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A Proofs

A.1 A key lemma

Proofs of both Theorems 2 and 4 are based on the following key lemma, Lemma A.1. Recall
that φ(x) = x+ for x ∈ R and φ�(X) = P diag(φ(λ1), . . . , φ(λn))P T = X+ for X =

P diag(λ1, . . . , λn)P T ∈ Sn where P satisfies P TP = PP T = I . For any λ = (λ1, . . . , λn),
φ[1](λ) is the n× n symmetric matrix with (i, j) entry

φ
[1]
ij (λ) =

{
φ(λi)+φ(λj)
|λi|+|λj | , λi 6= 0 or λj 6= 0,

0, λi = λj = 0.
(18)

Also recall that C(µ) = X̄ − µeeT so that f(µ) = g′(µ) = 1 − eTφ�(C(µ))e. Lemma A.1
provides a closed-form expression of the derivative of f(µ) when it exists, in terms of the matrix
function (18).
Lemma A.1. Function f is differentiable at µ if and only if e ∈ N (C(µ))⊥. In this case, the
derivative is

f ′(µ) = eTP (φ[1](λ) ◦ (P TeeTP ))P Te, (A.1)
for any λ = (λ1, . . . , λn)T and P satisfying C(µ) = P diag(λ1, . . . , λn)P T , P TP = PP T = I .

To prove this lemma, we begin by recalling the definition of directional derivatives.
Definition A.1 (Directional derivative). For a function F : Rm → Rl and x,h ∈ Rm, the directional
derivative of F atX along h is defined and denoted by

F ′(x;h) = lim
t↓0

F (x+ th)− F (x)

t

if the limit exists. The F is called directionally differentiable at x if F ′(x;h) exists for all h ∈ Rm.

If F is differentiable at x with Jacobian∇F (x) ∈ Rl×m, then F ′(x;h) = ∇F (x)h.

For index sets J,K ⊂ {1, . . . , n} and matrixM ∈ Sn, letMJK be the submatrix ofM constructed
from the rows in J and the columns in K. The following lemma can be deduced from Sun and Sun
[2002, Theorem 4.7]:
Lemma A.2. Function φ� is directionally differentiable at anyX ∈ Sn. Its directional derivative
alongH ∈ Sn is

(φ�)′(X;H) = P

[
φ
[1]
KK(λ) ◦ H̃KK φ

[1]
KJ(λ) ◦ H̃KJ

φ
[1]
JK(λ) ◦ H̃JK [H̃JJ ]+

]
P T

where X = P diag(λ1, . . . , λn)P T ∈ Sn with P satisfying P TP = PP T = I , K = {i ∈
{1, . . . , n} : λi 6= 0}, J = {i ∈ {1, . . . , n} : λi = 0}, and H̃ = P THP . Furthermore, φ� is
differentiable atX if and only ifX is nonsingular, i.e., J = ∅.
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Now we can prove the lemma:

Proof of Lemma A.1. Suppose f is differentiable at µ. Then ifC(µ) is nonsingular,N (C(µ)) = {0}
and e ∈ N (C(µ))⊥. If C(µ) is singular, then the two one-sided limits

lim
t↓0

f(µ+ t)− f(µ)

t
and lim

t↓0

f(µ− t)− f(µ)

−t
must coincide. The first limit is equal to

−eT
(

lim
t↓0

φ�(C(µ+ t))− φ�(C(µ))

t

)
e = −eT

(
lim
t↓0

φ�(C(µ)− teeT )− φ�(C(µ))

t

)
e

= −eT (φ�)′(C(µ);−eeT )e

= eTP

[
φ
[1]
KK(λ) ◦ (P TeeTP )KK φ

[1]
KJ(λ) ◦ (P TeeTP )KJ

φ
[1]
JK(λ) ◦ (P TeeTP )JK −[(P TeeTP )JJ ]+

]
P Te

by Lemma A.2, for a spectral decomposition of C(µ) = P diag(λ1, . . . , λn)P T satisfying the
conditions of the lemma. Likewise, the second limit equals

eT (φ�)′(C(µ); eeT )e = eTP

[
φ
[1]
KK(λ) ◦ (P TeeTP )KK φ

[1]
KJ(λ) ◦ (P TeeTP )KJ

φ
[1]
JK(λ) ◦ (P TeeTP )JK [(P TeeTP )JJ ]+

]
P Te.

Let P Te = [qK , qJ ]T = q where qK ∈ R|K| and qJ ∈ R|J|. Note J 6= ∅ since C(µ) is singular.
Then the two limits are equal if and only if qTJ [(qqT )JJ ]+qJ = 0. It is immediate to see that
(qqT )JJ = qJq

T
J � 0, hence qTJ [(qqT )JJ ]+qJ = ‖qJ‖4. This implies qJ = 0. Finally, observe

that qJ = P T
J e where the columns of P J span N (C(µ)). Thus the condition qJ = P T

J e = 0 is
equivalent to e ∈ N (C(µ))⊥.

Now suppose e ∈ N (C(µ))⊥. If C(µ) is nonsingular, then Lemma A.2 implies that f is differen-
tiable at µ. If C(µ) is singular, then P T

J e = 0 and the two one-sided limits in the above paragraph
coincide, i.e., f is differentiable at µ.

Equation (A.1) is a consequence of the coincidence of the one-sided limits, that the common limit
does not depend on the order of λ1, . . . , λn, and the definition of φ[1] in equation (18).

A.2 Proof of Theorem 2

For a solution µ? to the equation f(µ) = 0, define a collection of matrices related to the eigenvalues
λ? = (λ?1, . . . , λ

?
n)T of C(µ?):

M = {M = (mij) ∈ Sn : mij = φ[1](λ?) if λ?i 6= 0 or λ?j 6= 0; mij ∈ [0, 1] if λ?i = 0 = λ?j}.

Also define the set (Bouligand subdifferential)

∂Bf(µ?) = { lim
k→∞

f ′(µk) : µk → µ?, µk ∈ Df}

where Df denotes the set of points in which f is differentiable, so that ∂f(µ?) = conv ∂Bf(µ?).
The following lemma shows a representation of an element of this set in terms ofM:

Lemma A.3. Suppose a spectral decomposition of C(µ?) is P ? diag(λ?1, . . . , λ
?
n)P ?T with

P ?TP ? = P ?P ?T = I . Then, for any v ∈ ∂Bf(µ?), there existsM ∈M such that

v = eTP ?(M ◦ (P ?TeeTP ?))P ?Te.

Proof. By the definition of ∂Bf(µ?), there exists a sequence {µk} such that f is differentiable at
each µk, µk → µ?, and f ′(µk) → v as k → ∞. Obviously µk 6= µ for all k. Thus C(µk) =
X̄ − µkeeT = C(µ)− (µk − µ)eeT is a symmetric rank-1 perturbation of C(µ). Then, by Chen
et al. [2003, Lemma 3.3], Rellich and Berkowitz [1969, Thm. 1],C(µk) has a spectral decomposition
P k diag(λk,1, . . . , λk,n)P T

k such that P k → P ? as k → ∞, by passing to a subsequence of
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{µk} if necessary. Since λk,i = (P T
kC(µk)P k)ii and C(µ) is continuous in µ, it follows that

limk→∞ λk,i = λi as well, for i = 1, . . . , n.

By Lemma A.1,

f ′(µk) = eTP k(φ[1](λk) ◦ (P T
k ee

TP k))P T
k e.

Let
K = {i ∈ {1, . . . , n} : λ?i 6= 0}, J = {i ∈ {1, . . . , n} : λ?i = 0}

and δ = 1
2 mini∈K |λ?i | > 0. Then for all sufficiently large k, we have maxi=1,...,n |λk,i − λ?i | ≤ δ.

If i ∈ K or j ∈ K, then λk,i 6= 0 or λk,j 6= 0, and

φ
[1]
ij (λk) =

(λk,i)+ + (λk,j)+
|λk,i|+ |λk,j |

→
(λ?i )+ + (λ?j )+

|λ?i |+ |λ?j |
= φ

[1]
ij (λ?).

If i, j ∈ J , then both λk,i and λk,j converge to 0. Since φi,j(λk) ∈ [0, 1] in this case, passing to
a subsequence of {µk} if necessary, φi,j(λk) converges to a point mij ∈ [0, 1]. This shows that
φ[1](λk)→M ∈M.

Finally, by the continuity of matrix multiplications, we have

v = lim
k→∞

f ′(µk) = eTP ?(M ◦ (P ?TeeTP ?))P ?Te.

The next lemma provides a technical result useful for proving Theorem 2.

Lemma A.4. For P ? = (pij) and λ?1, . . . , λ
?
n in the statement of Lemma A.3, let K+ = {i ∈

{1, . . . , n} : λ?i > 0}. Then K+ 6= ∅ and ∑
i∈K+

p2ni > 0.

Proof. Denote the ith column of P by pi = (p1i, . . . , pni)
T . Then φ�(C(µ?)) = [C(µ?)]+ =∑

i∈K+
λ?ipip

T
i . From the optimality condition

1 = eTφ�(C(µ?))e =
∑
i∈K+

λ?i p
2
ni.

If K+ = ∅ then the rightmost hand side is zero, a contradiction. That K+ 6= ∅ and λ?i > 0 for all
i ∈ K+ succumbs to the fact

∑
i∈K+

p2ni > 0.

Now we are ready to prove the theorem.

Proof of Theorem 2. Let v ∈ ∂fB(µ?). Also let J , K, and K+ be as defined in the proof of Lemma
A.3 and the statement of Lemma A.4. Define K− = K \ K+. Then by Lemma A.3 there exists
M = (mij) ∈ Sn such that

mij =


1, if i ∈ K+, j ∈ K+ ∪ J, or i ∈ J, j ∈ K+,

0, if i ∈ J, j ∈ K−, or i ∈ K−, j ∈ J ∪K−,
τij =

λ?i
λ?i−λ?j

∈ (0, 1), if i ∈ K+, j ∈ K−, or i ∈ K−, j ∈ K+,

∈ [0, 1], if i, j ∈ J.

and
v = eTP ?[M ◦ (P ?TeeTP ?)]P ?Te
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Then,

v = Tr(eTP ?[M ◦ (P ?TeeTP ?)]P ?Te)

= Tr(P ?TeeTP [M ◦ (P ?TeeTP ?)])

= Tr(Q[M ◦Q]), whereQ = P ?TeeTP ? = (qij)

≥
∑
i∈K+

 ∑
j∈K+∪J

q2ij +
∑
j∈K−

τijq
2
ij

 (since mij ≥ 0)

≥
(

min
i∈K+,j∈K−

τij

) ∑
i∈K+

n∑
j=1

q2ij .

Since P ?Te = (pn1, . . . , pnn)T is the last row of P ?, we have qij = pnipnj and

∑
i∈K+

n∑
j=1

q2ij =
∑
i∈K+

n∑
j=1

p2nip
2
nj =

∑
i∈K+

p2ni

 n∑
j=1

p2nj

 > 0.

The quantity is the first pair of parentheses is positive due to Lemma A.4. The second quantity equals
to eTP ?P ?Te = eTe = 1. From this and τij > 0 for all i ∈ K+ and j ∈ K−, it follows that v > 0.

Since ∂Bf(µ?) is compact and all the elements of this set is positive, and convex combination of its
elements is also positve. It follows that every element of ∂f(µ?) = conv ∂Bf(µ?) is positive.

The uniqueness of solution then follows from Clarke’s inverse function theorem [Clarke, 1990, Thm.
7.1.1]; existence of solution is shown in Section 2 of the main text.

A.3 Proof of Theorem 4

The proof of Theorem 4 also requires Lemma A.1.

Proof of Theorem 4. If f is differentiable at µ, then ∂f(µ) = {f ′(µ)} and the result holds by Lemma
A.1. Otherwise, consider a sequence {µk} such that µk ↓ µ and f is differentiable at each µk. Such
a sequence exists since f is Lipschitz hence almost everywhere differentiable [Rockafellar and Wets,
2009, sec. 9J]. Obviously µk > µ for all k. Thus C(µk) = X̄ − µkeeT = C(µ)− (µk − µ)eeT

is a symmetric rank-1 perturbation of C(µ). Then, by Chen et al. [2003, Lemma 3.3], Rellich and
Berkowitz [1969, Thm. 1], C(µk) has a spectral decomposition P k diag(λk,1, . . . , λk,n)P T

k such
that P k → P as k →∞, by passing to a subsequence if necessary. Since λk,i = (P T

kC(µk)P k)ii
and C(µ) is continuous in µ, it follows that limk→∞ λk,i = λi as well, for i = 1, . . . , n. Moreover,
λk,i ≤ λi for all i [Bunch et al., 1978]. Thus if λi = 0 = λj , then λk,i, λk,j ↑ 0, which implies that
limk→∞ φ[1](λk) = φ[1](λ). Now since from Lemma A.1,

f ′(µk) = eTP k(φ[1](λk) ◦ (P T
k ee

TP k))P T
k e, λk = (λk,1, . . . , λk,n)T ,

it follows that limk→∞ f ′(µk) = v. From Definition 1, we see v ∈ ∂f(µ).

B Applications to proximal algorithms

B.1 Heteroskedastic scaled lasso

In the heteroskedastic scaled lasso we want to minimize

`(Ω,β) = φ(Ω,Xβ − y) +
1

2
√
N
‖Ω‖F + λ‖β‖1. (B.1)

If we define the affine map K : (Ω,β) 7→ (Ω,Xβ − y), then problem (B.1) has the form (5), where
f(Ω,β) ≡ 0, g(Ω,β) = 1

2
√
N
‖Ω‖F + λ‖β‖1, and h = φ. The adjoint KT of the linear part of K
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maps (Θ, ζ) ∈ Sp × Rp to (Θ,XT ζ). Thus the resulting PDHG iteration is

Ωk+1 =

(
1− τ/(2

√
N)

max[‖Y ‖F , τ/(2
√
N)]

)
Y , Y = Ωk − τΘk,

βk+1 = Sτλ

(
βk − τXT ζk

)
,

Ω̃
k+1

= 2Ωk+1 −Ωk,

β̃
k+1

= 2βk+1 − βk,

(Θk+1, ζk+1) = proxσφ∗

(
Θk + σΩ̃

k+1
, ζk + σ(Xβ̃

k+1
− y)

)
.

where Sτλ is the usual soft-thresholding operator: [Sτλ(x)]i = min(max(xi − τλ, 0), xi + τλ).

In order to determine the step sizes, note KTK : (Ω, β) 7→ (Ω,XTXβ −XTy). The norm of the
linear part of this affine operator equals max(‖XTX‖2, 1) = max(‖X‖22, 1) ≤ max(‖X‖2F , 1).

Setup for experiments For all combinations of (N, p) in Table 2, data matrix X ∈ RN×p were
generated from zero-mean independent Gaussian. Each xi was then scaled to have norm 1/

√
p, so

that ‖X‖F = 1. Response vector y was generated by setting y = Xβ + ε, where the first five
components of β were independently generated from N (0, 102) and the rest set to zero; noise vector
ε was generated from zero-mean n-variate Gaussian with covariance matrix of compound symmetry

Σ =


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

. . .
...

ρ ρ ρ . . . 1


with ρ = 0.5. The regularization parameter λ = 0.005. The PDHG iteration was initialized by
Ω0 = IN , β0 = 0, Θ0 = 0, and ζ0 = 0 . The step size parameters are τ = 0.99 and σ = 0.99.
Convergence was declared when the relative change of the primal variables (Ωk,βk) was less than
10−6 for p < 300 and 10−5 for p ≥ 300. The maximum number of iterations was set to 50000.

B.2 Gaussian joint likelihood estimation

Joint maximum likelihood estimation (MLE) of Gaussian natural parameters (Ω,η) under the
variance constraints

minimize `(Ω,η) = − log det Ω + Tr(ΩS)− 2µ̄Tη + φ(Ω,η) + ε
2‖Ω‖

2
F

subject to cTi Ω−1ci ≤ 1, i = 1, . . . ,m
(B.2)

(the ridge penalty ε
2‖Ω‖

2
F is added to ensure existence of the solution) has the form (5) if we define

f(Ω,η) = 0

g(Ω,η) = − log det Ω + Tr(ΩS)− 2µ̄Tη +
ε

2
‖Ω‖2F

h(Z0,Z1, · · · ,Zm,η) = φ(Z0,η) +

m∑
i=1

ιCi(Zi), Ci = {Ω ∈ Sp : cTi Ω−1ci ≤ 1},

and the linear map K : (Ω,η) 7→ (Ω,Ω, . . . ,Ω,η) ∈
∏m
i=0 Sp × Rp.
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Since the adjointKT ofK maps (Θ0,Θ1, . . . ,Θm, ζ) ∈
∏m
i=0 Sp×Rp to (

∑m
i=0 Θi, ζ), the PDHG

iteration for problem (B.2) entails

Ωk+1 = prox− τ
1+ετ log det(·)

(
1

1 + ετ
(Ωk − τ

m∑
i=0

Θk
i − τS)

)
,

ηk+1 = ηk − τζk + 2τ µ̄,

Ω̃
k+1

= 2Ωk+1 −Ωk,

η̃k+1 = 2ηk+1 − ηk,

(Θk+1
0 , ζk+1) = proxσφ∗

(
Θk

0 + σΩ̃
k+1

, ζk + ση̃k+1
)
,

Θk+1
i = proxσι∗Ci

(
Θk
i + σΩ̃

k+1
)
, i = 1, . . . ,m.

It is well-known that

prox−τ log det(·)(M) = Qdiag

µ1 +
√
µ2
1 + 4τ

2
, . . . ,

µp +
√
µ2
p + 4τ

2

QT

if the eigenvalue decomposition ofM ∈ Sp isQdiag(µ1, . . . , µp)Q
T .

It remains to compute proxσι∗Ci
. The following result shows it has a closed-form expression.

Proposition B.1. Let Sc,α = {Ω ∈ Sp : φ(Ω, c) ≤ α} where α > 0. Then Sc,α is closed and
convex. Furthermore, the projection of Z ∈ Sp onto Sc,α is

PSc,α(Z) =

(
Z − 1

2α
ccT

)
+

+
1

2α
ccT .

Therefore, from the Moreau decomposition (7), for i = 1, . . . ,m,

proxσι∗Ci
(Y ) = Y − σPSci,1/2

(σ−1Y ) = σ

(
1

σ
Y − cicTi

)
− σ

(
1

σ
Y − cicTi

)
+

= −σ
(
cic

T
i −

1

σ
Y

)
+

.

Finally, to determine the step sizes, noteKTK : (Ω,η) 7→ ((m+1)Ω,η). Hence ‖KTK‖2 = m+1.

Proof of Proposition B.1. Convexity and closedness of Sc,α follows from those of φ. The projection
operator is

PSc,α(Z) = arg min
Ω∈Sp

1

2
‖Z −Ω‖2F subject to φ(Ω, c) ≤ α

= arg min
Ω∈Sp

1

2
‖Z −Ω‖2F subject to

1

2
cTΩ†c ≤ α, c ∈ R(Ω)

= arg min
Ω∈Sp

1

2
‖Z −Ω‖2F subject to α− 1

2
cTΩ†c ≥ 0, c ∈ R(Ω)

= arg min
Ω∈Sp

1

2
‖Z −Ω‖2F subject to Ω− 1

2α
ccT � 0

= arg min
Ω∈Sp

1

2

∥∥∥∥Z − 1

2α
ccT −

(
Ω− 1

2α
ccT

)∥∥∥∥2
F

subject to Ω− 1

2α
ccT � 0

=

(
Z − 1

2α
ccT

)
+

+
1

2α
ccT .

The fourth equality is due to the Schur complements of[
Ω − 1√

2
c

− 1√
2
cT α

]
� 0.

The last equality is from the fact arg minX�0
1
2‖Z −X‖

2
F = Z+.
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Setup for experiments For all combinations of (N, p) in Table 2, data x1, . . . ,xN ∈ Rp were
generated from zero-mean multivariate Gaussian with covariance matrix of compound symmetry

Σ =


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

. . .
...

ρ ρ ρ . . . 1


with ρ = 0.3. The PDHG iteration used ε = 10/p2 and was initialized by

Ω0 = (S − µµT + 10−2Ip)
−1

η0 = Ω0µ̄

Θ0
i = Ω0, i = 0, 1, . . . ,m

ζ0 = η0.

The step size parameters are τ = 1 and σ = 1/(m+ 1). Convergence was declared when the relative
change of the primal variables (Ωk,ηk) was less than 10−5. The maximum number of iterations was
set to 50000.

B.3 Graphical model selection

Recall from equation (3) we want to minimize

− 1

N
PL(Ω) + λ|Ω|1 = −1

2

p∑
i=1

logωii + φ(KΩ) + λ
∑
i<j

|ωij |. (B.3)

This has the form (5) if we define f(Ω) ≡ 0, g(Ω) = − 1
2

∑p
i=1 logωii + λ

∑
i<j |ωij |, h = φ, and

the linear map K : Ω 7→ 1
N (IN ⊗ΩD,vec(ΩY T )). The adjoint of K is

KT : (M ,vec(Z)) 7→ 1

N

N∑
i=1

M ii,D +
1

2N
(ZY + Y TZT ),

for symmetric block matrixM = (M ij) ∈ SNp withM ij = MT
ji ∈ Rp×p, and Z ∈ Rp×N . Then

the PDHG iteration for problem (B.3) is

Ωk+1 = proxτg

(
Ωk − τ

N

(
N∑
i=1

Θk
ii,D +

1

2
ZkY +

1

2
Y T [Zk]T

))
Ω̃
k+1

= 2Ωk+1 −Ωk

(Θk+1,vec(Zk+1)) = proxσφ∗

(
Θk +

σ

N
(IN ⊗ Ω̃

k+1

D ),vec(Zk +
σ

N
Ω̃
k+1
Y T )

)
where Ωk, Ω̃

k ∈ Sp, Zk ∈ Rp×N , and Θk = (Θk
ij) ∈ SNp, with Θij = ΘT

ji ∈ Rp×p. Operator
proxτg has a closed form expression. ForW = (wij),

[proxτg(W )]ij =

{
1
2 (wii +

√
w2
ii + 2τ), i = j,

Sτλ/2(wij), i 6= j.

It is easy to see that KTK : Ω 7→ 1
NΩD + 1

2N2 (ΩY TY + Y TY Ω). Then vec( 1
NΩD +

1
2N2 [ΩY TY + ΩY TY ]) =

(
1
NA+ 1

2N2 (Y TY ⊗ Ip + Ip ⊗ Y TY )
)

vec(Ω) where A satis-
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fies vec(ΩD) = Avec(Ω). It follows thatATA = Ip2 and ‖A‖2 = 1. Therefore,

‖KTK‖2 =

∥∥∥∥ 1

N
A+

1

2N2
(Y TY ⊗ Ip + Ip ⊗ Y Y T )

∥∥∥∥
2

≤ 1

N
‖A‖2 +

1

2N2
‖Y TY ⊗ Ip‖2 +

1

2N2
‖Ip ⊗ Y TY ‖2

=
1

N
(1) +

1

2N2
λmax(Y TY ) +

1

2n2
λmax(Y TY )

=
1

N
+

1

N2
‖Y ‖22

≤ 1

N
+

1

N2
‖Y ‖2F ,

which determines the step size.

Setup for experiments For all combinations of (N, p) in Table 2, data y1, . . . ,yN ∈ Rp were
generated from zero-mean multivariate Gaussian with precision matrix

Ω = 10Ip + Ξ + ΞT ,

where Ξ is a p× p sparse random Gaussian matrix with 1 percent sparsity level. The regularization
parameter λ = 0.1. The PDHG iteration was initialized by

Ω0 = (S + 10−2Ip)
−1

Θ0
i = IN ⊗Ω0

D

Z0 = Ω0Y T .

The step size parameters are τ = 2 and σ = 1/(2LK) where LK = 1/N +‖Y ‖2F /N2. Convergence
was declared when the relative change of the primal variable Ωk was less than 10−5. The maximum
number of iterations was set to 50000. For the symmetric lasso used for comparison the implemen-
tation in the gconcord R package (https://cran.r-project.org/web/packages/gconcord/
index.html) was used with the same input.
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