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A Proofs

A.1 A key lemma

Proofs of both Theorems [2] and [4] are based on the following key lemma, Lemma [A.T] Recall
that ¢(z) = z, for z € R and ¢7(X) = Pdiag(¢(\1),...,6(\))PT = X for X =
Pdiag(\i,...,\,)PT € S" where P satisfies P'P = PPT = I. Forany A = (\1,...,\,),
#M(X) is the n x n symmetric matrix with (i, j) entry
sl () = {Mifﬂjj)’ A7 0or A #0, (M)
" 0, Ai =X =0.

Also recall that C(u) = X — pee” so that f(u) = ¢'(n) = 1 — €T (C(n))e. Lemma
provides a closed-form expression of the derivative of f(u) when it exists, in terms of the matrix

function (T8).
Lemma A.l. Function f is differentiable at 11 if and only if e € N (C(u))*. In this case, the
derivative is

f'(p) = e P(pM(A) o (PTee” P))PTe, (A1)
forany X = (1, ..., \)T and P satisfying C(n) = P diag(\y,...,\,) P, PTP=PPT =T

To prove this lemma, we begin by recalling the definition of directional derivatives.

Definition A.1 (Directional derivative). For a function F : R™ — Rl and z, h € R™, the directional
derivative of F' at X along h is defined and denoted by

F(x+th) — F(x)
t
if the limit exists. The F is called directionally differentiable at x if F'(x; h) exists for all h € R™.

F'(x:h) = li
(x; h) im

If F is differentiable at = with Jacobian VF(z) € RI*™, then F'(z; h) = VF(x)h.

For index sets J, K C {1,...,n} and matrix M € S", let M ;i be the submatrix of M constructed

from the rows in J and the columns in K. The following lemma can be deduced from |Sun and Sun
[2002, Theorem 4.7]:

Lemma A.2. Function ¢ is directionally differentiable at any X € S™. Its directional derivative
along H € S™ is
1 F 1 ;-
(67 (X;H) = P [f[g]f(’\) o Hix ¢i,(N o Hics| pr
7x(A) o Hyk [H ]+
where X = Pdiag(\, ..., \y)PT € S" with P satisfying PTP = PPT = I, K = {i ¢

{1,...,n}: N #0%, J={i € {1,...,n} : \y = 0}, and H = PTHP. Furthermore, ¢7 is
differentiable at X if and only if X is nonsingular, i.e., J = .
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Now we can prove the lemma:

Proof of Lemma Suppose f is differentiable at y. Then if C'(u) is nonsingular, N'(C(u)) = {0}
and e € N(C(u))*. If C(u) is singular, then the two one-sided limits

i f ) =) fe= ) — fe)
t10 t tl0 —t
must coincide. The first limit is equal to
T (hm ¢7(C(u+1) - ¢D(C(u))> o _of (hm
10 t

t}0 t
= —eT(¢") (C(n); —eeT)e

_orp |9V e (PTeel P ol (N o (Pee P pr,
gxk(A)o (Pl ee’ P);x —[(P"ee” P), ]+

by Lemma for a spectral decomposition of C(u) = P diag(\y, ..., )P satisfying the
conditions of the lemma. Likewise, the second limit equals

7,0y oo 1 |8 A) o (PTee" P ¢l (A) o (PTee” P)is| pr
e (¢ )(C(N)aee )6—6 P[¢9L(A)O(PT66TP)JK [(PTeeTP)JJh. Pe.

Let PTe = [qg,q;]T = q where qc € RI¥! and q; € RI’|. Note .J #  since C(p) is singular.
Then the two limits are equal if and only if g% [(gq”)s]+q; = 0. It is immediate to see that
(qg™) 77 = q,;4% = 0, hence q%[(qq”)ss)+q; = |lg,;||*. This implies g, = 0. Finally, observe
that g ; = P%e where the columns of P; span N'(C(y)). Thus the condition ¢; = PYe = 0 is
equivalent to e € N'(C (1))

Now suppose e € N (C(u))*. If C(p) is nonsingular, then Lemmaimplies that f is differen-

tiable at p. If C(p) is singular, then P?e = 0 and the two one-sided limits in the above paragraph
coincide, i.e., f is differentiable at .

Equation (A1) is a consequence of the coincidence of the one-sided limits, that the common limit
does not depend on the order of Ay, ..., \,, and the definition of ¢!!l in equation (TS). O

A.2 Proof of Theorem

For a solution p* to the equation f(u) = 0, define a collection of matrices related to the eigenvalues
X =1, )T of C(p):

M ={M = (my;) € S" :my; = M (N)If AT # 0or Xy # 0; my; € [0,1]if A = 0= N1}
Also define the set (Bouligand subdifferential)

Opf(p) = { lim f'(ur): m — p*s e € Dy}

where D denotes the set of points in which f is differentiable, so that O f(u*) = conv dp f(1*).
The following lemma shows a representation of an element of this set in terms of M:
Lemma A.3. Suppose a spectral decomposition of C(u*) is P*diag(X\%,..., \%)P*T with
P*T'p* = P*P*" = I. Then, for any v € Op f(u*), there exists M € M such that

v=el P*(M o (P* ee” P*))P*"e.

Proof. By the definition of O f(u*), there exists a sequence {u} such that f is differentiable at
each pu, pp, — p*, and f'(ur) — v as k — co. Obviously uy # g for all k. Thus C(ug) =
X — puree” = C(u) — (ux, — p)ee’ is a symmetric rank-1 perturbation of C'(11). Then, by (Chen
et al.|[2003, Lemma 3.3], Rellich and Berkowitz, [1969, Thm. 1], C (1) has a spectral decomposition

P diag(Ap 1, ..., )\k_,n)Pf such that P, — P* as k — oo, by passing to a subsequence of



{ux} if necessary. Since \y; = (P} C(uy)Py)i; and C(u) is continuous in s, it follows that
limg yoo Aki = Ajaswell, fori =1,...,n.

By Lemma[A-T]
() = " Pr(¢M (M) o (P{ee” Py)) Pe.

Let
K={ie{l,....,n}: A\ #0}, J={ie{l,...,n}: X\ =0}

and 6 = § min;ex [A}| > 0. Then for all sufficiently large k, we have max;—1,..n [Ae,; — Af| < 0.
Ifie Korje K,then A ; # 0or A ; # 0, and

(Akyi)g + (Akj)t . A+ + (A4
[ Akl + Ak g1 [AF]+ (A5

ol () = = oI (A").

If 4,5 € J, then both A ; and Ag ; converge to 0. Since ¢; j(Ax) € [0,1] in this case, passing to
a subsequence of {yy,} if necessary, ¢, ;(A;) converges to a point m;; € [0,1]. This shows that
M) = M e M.

Finally, by the continuity of matrix multiplications, we have

v= lim f'(u) = el P*(M o (P*Tee’ P*)) P e.
k—o0

The next lemma provides a technical result useful for proving Theorem 2]

Lemma A4. For P* = (p;;) and \},...,\}, in the statement of Lemma let Ky = {i €
{1,...,n} : \} > 0}. Then K # () and

Z Pri > 0.

i€K

Proof. Denote the ith column of P by p, = (p1,...,pni)". Then ¢2(C(u*)) = [C(p*)]4 =
D i K, A p,pl. From the optimality condition

L=e"¢"(Cut))e= Y Npp
€K

If K, = () then the rightmost hand side is zero, a contradiction. That K # () and A} > 0 for all
i € K succumbs to the fact 3, p2; > 0. O

Now we are ready to prove the theorem.

Proof of Theorem[2] Letv € 0fp(p*). Alsolet J, K, and K| be as defined in the proof of Lemma
and the statement of Lemma Define K_ = K \ K. Then by Lemma there exists
M = (m;;) € S™ such that

1, ifie Ky, je KyUJ orieJ je Ky,
0, ifieJ, je K_jorte K_,jeJUK_,

il = 7 = Mg; €(0,1), ifieK,, jeK_,orie K_, jeK,,
€ [0,1], ifi,jeJ.

and
v=el P*[M o (P*Tee’ P*)|P*"e



Then,
Tr(e? P*[M o (P*Tee’ P*)|P*e)

v =
= TI'(P*TEETP[M o (P*TeeTP*)])
= rI‘r(Q[M o Q])a Where Q = P*TeeTP* — (ql])
= Z Z qizj + Z Tz‘jquj (since m;; > 0)
€Ky \JEKLUJ JEK_
n
> (i, ) XSl
€K, jJEK =
Since P*"e = (pu1,...,pan)" is the last row of P*, we have gi; = pripn; and
n n n
Do D=0 o= | X v | | 2o | >0
€Ky j=1 icK, j=1 iEK. =

The quantity is the first pair of parentheses is positive due to Lemma[A.4] The second quantity equals
toe” P*P*"e = eTe = 1. From thisand 7;; > O forall i € K, and j € K_, it follows that v > 0.

Since Op f (1*) is compact and all the elements of this set is positive, and convex combination of its
elements is also positve. It follows that every element of O f (u*) = conv dp f (u*) is positive.

The uniqueness of solution then follows from Clarke’s inverse function theorem [Clarke} 1990, Thm.
7.1.1]; existence of solution is shown in Section 2] of the main text. O

A.3 Proof of Theoremd

The proof of Theorem [] also requires Lemmal[A.T]

Proof of Theoremd] 1f f is differentiable at p, then 0 f () = {f’(u)} and the result holds by Lemma
Otherwise, consider a sequence {} such that puy, | p and f is differentiable at each . Such
a sequence exists since f is Lipschitz hence almost everywhere differentiable [Rockafellar and Wets|
2009, sec. 9J]. Obviously py > p for all k. Thus C(uy) = X — puree” = C(u) — (up — p)ee”
is a symmetric rank-1 perturbation of C'(x). Then, by (Chen et al.[[2003, Lemma 3.3], Rellich and
Berkowitz|[[1969, Thm. 1], C(uy) has a spectral decomposition Py, diag(Ag 1, - - -, )\k,n)Pf such
that Py, — P as k — oo, by passing to a subsequence if necessary. Since A, ; = (P;;FC(uk)Pk)ii
and C(p) is continuous in g, it follows that limy_,oo Ax; = A; as well, for i = 1,. .., n. Moreover,
Ak, < A; for all ¢ [Bunch et al., [1978]]. Thus if A\; = 0 = A;, then Ay ;, Ai ; T 0, which implies that
limy 0 A1 (A1) = @I (X). Now since from LemmalA. 1}

() = e"Pr(eM (A) o (Pree” Pr))PTe, A= My )T,

it follows that limy,_, f’(p) = v. From Definition[I] we see v € f (u). O

B Applications to proximal algorithms

B.1 Heteroskedastic scaled lasso

In the heteroskedastic scaled lasso we want to minimize

(R, 8) = o(2, XB —y) + 12| F + A8 (B.1)

1
W
If we define the affine map K : (€2, 8) — (€2, X8 — y), then problem has the form (3]), where
f(Q,8) =0,9(Q,8) = ﬁHQ”F + |81, and h = ¢. The adjoint K of the linear part of K
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maps (©,¢) € SP x R? to (@, X' ¢). Thus the resulting PDHG iteration is

9 Lax T N T/(Q\/N) Y, Y= QF _ 7_@k7
max(||Y||r, 7/(2VN)]
B =55 (B - 7X7¢H)
Q’H'l — 9Qk+l _
k

~ k41
g =28 - gk,

~ ~k
(®k+1,ck+1) — prox,,. (@’f i Jﬂk+1’ Ck +o(XB +1 y)) '

where S, is the usual soft-thresholding operator: [S;x(x)]; = min(max(z; — 7A,0), z; + 7).

In order to determine the step sizes, note KK : (€2, 3) — (2, X7 X3 — X”y). The norm of the
linear part of this affine operator equals max(|| X X |2, 1) = max(||X||3,1) < max(]| X ||, 1).

Setup for experiments For all combinations of (V, p) in Table [2| data matrix X € RV *? were
generated from zero-mean independent Gaussian. Each a; was then scaled to have norm 1/,/p, so
that || X ||z = 1. Response vector y was generated by setting y = X3 + €, where the first five
components of 3 were independently generated from N (0, 10?) and the rest set to zero; noise vector
€ was generated from zero-mean n-variate Gaussian with covariance matrix of compound symmetry

1 p p ... p
p 1 p ... p
Y= . .
p p p ... 1

with p = 0.5. The regularization parameter A = 0.005. The PDHG iteration was initialized by
Q° = Iy, ,80 =0, e° = 0, and CO = 0. The step size parameters are 7 = 0.99 and o = 0.99.
Convergence was declared when the relative change of the primal variables (Qk7 ,E)'k) was less than
10~ for p < 300 and 10~ for p > 300. The maximum number of iterations was set to 50000.

B.2 Gaussian joint likelihood estimation

Joint maximum likelihood estimation (MLE) of Gaussian natural parameters (£2,7) under the
variance constraints

minimize ((2,m) = —logdet Q + Tr(Q2S) — 2" n + ¢(Q, 1) + 5(|Q%

. _ . B.2
subjectto ¢/ Q7 'e; <1, i=1,...,m (B.2)

(the ridge penalty §||€2||7 is added to ensure existence of the solution) has the form (@) if we define

F(92,m) =0
9(.m) = —log det 2 + Tr(25) — 2" + 7|13

WZo,Zv,++  Zmom) = $(Zo,m) + > _10,(Z:), Ci={QeS':c/Q 'e; <1},

i=1

and the linear map K : (2,n) — (2,9Q,...,Q,n) € [[/~,SP x RP.



Since the adjoint KT of K maps (©9, ©1,...,0,,,¢) € [[I~,S? xRP to (31", ©;, ), the PDHG
iteration for problem entails

k+1 _ k
QT = prox_ 2 log det(:) (1 n 67_ -7 Z e, —715 )
n*t =n* —7¢" + 27,
Q' =20t _ ot
FEHL — opktl _ gk,

(@’8“,4””1) = Pprox, . (@’5 + O‘Q ,C +o Nk“) ,
@f""l:prox s (@k Nk_H), i1=1,....,m.

It is well-known that

oL

2
p1 4/ pd + 4T fp + By T AT Q"

ProX_ . joqdet() (M) = Q diag 5 ey 5
if the eigenvalue decomposition of M € SP is Q diag (1, . - ., ,up)QT.
It remains to compute prox,,. . The following result shows it has a closed-form expression.

Proposition B.1. Let S. ., = {Q € SP: ¢p(Q,c) < a} where a > 0. Then S, is closed and
convex. Furthermore, the projection of Z € SP onto Se o is

1 1
Ps, (Z) = (Z - 2accT> + %CCT
Therefore, from the Moreau decomposition (7), fori = 1,...,m,

1 1
prox,,. (Y)=Y —oPs,,,(0 o 'Y)=0 (Y - ciciT> -0 (Y - ciciT>
C,; g g +

A Y)+.

Finally, to determine the step sizes, note KT K : (Q2,n) — ((m+1)$2,n). Hence |[KTK|j2 = m+1.

Proof of Proposition Convexity and closedness of S, o, follows from those of ¢. The projection
operator is

1
Ps. . (Z) = argmin = || Z — Q|3 subject to (€2, ¢) < a
' Qesr 2
1 1
= argmin - || Z — Q|| subject to —c'Qfc < a, c € R(Q)
Qesr 2 2
1 1
= argmin - || Z — Q|2 subjectto a — ' Qe > 0, c € R(Q)
Qesr 2 2
1 . 1 .
= argmin —||Z — Q||% subjectto 2 — —cc’ > 0
Qese 2 2a
2
1 1 1 1
—argmin = || Z — —ccT Q- —cct subject to @ — —cc? =0
Qesr 2 2a 2a o 2a
=(Z - iccT + iccT
B 200 200
The fourth equality is due to the Schur complements of
1
« \/56] =0
e G |20
V2
The last equality is from the fact arg minx, ¢ HZ-X|3=2,. O



Setup for experiments For all combinations of (V,p) in Table |2} data x1,...,zx € RP were
generated from zero-mean multivariate Gaussian with covariance matrix of compound symmetry

L p p p
p 1 p p
X=1. . .
pp P 1

with p = 0.3. The PDHG iteration used ¢ = 10/p? and was initialized by

Q0= (S —pp” +10721,)7"

n’ =%
e)=0% i=0,1,....,m
¢O=no.

The step size parameters are 7 = 1 and o = 1/(m + 1). Convergence was declared when the relative

change of the primal variables (Qk, n*) was less than 10~°. The maximum number of iterations was
set to 50000.

B.3 Graphical model selection

Recall from equation (3) we want to minimize

1 1<
~ N PLQ) + A2 = —3 > logwii + (KQ) + A |wijl. (B.3)

i=1 i<j

2
the linear map K : @ — +(I'y ® Qp, vec(QYT)). The adjoint of K is

This has the form (@) if we define f(2) = 0, g(2) = =4 >°7_ logwii + A, _; [wijl, h = ¢, and

N
1 1
T . B - T T
KT : (M, vec(Z)) > — 21 Mip+ 55(2Y +Y"27),

for symmetric block matrix M = (M ;) € SVP with M;; = M;‘Fl € RP*P, and Z € RP*V . Then
the PDHG iteration for problem (B.3) is

N
1 1
QFft = prox,, (Qk - % <Z QZ,D + §ZkY + 2YT[Zk]T>>
i=1
Q" =0kt _qF
(O vec(Z")) = Prox, - (@k +Z

N (In® QIS_I), vec(Z* + gQk—HYT))

N

where Qk,ﬁk e sp, Z" € RP*N, and ©F = (@fj) € SMP, with ©;; = GjTi € RPXP_ Operator
prox,, has a closed form expression. For W' = (w;;),

L(wi + JwZ +271), i=]
prox,. ,(W));; = {2 “ Y
| o (W) Seaj2(wij), i #

It is easy to see that KTK : @ — £Qp + 7-(QY"Y + Y YQ). Then vec(£Qp +

_LoyTYy + QY"Y)) = (%A + LYY oI, +1,® YTY)) vec(§2) where A satis-

2N2



fies vec(2p) = A vec(R2). It follows that A” A = I > and || A||» = 1. Therefore,

1 1
IKTK|2 = HNA + 53 Y'vyeoI,+1,2YY")
2
1 1 T 1 T
< ﬁHA||2 + WHY Y @ Ipl2 + WHIP QY Y|
1 1 T 1 T
== N(l) + W)\max(y Y) + Tnz)\maX(Y Y)
1 1
=N WHYH%
1 1

which determines the step size.

Setup for experiments For all combinations of (N, p) in Table [2} data y,,...,yy € RP were
generated from zero-mean multivariate Gaussian with precision matrix

Q=10I,+E+E",

where = is a p X p sparse random Gaussian matrix with 1 percent sparsity level. The regularization
parameter A = 0.1. The PDHG iteration was initialized by

Q' =(S+107%1,)"
0 =1Iyo0%
z°=0v".
The step size parameters are 7 = 2 and o = 1/(2L ) where L = 1/N + ||Y||%/N2. Convergence

was declared when the relative change of the primal variable QF was less than 105, The maximum
number of iterations was set to 50000. For the symmetric lasso used for comparison the implemen-
tation in the gconcord R package (https://cran.r-project.org/web/packages/gconcord/
index.html) was used with the same input.
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