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We thank all the reviewers for their constructive comments! We will modify the paper by correcting all grammatical1

errors, adding the cross-references and the discussion of Hua’s method.2

Q1. (R1 & R2) Comparison of our subgroup rank-1 lattice with Hua and Korobov searching method on integral3

approximation problem in sec.5.2. The approximation errors are shown in Fig. (a)-(d). Hua’s method obtains a4

smaller error than i.i.d Monte Carlo on the 50-D problem, however, it becomes worse than MC on 500-D and 1000-D5

problems. Our subgroup rank-1 lattice achieves similar performance to Korobov searching method and obtains a6

consistent smaller error on all the tested problems than Hua and MC.7

Q2. (R2) Time Comparison of Korobov searching and our sub-group rank-1 lattice. The table below shows the8

time cost (seconds) for lattice construction. The run time for Korobov searching grows fast to hours. Our method can9

run in less than one second, achieving a 104× to 105× speed-up. The speed-up increases when n and d becomes larger.10

d=500

n=3001 4001 7001 9001 13001 16001 19001 21001 24001 28001
SubGroup 0.0185 0.0140 0.0289 0.043 0.0386 0.0320 0.0431 0.0548 0.0562 0.0593
Korobov 34.668 98.876 152.86 310.13 624.56 933.54 1308.9 1588.5 2058.5 2815.9

d=1000

n=4001 16001 24001 28001 54001 70001 76001 88001 90001 96001
SubGroup 0.0388 0.0618 0.1041 0.1289 0.2158 0.2923 0.3521 0.4099 0.5352 0.5663
Korobov 112.18 1849.4 4115.9 5754.6 20257 34842 43457 56798 56644 69323

Q3. (All) More experiments: Approximation of the normalization constant of graphical model.11

For Boltzmann Machines with continuous state in [0, 1], the energy function of x = [v,h] ∈ [0, 1]d is defined as12

E(x) = −(x>Wx+ b>x)/d. The normalization constant is Z =
∫
[0,1]d

exp (−E(x))dx.13

We evaluate our method on approximation of the normalization constant by comparing with i.i.d Monte Carlo (MC),14

slice sampling (SS) and Hamiltonian Monte Carlo (HMC). We generate the elements of W and b by sampling from15

standard Gaussian N (0, 1). All the methods in comparison use the same W and b. For SS and HMC, we use the16

slicesample function and hmcSampler function in MATLAB, respectively. We use the approximation of i.i.d MC with17

107 samples as the pseudo ground-truth. The approximation errors |Ẑ − Z|/Z are shown in Fig.(e)-(h). our method18

consistently outperforms MC, HMC and SS on all cases. Moreover, our method is much cheaper than SS and HMC.19

Q4. (R4) Comparison to sequential Monte Carlo. When the positive density region takes a large fraction of the20

entire domain, our method is very competitive (see Q3). When it is only inside a small part of a large domain, our21

method may not be better than sequential adaptive sampling. In this case, it is interesting to take advantage of both22

lattice and adaptive sampling. E.g., one can employ our subgroup rank-1 lattice as a rough partition of the domain to23

find high mass regions, then take sequential adaptive sampling on the promising regions with the lattice points as the24

start points. Also, it is interesting to consider progressively apply our subgroup rank-1 lattice to refine the partition.25

Q5. (All) Benefits to NeurIPS community. Our subgroup rank-1 lattice performs good and robust. It does not26

have any hyperparameter and is very convenient and cheap for points set construction. It has potential applications27

at Bayesian inference, kernel approximation and the approximation of Wasserstein distance. It may also be able to28

combine with sequential MC as discussed in Q4. Readers may be inspired by or learned from our technique.29


