
We thank the reviewers for their helpful feedback.1

Related Work: We have actually already revised our paper to include a more thorough discussion of the SCAFFOLD2

paper. It is important to note that SCAFFOLD is presented in a related, but different, FL setting where only a subset3

S < M of the machines are available in each round of communication. Specialized to our setting (S = N in their4

notation), the SCAFFOLD analysis actually does not show any improvement at all over MBSGD (compare their5

Thm III to Table 1 in our paper). As we will describe in the final version, SCAFFOLD is like Local SGD with6

variance-reduction for the inter-machine variance; this helps in the FL setting when some machines aren’t available in7

each round; but it does not in our setting. In addition, for the stepsizes analyzed in their theorems (specifically, very8

small ηl), SCAFFOLD is actually little different MBSGD.9

We compare to the Khaled et al 2020 paper mentioned by Rev #2 as ref [9], under the name of an earlier version of that10

paper. We will update the citation (the relevant content is unchanged).11

Regarding the homogenous case (requested by Rev #3): the paper [22] studies the homogenous case in detail and12

includes most of the relevant references–we will add a comment directing to [22] as well as a brief mention of the13

references. Our focus here is the difference between the homogeneous and heterogeneous settings.14

Relationship to consensus optimization: As Rev #2 points out and as highlighted by our results, communication15

between the machines is often the bottleneck in heterogeneous optimization, and consequently, (Acc) MBSGD will16

often significantly outperform Local SGD.17

This may be intuitive in the context of consensus optimization, but it is our experience (eg based on papers on18

federated/local SGD, talks on distributed learning, and comments from other researchers) that this is far from clear to19

everyone working on distributed learning. E.g., following demonstration that Local SGD can be worse than MBSGD in20

the homogeneous case [22], a recurring sentiment is “well that’s just the homogeneous case, in the harder heterogeneous21

setting, you’ll see more of an advantage for Local SGD.” But we show (as Reviewer #2’s intuition correctly indicates)22

that this is backwards!23

For this reason, we feel there is significant value in understanding and highlighting the relationship between Local SGD,24

MBSGD, and other algorithms in the heterogeneous setting, and in carefully considering how the level of heterogeneity25

affects the comparison. It’s also important to test the limit of this intuition. E.g., we do show in Theorem 3 that in some26

heterogeneous regime, additional computation as in Local SGD DOES improve over MBSGD (this is not captured nor27

hinted by work we are aware of on consensus optimization).28

ζ̄: Indeed, eq (12) is a strong assumption and the tightest bound on ζ̄ may be large (or infinite). However, in cases where29

this is bounded and smaller than 1/R, our analysis shows that local SGD can outperform minibatch SGD, which we feel30

is useful information. As an example of where this could arise, consider the following: data is shuffled and randomly31

partitioned across the M machines and the local distributions are the empirical distribution over the local sample. These32

local distributions ARE heterogeneous, nevertheless, as long as there are enough samples on each machine and, for33

example, the loss is Lipschitz, ζ̄ will be bounded and small, and we can conclude that local SGD might be advantageous34

over MBSGD in finding the over empirical minimizer.35

σ∗ vs σ: As Rev #1 mentioned, we used σ∗ for the MBSGD analysis and sigma for the Accelerated MBSGD analysis.36

We agree that analyzing Acc MBSGD in terms of σ∗ is interesting and valuable, but the known analysis (due to Lan) is37

in terms of σ and quite delicate, and as also acknowledged by Lan, extending it to σ∗ is a significant challenge.38

Variance definitions: We thank Rev #2 for the suggestion that the variances in eq (6)/(7) be the average of the local39

distributions’ variances, this indeed gives stronger bounds and easily fits into our analysis.40

Quadratics: Rev #3 raises an interesting question about whether the Local SGD analysis can be improved in the special41

case of quadratic objectives. This is definitely possible in the homogeneous case, where Local SGD strictly dominates42

MBSGD in all regimes for quadratic objectives. In the heterogeneous case, the argument does not go through in the43

same way and in addition, the ζ∗ term in our lower bound for Local SGD comes from a “quadratic part” of the hard44

instance construction. Therefore, Local SGD won’t benefit significantly from the local objectives being quadratic, at45

least not in terms of the ζ∗ dependence.46


