturbation found using the projected gradient descent method [6]. The y-axis and the
z-axis represent two random directions that are orthogonal to the = perturbation direction. Each
CIFAR10 input image has been normalized using standard routines during training, e.g., using the
standard deviations (0.2023,0.1994, 0.2010), respectively, for the RGB channels, so the scale of the
figure may not represent the true scale in the original space of CIFAR10 input images.

21

&

Boundary thickness

=

Boundary thickness

©

Boundary thickness

Boundary thickness

4

3

3

S

ResNet18

—— normal

—— no decay

= mixup

% 5 o o
Train epochs

ResNet18

—— normal

—— no decay

= mixup

vvv

10 us 10

S
Train epochs

ResNet18

—— normal

—— no decay

+
3
H
5

w0 w5 10

o
Train epochs

ResNet18

|

Boundary thickness

vis

vis

vis

—— normal

—=— no decay

~—— mixup

%10 us B0

E
Train epochs

vis

Boundary thickness Boundary thickness

Boundary thickness

|

Boundary thickness

=

3

S

ResNet50

—— normal

= mixup

% » oW ows
Train epochs

(a) Results on CIFAR10 for« = 0 and 8 = 0.9

ResNet50

= mixup

s w0 w5 10

S
Train epochs

(b) Results on CIFAR10 for « = 0 and 8 = 0.8

ResNet50

—— normal

—— no decay
= mixup

9 % w0 w5 w0

Train epochs

—— no decay

vis

—— no decay

vis

vis

densenet

&

= mixup

R
Train epochs

densenet

¥y & g

Boundary thickness

o100 S 10

)Train epochs

=

densenet

» —— normal

= mixup

Boundary thickness

00 W5 0

9 &
Train epochs

E

|

Boundary thickness

—— normal
©

—— no decay

vis

\//\—\ A
—— normal
—— no decay

\t‘\(i\;;z,.

vis

—— no decay

s

—— normal
—— no decay
= mixup

vis

9 » ow s o
Train epochs

VGG13

0 \
N I\
—— normal

~—=— no decay

= mixup

»

Boundary thickness

o100 w5 w0 1

)Train epochs

3

VGG13

g

—=— normal
—— no decay
= mixup

¥ w8

Boundary thickness

o100 w5 w0 17

Train epochs

(¢) Results on CIFAR10 foraw = 0 and 8 = 0.7

ResNet50

—— normal

—=— no decay

~—— mixup

S B 10 us 10

Train epochs

Vs

densenet

8

B

~—— mixup

¥

Boundary thickness

s s B 0 us 10

Train epochs

—— normal
—=— no decay

vis

VGG13

8

—— normal
—+— no decay
—— mixup

¥ w8

Boundary thickness

B0 ws Bo s

5 %
Train epochs

(d) Results on CIFAR10 for « = 0 and 5 = 0.6

Boundary thickness Boundary thickness Boundary thickness

Boundary thickness

P

@

VGG19

—— normal
—— no decay
= mixup

vis

9 m b ws o
Train epochs

VGG19

U

—=— normal
—— no decay
= mixup

% s 7510 w5 w0 1S

Train epochs

VGG19

—=— normal
—— no decay
= mixup

% S 7 100 ws w0 1

Train epochs

VGG19

—— normal
—=— no decay
~—— mixup

o0 w5 B0 s

5 %
Train epochs

Figure E.4: Ablation study on different o and /3 for thickness measured on random sample
pairs. Re-implementing the measurements in Figure E.1 for different choices of « and /3 in Eqn.(1).

Boundary thickness

it

Boundary thickness

=

ResNet18

—— normal

—— no decay

—— mixup

N s s
Train epochs

ResNet18

e

—— normal

—— no decay

= mixup

Boundary thickness

Boundary thickness

=

S s

ResNet50

—— normal

—— no decay

—— mixup

w0 ws 0

P
Train epochs

ResNet50

us

—— normal

—— no decay

= mixup

densenet

—— normal

Boundary thickness

—— mixup

25

o 7 e 0
Train epochs

—— no decay

VGG13
—— normal
—— no decay
—— mixup

Boundary thickness

3 R vis

0 & us o
Train epochs

(a) Results on CIFAR100

densenet

= mixup

Boundary thickness

© 75 0 15 10

Train epochs

s

=

%% w0 w5 10

Train epochs

s

s @ B w0 w5 w0

Train epochs

(b) Results on SVHN

—— normal
—— no decay

o *'j\,\/\m\/*\

g

vis

VGG13

—— normal
—— no decay
= mixup

A

e e b i e

% @ 0 W w5 w1

Train epochs

Boundary thickness

Boundary thickness

Boundary thickness

VGG19

3 vis

R
Train epochs

VGG19
—— normal
—— no decay
= mixup

M

% s 7 W0 w5 w0 1S

Train epochs

Figure E.5: Ablation study on more datasets. Re-implementing the measurements in Figure 2a on
for two other datasets CIFAR100 and SVHN.

Standard training

0.0

Figure E.6: Visualization of mixup. A mixup model has a thicker boundary than the same model
trained using standard setting, because the level sets represented by different colors are more separate
in mixup than the standard case.

F Additional Experiments on Adversarial Training

In this section, we provide additional details and analyses for the experiments in Section 3.2 on
adversarially trained neural networks. We demonstrate that a thick boundary improves adversarial
robustness for wide range of hyper-parameters, including those used during adversarial training and
those used to measure boundary thickness.

F.1 Details of experiments in Section 3.2

We use ResNet-18 on CIFAR-10 for all the experiments in Section 3.2. We first choose a standard
setting that trains with learning rate 0.1, no learning rate decay, weight decay Se-4, attack range € = 8
pixels, 10 iterations for each attack, and 2 pixels for the step-size. Then, for each set of experiments,
we change one parameter based on the standard setting. We tune the parameters to achieve a natural
training accuracy larger than 90%. For the experiment on early stopping, we use a learning rate 0.01
instead of 0.1 to achieve 90% training accuracy. We train the neural network for 400 epochs without
learning rate decay to filter out the effect of early stopping. The results with learning rate decay and
early stopping are reported in Section F.2 which show the same trend.

When measuring boundary thickness, we select segments on the adversarial direction, and we find the
adversarial direction by using an ¢ PGD attack of size ¢ = 2.0, step size 0.2, and number of attack
steps 20.

Changed parameter ~ Learning rate ~ Weight decay L1 Cutout Early stopping
Learning rate 3e-3 Se-4 0 0 None
le-2 Se-4 0 0 None
3e-2 Se-4 0 0 None
Weight decay le-1 Oe-4 0 0 None
le-1 le-4 0 0 None
L1 le-1 0 Se-7 0 None
le-1 0 2e-6 0 None
le-1 0 Se-6 0 None
Cutout le-1 0 0 4 None
le-1 0 0 8 None
le-1 0 0 12 None
le-1 0 0 16 None
Early stopping le-2 Se-4 0 0 50
le-2 Se-4 0 0 100
le-2 Se-4 0 0 200
le-2 Se-4 0 0 400

Table F.1: Hyper-parameters in Section 3.2. The table reports the hyper-parameters used to obtain
the results in Figure 3a and 3b for adversarial training.

Note that boundary thickness indeed increases with heavier regularization or data augmentation. See
Figure F.1 on the thickness of the models trained with the parameters reported in Table F.1.

23

0 0
5.5 = D300 . & 350
€ 325
5.0 g
Q34 4 o] G 3.00
£ 32 c 250 Sars
> 3225 >2350
g8 S3s 5 2.00 & 2.25
c2° T B30 . B B 2.00
5 175
3 .

Boundary thickness
BoE NN
o ® o b »

.

| .
o 102 @ 400 300 200 100 @ o 0t @ 4 6 8 1o 12 14 16

1076
Learning rate Early stopping epoch Weight decay 11 regularization Cutout length

Figure F.1: Regularization and data augmentation increase thickness. The five commonly used
regularization and data augmentation schemes studied in Section 3.2 all increase boundary thickness.

- 0.54
% 0.40 A o g?gefent Iearnri]rt\%rate a @ Different learning rate

) ifferent weig ecay Different weight decay
2 0.35 A D?fferent 11 regularization E 0.52 A Different 11 regularization e
s Different cutout length 8 Different cutout length A
S 0.30 - P o 0.50
e & © o]
3 0.25- -
8 P o 0.48-
G 0.20 - 9 A
- +, 0.46- e
0w . 2]
5 0.15 >3
e A o 044- |
O 0.10- o -

?
o« | | ! | . Xoa2- : : ‘ :
2.5 3.0 3.5 4.0 4.5 2.5 3.0 3.5 4.0 4.5
Boundary thickness Boundary thickness
(@) (b)

Figure F.2: Adversarial training with learning rate decay. Reimplementing the experimental
protocols that obtained Figure 3 using learning rate decay. The hyper-parameters are shown in
Table F.2

F.2 Adversarial training with learning rate decay

Here, we reimplement the experiments shown in Figure 3a and 3b but with learning rate decay and
early stopping, which is reported by [33] to improve the robust accuracy of adversarial training. We
still use ResNet-18 on CIFAR-10. However, instead of training for 400 epochs, we train for only 120
epochs, with a learning rate decay of 0.1 at epoch 100. The adversarial training still uses 8-pixel PGD
attack with 10 steps and step size 2 pixel.

The set of training hyper-parameters that we use are shown in Table F.2. Similar to Figure 3, we
tune hyper-parameters such that the training accuracy on natural data reaches 90%. The results are
reported in Figure F.2. We do not separately test early stopping because all experiments follow the
same early stopping procedure.

Changed parameter Learning rate ~ Weight decay L1 Cutout Early stopping
Learning rate le-2 Se-4 0 0 120
3e-2 Se-4 0 0 120
le-1 Se-4 0 0 120
Weight decay le-1 Oe-4 0 0 120
le-1 le-4 0 0 120
le-1 Se-4 0 0 120
L1 le-1 0 Se-7 0 120
le-1 0 2e-6 0 120
le-1 0 5e-6 0 120
Cutout le-1 0 0 4 120
le-1 0 0 8 120
le-1 0 0 12 120

Table F.2: Hyper-parameter settings in Figure F.2.

24

Different learning rate

. [J
> 0.48 X g 0.5- A x Different early stopping
O . A # Different weight decay
g 0.46 2 g 0.4 - " > A Different I1 regularization
0 0.44- X* Hd » | Different cutout length
(V] -]
® 0.42 g 03 X
v .)‘ @ Different learning rate ’ m© 0.2
3 . % Different early stopping +J LT
'8 0.40 2 9 # Different weight decay 5’ A®
o . A Different 11 regularization 2 0.1-
0.38 Different cutout length | g x
10 15 20 25 3.0 35 40 1.0 1.5 20 25 30 35 40
Boundary thickness Boundary thickness
(@) (b)

Q r @® Different learning rate
> 0.48- X g 0.5- 3 x Different early stopping
O . A # Different weight decay
g 0.46 >’ g 0.4 - A - A D?fferent 11 regularization
0 0.44- X* o » | Different cutout length
(V] 3
©0.42- g 03 X%

% ‘ @ Different learning rate ’ ©

g 0.40 - A % Different early stopping *u—; 0.2

o) . 17 ° % Different weight decay S A

o . A Different 11 regularization 2 0.1

0.38 Different cutout length | 2 x
10 15 20 25 30 10 15 20 25 30
Boundary thickness Boundary thickness
(© (d)

Q 3 @® Different learning rate
> 0.48- X g 0.5- 4 ‘ x Different early stopping
O # Different weight decay
g 0.46 - 5’ g 0.4 - ‘. A Different 11 regularization
0 0.44- x* A - Different cutout length
(¥} -}
® 0.42- g 03 x
I ")S @ Different learning rate ’ © 0.2 *
= . X Different early stopping = U.Z -~
‘8 0.40 ko Py % Different weight decay 5’ ~
o . A Different 11 regularization 2 0.1-

0.38 Different cutout length | c% x
0.500.751.00 1.25 1.50 1.752.00 0.500.751.00 1.25 1.50 1.752.00
Boundary thickness Boundary thickness
©) ®

Figure F.3: Ablation study on adversarially trained networks. Re-implementing the measure-
ments in Figure 3 for three other different choices of a, 8 and the attack size e. The parameters are
provided in Table F.3. For all settings, robustness still increases with thickness.

F.3 Different choices of the hyper-parameters in measuring adversarially trained networks

Here, we study the connection between boundary thickness and robustness under different choices
of hyperparameters used to measure thickness. Specifically, we use three different sets of hyper-
parameters to reimplement the experiments that obtained Figure 3a and Figure 3b. These parameters
are provided in Table F.3. The first row represents the base parameters used in Figure 3a and Figure
3b. Then, the second row changes 3. The third and the fourth row change the attack size € and
step size. The changes in the hyper-parameters maintains our conclusion regarding the relationship
between thickness and robustness. See Figure F.3.

25

Figures e} I} Attack e Number of steps Step

size
Fig. 3a and Fig. 3b 0 0.75 2.0 20 0.2
(the base setting in
the main paper)
Fig. F.3a and F.3b 0 0.5 2.0 20 0.2
Fig. F.3c and F.3d 0 0.75 1.0 20 0.1
Fig. F.3e and F.3f 0 0.75 0.6 20 0.06
Table F.3: Hyper-parameter settings in Figure F.3.
Beta = 0.99 Beta = 0.999 \77¥ieta = 0.9999 \7\; Beta = 1;0

Boundary thickness
Boundary thickness
Nwa oo~
Boundary thickness
Nwa ;o
Boundary thickness
Nwa oo
Boundary thickness
Nwa oo

Nwsuo N

0 50 100 150200 250 300 350 400 0 50 100 150200 250 300 350 400 0 50 100 150200 250 300 350 400 050 100 150200 250 300 350 400 050 100 150200 250 300 350 400

Training epochs Training epochs Training epochs Training epochs Training epochs
Figure F.4: Boundary thickness versus margin. Reimplementing procedures in Fig. 3c with
different 5 when o = 0. There is a large range of 3’s in which boundary thickness can measure
robustness.

F.4 Additional experiment on comparing boundary thickness and margin

Here, we further analyze how boundary thickness compares to the margin. In particular, we study
what happens if we change the two hyper-parameters o and /3 to the limit when boundary thickness
becomes similar to margin, especially average margin shown in Figure 3c. The purpose of this
additional experiment is to study the distinction between boundary thickness and average margin,
even when they become similar to each other.

We notice that, when reporting boundary thickness, apart from the ablation study, we always use
parameters « = 0 and § = 0.75. When measuring average margin shown in Figure 3c, as we
mentioned in Section 3.3, we approximately measure margin on the direction of adversarial examples,
which effectively measures the boundary thickness when setting « = 0 and 8 = 1. Thus, a reasonable
questions is why the results of average margin in Figure 3c are fundamentally different from boundary
thickness, despite the small change only in .

To answer this question, we empirically show the transition from 5 = 0.9 to 1.0. See Figure F.4.
We see that a sudden phase-transition happens as § gets close to 1.0. This phenomenon has two
implications. First, although boundary thickness reduces to margin with specific choices of parameters
(in particular, « = 0 and 5 = 1), it is different from margin when /3 is not close to 1. Second, for a
large range of 3, boundary thickness can distinguish robustness better than margin.

G Addition Experiments and Details of Noisy Mixup

In this section, we first provide more details for the experiments on noisy mixup. Then, we provide
some additional experiments to further compare noisy mixup and ordinary mixup.

G.1 More details of noisy-mixup

In the experiments, we use ResNet-18 on both CIFAR-10 and CIFAR-100. For OOD, we use the
datasets from [38] and evaluate on 15 different types of corruptions in CIFAR10-C and CIFAR100-C,
including noise, blur, weather, and digital corruption.

The probability to replace a clean image with a noise image is 0.5. The model is trained for 200
epochs, and learning rate decay with a factor of 10 at epochs 100 and 150, respectively. For both
mixup and noisy mixup, we train using three learning rates 0.1, 0.03, 0.01 and report the best results.
The weight decay is set to be le-4, which follows the recommendation in [16]. For noisy mixup,
the value on each pixel in a noise image is sampled independently from a uniform distribution in
[0,1], and processed using the same standard training image transforms applied on the ordinary
image inputs.

26

Dataset Method Clean OOD Black-box PGD-20
8-pixel 6-pixel 4-pixel
CIFARI10 Mixup 96.0+0.1 78.5+0.4 46.3+1.4 2.04+0.1 3.240.1 6.31+0.1
Mixup-SEP 95.3£0.2 82.1+09 55.5+£8.6 4.4+1.6 6.5+1.9 11.3£24
Noisy mixup 94.4+0.2 83.6+0.3 78.0+1.0 11.743.3 16.2+4.2 25.745.0

Table G.1: Mixup-SEP. Having an additional “NONE” class in mixup-SEP can help improve
robustness of mixup, but it still cannot achieve the robustness of noisy mixup. Results are reported
for the best learning rate in [0.1, 0.03, 0.01].

Dataset, Method Clean OOD Black-box PGD-20

Model 8-pixel 6-pixel 4-pixel
CIFAR100, Mixup 78.3+0.8 51.3+04 37.341.1 0.0+0.0 0.0£0.0 0.1+0.0
ResNet-18 Noisy mixup ~ 72.2+0.3 52.5+0.7 60.1+0.3 1.5+0.2 2.6+£0.1 6.7+0.9
CIFAR100, Mixup 79.3+0.6 534402 39.74+1.3 1.0+0.1 1.6£0.2 3.1+£04

ResNet-50 Noisy mixup ~ 75.540.5 55.5+£0.3 59.7+£1.1 43+03 6.4+0.1 10.3£0.0

Table G.2: Clean accuracy drop of noisy mixup on CIFAR100. The drop of clean accuracy can
be mitigated by using a larger ResNet-50 network. Results are reported for the best learning rate in
[0.1, 0.03, 0.01].

When testing the robustness of the ordinary mixup and noisy mixup models, we used both black/white-
box attacks and OOD samples. For white-box attack, we use an ¢, PGD attack with 20 steps. The
attack size e can take values in 8-pixel (0.031), 6-pixel (0.024) and 4-pixel (0.0157), respectively.
The step size is 1/10 of the attack size e. For black-box attacks, we use ResNet-110 to generate the
transfer attack. The other parameters are the same with the 8-pixel white-box attack.

When we measure the boundary thickness values of models trained using mixup and noisy mixup,
we estimate each thickness value by repeated runs on 320 random samples. Then, we repeat this
procedure 10 times and report both the average and three times the standard deviation in Figure 4.

G.2 Addition experiments on noisy-mixup

Here, we provide two additional experiments on noisy mixup. In the first experiment, we want to
study the effect of introducing an additional “NONE” class in noisy mixup. In the second experiment,
we justify the clean accuracy drop of noisy mixup as a consequence of insufficient model size.

In the first experiment, we focus on the additional “NONE” class introduced in noisy mixup. We
notice that we attribute the improved robustness to the mixing of the “NONE” class with the original
images in the dataset. However, due to this additional class, it is possible that the network can have
improved robustness by learning to distinguish clean images from noise. Thus, to separate the pure
effect of having the additional “NONE” class in noisy mixup, we compare mixup and noisy mixup
when mixup also has this additional class. Specifically, we measure ordinary mixup on CIFAR10
with the 11th class but only mix sample pairs within the first ten classes or within the 11th class.
We call this method “mixup-SEP”. See the results in Table G.1. Note that the results of mixup and
noisy mixup are the same with Table 1. From the results, we see that noisy mixup is more robust than
mixup-SEP. Thus, we cannot attribute the improved robustness solely to the “NONE” class.

In the second experiment, we further study the clean accuracy drop of noisy mixup shown in Table 1.
As we have mentioned, one reason for the clean accuracy drop is the tradeoff between clean accuracy
and robust accuracy often seen in robust training algorithms. The supporting evidence is that
adversarial training in the same setting using ResNet-18 on CIFAR100 only achieve 57.6% clean
accuracy. Here, we analyze another potential factor that leads to the drop of clean accuracy, which
is the size of the network. To study this factor, we change ResNet-18 to ResNet-50 and repeat the
experiment. We report the results in Table G.2. Note that the results for ResNet-18 are the same with
Table 1. Thus, we can see that the drop of clean accuracy reduces when using the larger ResNet-50
compared to ResNet-18.

27

H More Details of the Experiment on Non-robust Features in Section 4.2

In this part, we provide more details of the experiment on non-robust features. First, we discuss
the background on the discovery in [41]. Using a dataset Dyain = { (4, ¥:) }7- 1, Diest and a C-class
neural network classifier f, a new dataset D’ is generated as follows:

o (attack-and-relabel) Generate an adversarial example x; from each training sample x; such
that the prediction of the neural network y; = argmax;c12,....c} f(2}); is not equal to
y;. Then, label the new sample 2/ as y.. The target class y; can either be a fixed value for
each class y;, or a random class that is different from y;. In this paper, we use random target
classes.

o (test-on-clean-data) Train a new classifier f’ on the new dataset D' = {(z},y})}",,
evaluate on the original clean testset Dy, and obtain a test accuracy ACC.
The observation in [41] is that by training on the completely mislabeled dataset D' = {(z4, y})}1 4.
the new classifier f’ still achieves a high ACC on Dig. The explanation in [41] is that each adversarial
example 2’ contains “non-robust features™ of the target label y;, which are useful for generalization,
and ACC measures the reliance on these non-robust features. The test accuracy ACC obtained in this
way is the generalization accuracy reported in Figure 5b.

In Figure 5b, the z-axis means different epochs in training a source model. Each error bar represents
the variance of non-robust feature scores measured in 8 repeated runs. Thus, each point in this figure
represents 8 runs of the same procedures of a non-robust feature experiment for a different source
network, and each curve in Figure 5b contains multiple experiments using different source networks,
instead of a single training-testing round. It is interesting to see that source networks trained for
different number of epochs can achieve different non-robust feature scores, which suggests that when
the decision boundary changes between epochs, the properties of the non-robust features also change.

In the experiments to generate Figure 5b, we use a ResNet56 model as the source network, and a
ResNet20 model as the target network. These two ResNet models are standard for classification
tasks on CIFAR10. The source network is trained for 500 epochs, with an initial learning rate of
0.1, weight decay Se-4, and learning rate decay 0.1 respectively at epoch 150, 300, and 450. When
training with a small learning rate, the initial learning rate is set as 0.003. When training with mixup,
the weight decay is le-4, following the initial setup in [16]. The adversarial attack uses PGD with
100 iterations, an /5 attack range of € = 2.0, and an attack stepsize of 0.4.

Remark 7 (Why Thick Boundaries Reduce Non-robust Features). Our explanation on why a thick
boundary reduces non-robust feature score is that a thicker boundary is potentially more “complex™*.
Then, in the attack-and-relabel step, the adversarial perturbations are generated in a relatively
“random” way, independent of the true data distribution, making the “non-robust features” preserved
by adversarial examples disappear. Studying the inner mechanism of the generation of non-robust
features and the connection to boundary thickness is a meaningful future work.

“Note that, although various complexity measures are associated with generalization in classical theory, and
the inductive bias towards simplicity may explain generalization of neural networks [28,29], it has been pointed
out that simplicity may be at odds with robustness [27].

28

