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Abstract

We show that the matrix perspective function, which is jointly convex in the
Cartesian product of a standard Euclidean vector space and a conformal space
of symmetric matrices, has a proximity operator in an almost closed form. The
only implicit part is to solve a semismooth, univariate root finding problem. We
uncover the connection between our problem of study and the matrix nearness
problem. Through this connection, we propose a quadratically convergent Newton
algorithm for the root finding problem. Experiments verify that the evaluation of
the proximity operator requires at most 8 Newton steps, taking less than 5s for
2000 by 2000 matrices on a standard laptop. Using this routine as a building block,
we demonstrate the usefulness of the studied proximity operator in constrained
maximum likelihood estimation of Gaussian mean and covariance, peudolikelihood-
based graphical model selection, and a matrix variant of the scaled lasso problem.

1 Introduction

The main theme of this paper is the proximity operator of the matrix perspective function, defined as

φ(Ω,η) =

{
1
2η

TΩ†η, Ω � 0, η ∈ R(Ω),

∞, otherwise,

for η ∈ Rp, the p-dimensional Euclidean space, and Ω ∈ Sp, the vector space of p× p symmetric
matrices. Matrix Ω† is the Moore-Penrose pseudoinverse of Ω. The range of Ω is denoted byR(Ω).
Relation � refers to the Löwner partial order of matrices, i.e.,A � B means thatA−B is positive
semidefinite. Function φ is jointly convex in Ω and η. An easy way to see this is to note that

φ(Ω,η) = sup
w∈Rp

[
ηTw − 1

2
wTΩw

]
(1)

[22, p. 70]. The supremand is linear in (Ω,η); a supremum of linear functions is convex. We will
shortly see that φ is also closed (lower semicontinuous). The name “matrix perspective” comes from
the perspective of a function frequently encountered in convex analysis. The (closed) perspective
g : Rd ×R→ R ∪ {∞} of a closed convex function f : Rd → R ∪ {∞} is defined as the closure of
function g̃(t,x) = tf(t−1x) if t > 0, and∞ otherwise [9, 18].

The proximity operator of a convex function f : Rd → R ∪ {+∞} is uniquely defined and denoted

proxγf (x) = arg min
u∈Rd

[
f(u) +

1

2γ
‖u− x‖22

]
, γ > 0.

If we restrict Ω to be Ω = tIp where Ip is the identity matrix of order p, then φ̄(t,η) := φ(tIp,η)
becomes the conventional perspective of the squared Euclidean norm function 1

2‖ · ‖
2
2. In this special

case, a closed-form representation of the proximity operator of φ̄ has recently been found [10].
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1.1 Applications of the matrix perspective function and its proximity operator

The motivation for studying the function φ is its ubiquity in machine learning and statistics. We
provide three examples:

Gaussian joint likelihood estimation It is well-known that the negative log-likelihood of a p-
variate Gaussian mean-covariance pair (µ,Σ) given data {x1, . . . ,xN} is

˜̀(Σ,µ) = log det Σ + Tr(Σ−1S)− 2µ̄TΣ−1µ+ µTΣ−1µ,

up to scaling and additive constant, where µ̄ = 1
N

∑N
i=1 xi and S = 1

N

∑N
i=1 xix

T
i ; Tr(M) is the

trace of matrixM . If we change the variables to Ω = Σ−1 and η = Ωµ, then
˜̀(Σ,µ) = `(Ω,η) = − log det Ω + Tr(ΩS)− 2µ̄Tη + φ(Ω,η). (2)

Function ` is not coercive unless S is positive definite. Constraints encoding the prior knowledge can
be added to ensure existence (and/or uniqueness) of the solution. An example is upper bounds on the
variances: if y ∼ N (µ,Σ), then var [cTi y] ≤ 1 translates to cTi Ω−1ci = 2φ(Ω, ci) ≤ 1, which is
convex for given ci ∈ Rp, i = 1, . . . ,m.

Graphical model selection In Gaussian graphical models, the pseudolikelihoood [1] of the preci-
sion matrix Ω given data matrix Y = [y1, . . . ,yN ]T is

PL(Ω) =
N

2

p∑
i=1

logωii −
1

2

N∑
i=1

p∑
j=1

ω−1ii (

p∑
k=1

ωikyjk)2 =
N

2
log det ΩD −Nφ(KΩ) (3)

for Ω = (ωij) = Σ−1 and ΩD = diag(ω11, . . . , ωpp); K : Ω 7→ 1
N (IN ⊗ΩD,vec(ΩY T )) is a

linear map, where ⊗ is the Kronecker product and vec is the usual vectorization operator. Often a
sparsity-inducing penalty −λ

∑
i<j |ωij | is added to the pseudolikelihood and the sum is maximized.

Heteroskedastic scaled lasso The scaled lasso [32] minimizes

`(σ,β) =
1

2σ
‖y −Xβ‖22 +

σ

2
+ λ‖β‖1

for the linear model y = Xβ + ε, whereX ∈ RN×p is the data matrix, and ε ∼ N (0, σ2IN ).

This estimation problem can be extended to a heteroskedastic setting, i.e., ε ∼ N (0,Σ): for
Ω = Σ1/2, we minimize

`(Ω,β) = φ(Ω,Xβ − y) +
1

2
√
N
‖Ω‖F + λ‖β‖1. (4)

where ‖M‖F = [Tr(MTM)]1/2 is the Frobenius norm of matrixM .

Proximal algorithms All of these examples distill to the convex optimization problem:
minΩ∈Sp,η∈Rp f(Ω,η) + g(Ω,η) + h(K[Ω,η]), (5)

where f , g, and h are convex with f differentiable, and K is an affine map. Either g = φ or
h = φ, depending on the problem. Since φ (and possibly other components of (5)) is nonsmooth,
conventional solution methods are difficult to apply, especially when the problem size is large. In this
setting, proximal algorithms such as the primal-dual hybrid gradient (PDHG) method [6, 11, 12, 14,
20, 21, 34, 37] can be applied. In particular, following [12, 20, 34], we obtain

(Ωk+1,ηk+1) = proxτg

(
(Ωk,ηk)− τ

(
∇f(Ωk,ηk) +KT [Θk, ζk]

))
(Ω̃

k+1
, η̃k+1) = (2Ωk+1 −Ωk, 2ηk+1 − ηk)

(Θk+1, ζk+1) = proxσh∗

(
(Θk, ζk) + σK[Ω̃

k+1
, η̃k+1]

)
,

(6)

where KT is the adjoint of the linear part of K, and h∗(Θ, ζ) = supΩ,η〈(Ω,η), (Θ, ζ)〉 − h(Ω,η)
is the Fenchel conjugate of h. Convergence to a solution to problem (5) occurs if the step sizes (σ, τ)
satisfy τ(Lf/2 + σ‖KTK‖2) < 1. Here Lf is the Lipschitz modulus of the gradient of f , and ‖ · ‖2
is the operator 2-norm of the linear part of an affine operator. Moreau’s decomposition

(Ω,η) = proxσh∗(Ω,η) + σ proxσ−1h(σ−1(Ω,η)) (7)
confirms the practical importance of proxφ. Yet, the latter does not offer a closed form expression.
Hence, efficient computation of proxφ is a key to success of solving the above learning problems.
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1.2 Contributions

The contributions of this paper are 1) to show that evaluation of the proximity operator of φ reduces
to finding the unique root of a univariate function — given the root, the operator takes a closed
form; 2) to reveal the unexpected connection between the proximity operator and the matrix nearness
problem [16]; 3) to develop a quadratically convergent Newton algorithm for root-finding despite the
nonsmoothness of the function, made possible by exploiting the connection; 4) to investigate novel
applications of proximal optimization methods in learning problems.

2 Characterization of the proximity operator via matrix nearness

In this section we characterize the proximity operator of φ in terms of the root of a univariate function.
This is achieved by showing that the dual of the optimization problem involved with the operator is a
matrix nearness problem, which is to find, for an arbitrary matrix, a nearest (in terms of a matrix norm)
member of some given class of matrices [2, 4, 16, 17, 24, 28]. To our knowledge, the connection
between the matrix perspective function and the matrix nearness problem is first uncovered.

We frequently use the following fact and notation: any symmetric matrix M admits a unique
(and explicit) decomposition M = M+ −M− such that M+,M− � 0. If M has a spectral
decomposition Qdiag(ν1, . . . , νn)QT , then M+ = Q diag((ν1)+, . . . , (νn)+)QT , where ν+ =
max(0, ν). We also denote νi by λi(M), and let n = p+ 1 in the sequel.

Recall the variational formulation (1) of the matrix perspective function φ is a convex quadratic
programming (QP) problem. An equivalent formulation of this QP is

maxw∈Rp,V ∈Sp Tr(ΩV ) + ηTw
subject to V = − 1

2ww
T ,

which in turn is equivalent to the following SDP:

maxw∈Rp,V ∈Sp Tr(ΩV ) +wTη

subject to

[
−V 1√

2
w

1√
2
wT 1

]
� 0

since the relaxation V + 1
2ww

T � 0 of the equality constraint V + 1
2ww

T = 0 is tight [3, pp.
653–654]; the Schur complement shows that the above linear matrix inequality constraint is equivalent
to this nonconvex relaxation. Define a closed convex cone

C =

{
(V ,w) ∈ Sp × Rp : V +

1

2
wwT � 0

}
(8)

and note that Tr(ΩV ) +wTη is the standard inner product of the vector space Sp × Rp; we can
write Tr(ΩV ) +wTη = 〈(Ω,w), (V ,η)〉. Then we see that

φ(Ω,η) = σC(Ω,η),

where σS(x) = supy∈S〈x,y〉 is the support function of a set S. Elementary convex analysis results
tell us that σC is closed, convex, proper, and the Fenchel conjugate function of the 0/∞ indicator
function ιC(V ,w) of C. (Hence we have shown that φ is closed.) From Moreau’s decomposition
(7), if we denote the projection onto C by PC , then

proxγφ(X,y) = (X,y)− γPC(γ−1X, γ−1y), (9)
since the proximity operator of ιC is PC .

To compute PC(X,y), we need to solve the SDP

minV ,w
1
2‖w − y‖

2
2 + 1

2‖V −X‖
2
F

subject to

[
−V 1√

2
w

1√
2
wT 1

]
� 0.

(10)

If (V ?,w?) solves problem (10), then PC(X,y) = (V ?,w?). If (X,y) ∈ C, then clearly
(V ?,w?) = (X,y). Thus we focus on the case (X,y) 6∈ C. Construct block matrices

U =

[
−V 1√

2
w

1√
2
wT 1

]
, X̄ =

[
−X 1√

2
y

1√
2
yT 1

]
. (11)
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Set e = (0, . . . , 0, 1)T ∈ Rn. Then problem (10) is equivalent to

minU
1
2‖U − X̄‖

2
F

subject to U � 0, eT Ūe = 1.
(12)

This is a special case of the least-squares covariance matrix adjustment problem [4], an instance of
the matrix nearness problem. Following [4], we minimize the Lagrangian

L(U ,Λ, µ) =
1

2
‖U − X̄‖2F −Tr(ΛU) + µ(eTUe− 1), Λ � 0,

with respect to U , to obtain the dual objective function:

g̃(Λ, µ) = −1

2
‖Λ− µeeT + X̄‖2F +

1

2
‖X̄‖2F − µ, Λ � 0. (13)

If (Λ?, µ?) maximizes function (13), then the solution to primal (12) is recovered by the relation

U? = X̄ − µ?eeT + Λ?, (14)

since strong duality holds (U = I is strictly feasible).

The dual problem reduces to a univariate convex optimization problem in µ. By partially maximizing
the objective (13) over Λ � 0 with µ fixed, we see the minimizer is

Λ(µ) = arg min
Λ�0

1

2

∥∥Λ− (µeeT − X̄)
∥∥2
F

= (µeeT − X̄)+ = (X̄ − µeeT )−, (15)

since the (Euclidean) projection of a symmetric matrixM to the positive semidefinite cone isM+

[3, 22]. Thus, to solve the dual, it suffices to minimize the univariate convex function

g(µ) = µ+
1

2

∥∥Λ(µ)− (µeeT − X̄)
∥∥2
F

= µ+
1

2

∥∥(X̄ − µeeT )+
∥∥2
F

= µ+
1

2

n∑
i=1

[λi(X̄−µeeT )]2+.

(16)
This, in turn, reduces to finding a root of the derivative of g, since the second term is continuously
differentiable [23] and µ is unconstrained. The derivative, denoted by f hereafter, has a closed form:

f(µ) = 1− eT (X̄ − µeeT )+e, (17)

which is monotone nondecreasing since g is convex. From X̄+ = X̄ + X̄− and eT X̄e = 1, it
follows that eT X̄+e = 1 + eT X̄−e ≥ 1 hence f(0) ≤ 0. Since g(µ) ≥ µ, we see f(µ) > 0 for
sufficiently large µ and a root µ? of f exists. Further, as µ? minimizes g, we have 1

2‖X̄+‖2F =

g(0) ≥ g(µ?) ≥ µ? and µ? ∈ [0, ‖X̄‖2F /2].

The remaining dual solution is Λ? = Λ(µ?) = (X̄ − µ?eeT )−. From this, relation (14), and
construction (11), the sought projection PC(X,y) = (V ?,w?) is evaluated. From the Moreau
decomposition it is clear that proxφ(X,y) = (X − V ?,y −w?). In fact,

Λ? = U? − (X̄ − µ?eeT ) =

[
X − V ? − 1√

2
(y −w?)

1√
2
(y −w?)T µ?

]
.

Thus proxφ(X,y) can be directly obtained from Λ?. Furthermore, µ? is related with Λ? by

µ? = eTΛ?e.

The findings so far are summarized as the following theorem.
Theorem 1. Suppose (Ω?,η?) = proxφ(X,y). Construct a block matrix X̄ ∈ Sn as in (11). If
µ? is a nonnegative root, lying in [0, ‖X̄‖2F /2], of the univariate, monotone nondecreasing function
f(µ) in (17), then for the positive semidefinite matrix

Λ? = (X̄ − µ?eeT )− =

[
Λ?

11 λ?12
λ?T12 λ?22

]
, Λ?

11 ∈ Sp,

we have Ω? = Λ?
11 and η? = −

√
2λ?12. Furthermore, there holds µ? = λ?22.

Remark 1. In fact the root µ? of f is unique. This is proved in Theorem 2 in the next section, since
showing the uniqueness requires further analysis of the function f .
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3 Quadratically convergent Newton algorithm

Utilizing the connection to the matrix nearness problem established in the previous section, in this
section we develop a Newton algorithm for finding the unique root of the function f in (17) and show
that it converges quadratically. While bisection will converge linearly, since the proximity operator,
found by a closed form calculation from the root, is evaluated iteratively in proximal algorithms
such as PDHG (6), a faster and more accurate root-finding method is desirable. Unfortunately the
function f is not differentiable everywhere [4]. In most situations, Newton’s algorithm would not be
applicable. Nevertheless, it can be shown that the function f is strongly semismooth, from which a
quadratically convergent Newton algorithm can be devised. A similar approach can be found for the
nearest correlation matrix problem, another instance of the matrix nearness problem [2, 28].

We begin with relevant definitions.
Definition 1 (Clarke’s generalized Jacobian [8]). For a function F : Rm → Rl that is locally
Lipschitz around x ∈ Rm, Clarke’s generalized Jacobian is

∂F (x) = conv{lim
k
∇F (xk) : xk → x, xk ∈ DF (x)}, DF (x) = {y : F is differentiable at y},

where conv denotes the convex hull operation and∇F (y) denotes the Jacobian of F at y.

If F is real-valued and convex, then the Clarke generalized Jacobian reduces to the usual convex
subdifferential. The set ∂F (x) is compact and the set-valued map ∂F is upper semicontinuous: if
xk → x and yk → y for yk ∈ ∂F (xk), then y ∈ ∂F (x).
Definition 2 (semismoothness [28, 29]). Function F : Rm → Rl is semismooth at x ∈ Rm if
it is locally Lipschitz, directionally differentiable at x, and for any V ∈ ∂F (x + h), we have
F (x+ h)− F (x)− V h = o(‖h‖). A semismooth function F is strongly semismooth at x if it is
semismooth at x and for any V ∈ ∂F (x+ h), we have F (x+ h)− F (x)− V h = O(‖h‖2).

If we let φ(x) = x+ for x ∈ R and φ�(X) = P diag(φ(λ1), . . . , φ(λn))P T = X+ for X =

P diag(λ1, . . . , λn)P T ∈ Sn where P satisfies P TP = PP T = I , then it is clear from equation
(17) that f(µ) = 1− eTφ�(C(µ))e, for C(µ) = X̄ − µeeT .

Function φ� is 1-Lipschitz and strongly semismooth everywhere on Sn [7, 31], from which it follows
that f is also 1-Lipschitz and strongly semismooth everywhere on R. A general result on the Netwon
methods for semismooth functions ensures that the Newton update µk+1 = µk − f(µk)/vk with
vk ∈ ∂f(µk) ⊂ R converges quadratically to a root µ? of f , provided that v 6= 0 for all v ∈ ∂f(µ?)
and the starting point µ0 is sufficiently close to µ? [28, Thm. 2.1]. Thus to establish locally quadratic
convergence, it suffices to show that any v ∈ ∂f(µ?) is nonzero. In fact we can say more, including
the uniqueness of the root:
Theorem 2. Function f(µ) of Theorem 1 has a unique root µ?. Each element v ∈ ∂f(µ?) is positive.

The proof of Theorem 2 is technical and lengthy, and is deferred to the Supplement.

In order to ensure global convergence, we consider Algorithm 1, which is similar in spirit to the
guarded Newton method considered by Boyd and Xiao [4, §3.4] for a smooth function.

Algorithm 1 Guarded Newton
Input: Starting value µ0 ∈ [0, ‖X̄‖2F /2]
Initial interval: (l, u)← (0, ‖X̄‖2F /2); index k ← 0
repeat

Select vk ∈ ∂f(µk)
if vk > 0 then

Pure Newton step: ∆µk ← −f(µk)/vk
else

Gradient step: ∆µk ← −f(µk)/(vk + |f(µk)|)
end if
Project onto guard interval: µk+1 ← P[l,u](µ+ ∆µk)
Update guard interval: u← µk+1 if f(µk+1) > 0; otherwise l← µk+1

k ← k + 1
until convergence
return µk+1
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Note, if ∆µk is replaced by (u+l)/2−µk, then Algorithm 1 reduces to bisection. Global convergence
of the Newton algorithm is established as follows.
Theorem 3. The sequence {µk} generated by Algorithm 1 converges to the unique root µ? of the
function f of Theorem 1. Convergence of {µk} is asymptotically quadratic.

Proof. For each k, sk = µk+1 − µk is a descent direction of the objective function g. Since g is
bounded below and µk is bounded within [0, ‖X̄‖2F /2], a standard result on the convergence of
algorithms involving descent steps and Lipschitzian gradients [35, 36] asserts that limk f(µk) = 0 =
f(µ?). (Recall f is the derivative of g.) Let zk = f(µk). Clearly limk zk = 0. From Theorem 2, for
any v ∈ ∂f(µ?) we have v > 0. Then Clarke’s inverse function theorem [8, Thm. 7.1.1] entails that
there is a Lipschitzian inverse function f−1 on some neighborhood of µ?. Thus for sufficiently large
k, we have µk = f−1(zk)→ f−1(0) = µ?.

Combining the global 1-Lipschitzness and monotonicity of f , and Definition 1, we see 0 ≤ vk ≤ 1 for
all k. Thus by the Bolzano-Weirstrauss Theorem, {vk} has a convergent subsequence {vkl}, whose
limit is a cluster point of {vk}. Conversely, for any cluster point v∗ of {vk}, there is a subsequence
{vkl} converging to v?. Then, since µkl → µ?, by the upper semicontinuity of the map ∂f , we have
vkl → v∗ ∈ ∂f(µ?). From Theorem 2, v∗ > 0. In particular, 0 < lim infk vk ∈ ∂f(µ?). Therefore,
for sufficiently large k, there exists γ > 0 such that vk ≥ γ. For such k, ∆µk = −f(µk)/vk and

|µk + ∆µk − µ?| = |µk + [(f(µk) + vk∆µk)− f(µk)]/vk − µ?|
≤ |µk − µ? − f(µk)/vk|+ |(f(µk) + vk∆µk)/vk|

≤ 1

γ
|(f(µk)− f(µ?))− vk(µk − µ?)|+ 0 = O(|µk − µ?|2).

The second inequality uses f(µ?) = 0 and the final equality is from the strong semismoothness of f .

Let µ̃k+1 = µk + ∆µk. For each k, we have l ≤ µ? ≤ u. For sufficiently large k, either
u = µk or l = µk. If u = µk, then f(µk) > 0 and µ̃k+1 = µk − f(µk)/vk < µk. There are
three possible orderings of µ̃k+1 with respect to l, u, and µ?. If l ≤ µ? ≤ µ̃k+1 ≤ µk = u or
l ≤ µ̃k+1 ≤ µ? ≤ µk = u, then µk+1 = µ̃k+1. Otherwise µ̃k+1 ≤ l ≤ µ? ≤ µk = u, yielding
µk+1 = l. In all cases, we obtain

|µk+1 − µ?| ≤ |µ̃k+1 − µ?| = |µk + ∆µk − µ?| ≤ O(|µk − µ?|2).

A parallel argument for the case l = µk results in the same conclusion.

Algorithm 1 needs a vk ∈ ∂f(µk). The following theorem, proved in the Supplement, presents a
closed form. For any λ = (λ1, . . . , λn), denote by φ[1](λ) the n× n symmetric matrix with entries

φ
[1]
ij (λ) =

{
φ(λi)+φ(λj)
|λi|+|λj | , λi 6= 0 or λj 6= 0,

0, λi = λj = 0.
(18)

Theorem 4. For a spectral decomposition of C(µ) = X̄ − µeeT , i.e., C(µ) =

P diag(λ1, . . . , λn)P T with P TP = PP T = I , set λ = (λ1, . . . , λn). Denote by ◦ element-
wise matrix multiplication. Then,

v = eTP (φ[1](λ) ◦ (P TeeTP ))P Te ∈ ∂f(µ).

Remark 2. In [2, 28], the constraint is that all diagonal entries of U in SDP (12) are 1. Rather
surprisingly, our simpler constraint makes the perturbation analysis of the spectral decomposition of
C(µ) more difficult (see Lemma A.2 and Sect. A.3 of the Supplement) than [28, Lemma 3.4].

Computational concerns Algorithm 1 requires a full spectral decomposition ofC(µ), which costs
around 10n3, for each iteration. Since C(µ) is a symmetric rank-1 perturbation of X̄ , precomputed
spectral decomposition of X̄ can be efficiently updated using the deflation technique [5, 13].

4 Empirical results

4.1 Performance of the Newton method

We begin this section with assessing the performance of the proposed Newton method (Algorithm 1)
for the proximity operator proxφ. Since the problem of computing this operator is SDP with dual
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(12), we compared Algorithm 1 with a commercial SDP solver MOSEK [26] as well as bisection.
The algorithm was implemented in the Julia programming language on a standard laptop (Macbook
Pro 2019, i5@2.4GHz, 16GB RAM), and MOSEK was invoked via its Julia interface Convex.jl
[33]. Results under several performance measures are reported in Table 1, averaged over 100
randomly sampled Gaussian input points external to the cone (8). (Within the parentheses are
standard deviations.) Runtime is assessed via number of iterations (“Iters”) as well as elapsed time in
seconds (“Secs”) until convergence. The “Obj” and “KKT” measures respectively refer to the value of
the objective function (16) and the absolute value of its derivative (17) at convergence; convergence
was declared when the KKT measure was < 10−8.

Our results clearly reveal the quadratic convergence behavior of Algorithm 1: it terminated within 8
iterations. Until the point that MOSEK failed to scale (p < 500), our Newton method was orders
of magnitude faster and more accurate (in terms of KKT) than the commercial solver. Although
bisection was also faster than MOSEK, it was slower and in general orders of magnitude less accurate
than Newton. A typical convergence plot is shown in Fig. 1. The speed persisted for larger ps: it took
less than 5 seconds to solve a problem of size 2000 × 2000.

Table 1: Average performance of the Newton method

p Method Iters Secs KKT Obj

10 MOSEK – 0.007020 (0.0009176) 8.599e-6 (8.273e-6) 3.9326 (1.659)
Bisection 27.30 (1.059) 0.0002300 (2.627e-5) 5.086e-9 (3.172e-9) 3.9326 (1.659)
Newton 4.900 (0.5676) 0.0001568 (4.514e-5) 9.719e-10 (2.018e-9) 3.9326 (1.659)

30 MOSEK – 0.1285 (0.08261) 8.512e-6 (9.167e-6) 16.262 (3.781)
Bisection 28.40 (0.6992) 0.001044 (4.624e-5) 4.015e-9 (3.040e-9) 16.262 (3.781)
Newton 5.900 (0.3162) 0.0005461 (3.596e-5) 1.884e-10 (5.957e-10) 16.262 (3.781)

50 MOSEK – 0.5566 (0.07094) 2.114e-6 (3.989e-5) 26.762 (5.537)
Bisection 28.70 (0.6749) 0.002824 (0.0003610) 5.678e-9 (2.732e-9) 26.762 (5.537)
Newton 6.000 (0.0000) 0.001192 (5.717e-5) 1.725-11 (2.919e-11) 26.762 (5.537)

100 MOSEK – 13.60 (3.9351) 3.071e-6 (2.955e-6) 60.299 (9.586)
Bisection 29.00 (1.563) 0.009690 (0.001674) 2.793e-9 (1.695e-9) 60.299 (9.586)
Newton 6.000 (0.0000) 0.006363 (0.006630) 2.574-9 (1.980e-9) 60.299 (9.586)

500 MOSEK – – – –
Bisection 29.10 (2.0790) 0.3001 (0.01540) 4.590-9 (3.138e-9) 319.86 (19.80)
Newton 7.000 (0.0000) 0.1166 (0.003669) 8.299-10 (3.912e-10) 319.86 (19.80)

1000 MOSEK – – – –
Bisection 30.20 (1.3166) 1.873 (0.09942) 4.240e-9 (2.810e-9) 661.19 (26.94)
Newton 8.000 (0.0000) 0.8073 (0.03513) 1.417-14 (5.679e-15) 661.19 (26.94)

2000 MOSEK – – – –
Bisection 29.50 (3.1002) 11.60 (1.048) 3.577e-9 (2.634e-9) 1356.36 (47.93)
Newton 8.000 (0.0000) 4.763 (0.03273) 3.621-11 (1.961e-11) 1356.36 (47.93)

4.2 Applications to proximal algorithms

We then applied operator proxφ to the PDHG algorithm (6) for solving the three learning problems
introduced in Section 1. The results are summarized in Table 2. Detailed derivation of the PDHG
iteration, setup, and convergence criteria for each problem appear in the Supplement.
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Figure 1: Convergence of semismooth Newton and bisection methods.
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Heteroskedastic scaled lasso. Problem (4) can be reformulated as a SDP. Hence MOSEK was
used as a benchmark. An N × p data matrixX was sampled from independent Gaussian. Response
y was corrupted by correlated noise with compound symmetry. The “Numvars” measure indicates
the number of scalar variables fed to proxφ (note Ω ∈ SN ). MOSEK failed to scale for N > 200.
For small n, PDHG was as accurate as MOSEK (“Relerr” measures the relative error of the PHDG
solution to the MOSEK solution in the Frobenius norm.) The five leading eigenvalues of the computed
solution Ω is given. As the sample size N grows the low-rank structure of the error covariance matrix
appears to be recovered. Study of statistical properties of model (4) is not the scope of this paper.

Gaussian joint likelihood estimation To the objective (2), unit variance constraints were imposed
on the first five diagonal components of Σ. This problem could not be solved with MOSEK. AnN×p
data matrixX was sampled from a zero-mean multivariate Gaussian with a compound symmetric
covariance matrix, from which sufficient statistics S and µ̄ were fed to PDHG. Constraint violation
was measured by the excess from 1 in the first five diagonal entries of estimated covariance matrix.
PDHG iterates did not converge after 50000 iterations for p ≥ 500 (objective value converged,
though), while constraint violations are relatively small given the difficulty of the problem due to its
size. For comparison, the largest of the first five diagonal entries of the sample covariance matrix
S − µ̄µ̄T is also provided.

Graphical model. The PDHG iteration for problem (3) (with an `1 penalty) entails a dual variable
of size Np×Np fed to proxφ (see Supplement). A small dimension p = 50 of precision matrix Ω
readily yields a 1500 × 1500 dimensional matrix variable (with N = 30). Despite this drawback,
PDHG is a rare method that minimizes the `1-penalized pseudolikelihood (3) globally with a conver-
gence guarantee. While there are many pseudolikelihood-based graphical model selection methods
[15, 19, 25, 27, 30], they either alter the objective or reparameterize it into a nonconvex problem
[19]. Among these, the symmetric lasso [15] employs the unaltered objective, hence was compared.
Clearly the symmetric lasso results in a suboptimal solution with larger objective values (“Obj-sym”)
and 7–8% of relative errors; “‘NZ” refers to the fraction of nonzero components in the estimated Ω.

Table 2: Applications to proximal algorithms

Scaled
lasso

N p Numvars Iters Obj-PDHG Obj-Mosek Relerr Leading eigevalues

50 20 1245 8001 3.41240 3.41240 0.0009726 (21.72, 6.299e-7, 3.335e-9, 7.991e-10)
100 20 4970 7513 2.65602 2.65602 0.001270 (23.48, 1.404e-5, 8.95e-7, 1.913e-7)
200 20 19920 11800 3.20913 3.20913 0.001666 (41.02, 4.015e-4, 5.093e-5, 4.530e-5)
300 20 44870 9188 3.61066 – – (59.46, 0.03216, 0.01126, 0.01021)
400 20 79820 15400 6.33631 – – (123.4, 0.05013, 0.04788, 0.03578)
500 20 124800 13270 5.12763 – – (112.8, 0.09574, 0.06423, 0.05875)

Gaussian
Joint
MLE

N p Numvars Iters Obj-PDHG Constraint violation Largestdiag

30 50 1275 4378 -55.25 (9.389e-6, 5.236e-5, 0, 0, 0) 1.217
60 100 5050 14510 -286.55 (1.583e-5, 0, 0, 0, 6.174e-6) 1.252

100 200 20100 42470 -3351.04 (4.075e-5, 0, 0, 0, 3.238e-5) 1.261
300 500 125200 50000 -7279.68 (0, 0, 0, 0.0002229, 0) 1.093
500 1000 500500 50000 -12671.03 (0.02444, 0, 0.002228, 0.003762, 0.007134) 1.120

Graphical
model

selection

N p Numvars Iters Obj-PDHG Obj-sym NZ-PDHG NZ-sym Relerr

10 10 4950 1255 -6.2803 -6.2510 0.2600 0.2600 0.0777
20 30 179700 1240 -18.8627 -18.7895 0.0600 0.0600 0.0868
30 50 1124250 1069 -33.9688 -33.8675 0.0256 0.0264 0.0793

5 Discussion

Given the significance of the multivariate Gaussian in machine learning and statistics, enlarging the
class of tractable estimation problems is important and useful for both communities, let alone other
problems discussed in this paper. Joint estimation of Gaussian natural parameters under constraints
has not received much attention, and it appears that a part of the reason is the lack of practical
optimization algorithms. Our contributions on the matrix perspective function enable proximal
methods to embrace previously intractable optimization problems arising from important learning
tasks. Further developments, e.g, acceleration and scale up of PDHG, are natural next steps.
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