
Author Response: From Boltzmann Machines to Neural Networks and Back Again We thank the reviewers for1

their input. First, we answer a few high-level questions asked by the reviewers:2

Relation to practical algorithms for training RBMs We view this as a first step in importing tools from graphical3

models to combine with neural net methods. These new tools should be useful to improve over classic heuristics like4

contrastive divergence training, which have sometimes disappointing performance in practice.5

Experimental results The purpose of our experiment was to compare our method with others with similar complexity6

and limitations, like classical CD training of RBMs, to which this method compares reasonably well. For reasons of7

comparison, this model has some obvious handicaps, e.g. it only uses binary units so it has to view grey as a probability8

and thus cannot really understand textures, it has no convolutional structure, etc; this is a proof-of-concept experiment.9

Motivation for Supervised RBM Learning As discussed in the related work section, the distributional assumptions10

in the literature under which we have good theoretical neural net learning results are unfortunately very narrow. Many11

results either depend poorly on key parameters, or rely very strongly on Gaussianity of the input which is unlikely to12

hold in practice. In comparison, assuming data comes from some natural family of graphical models may be a more13

reasonable assumption, since a lot of data in practice is clearly structured and energy-based methods have seen a lot of14

success in modern image processing and machine learning. Our approach can be viewed as theoretically understanding15

how learning about the input distribution could play a role in supervised learning tasks.16

Context for Theorem 4 (Structure Learning of RBMs) There is a huge literature on structure learning in the context17

of graphical models with no latent variables (e.g. references 3-8 and many more). However, for latent variable models18

like RBMs there is much less theory. For RBMs, the main previous works here are the cited results of Bresler, Koehler,19

and Moitra and the work of Goel; these results both require ferromagneticity (non-negative interactions). By viewing20

the distribution on observed variables as an MRF, it is possible to use general MRF-learning results (as in [5] and [8]),21

but the runtime of these methods is fairly poor: it is nO(d) where d is the max degree of a hidden unit.22

Reviewer 4 asked for more context as to when the `1-norm is smaller than the degree. Specifically in the context of23

RBMs, Hinton’s guide [1] says on page 9 “Care should be taken to ensure that the initial weight values do not allow24

typical visible vectors to drive the hidden unit probabilities very close to 1 or 0 as this significantly slows the learning”25

and suggests very small edge weights for initialization – standard deviation 0.01 in his example. In the context of a26

d-sparse RBM, as d→∞ we need the edge weights to scale down if we want the typical input to a hidden unit to be27

size O(1) (e.g. if the visible units behave like they are independent, we need the edges to scale like 1/
√
d). So the `128

norm will be much smaller than the degree.29

Why are the complexity parameters in Definition 2 natural? `1-norm is perhaps the most popular complexity30

measure in the literature on learning graphical models (see e.g. [8]) because `1 regularization encourages sparsity, and31

sparse graphical models allow for drawing more powerful inferences (about conditional independence, etc.) than dense32

ones do. Mathematically, it’s also the most natural because the spins X and H live in the `∞ unit ball and `1 is the33

dual norm. Finally, `1-norm bounds are the main assumption studied in the sampling literature (see lines 209-220 and34

Remark 4).35

Next, we answer the remaining technical questions asked by the reviewers:36

• Reviewer 4 asked for justifications of the following statements about RBMs: 1) they can represent arbitrary37

distributions (line 191), and 2) their parameters are not identifiable (i.e. impossible to estimate even with an38

infinite amount of data). Note that these are both statements about the observed distribution X , since H is39

unobserved; i.e. the joint distribution of (X,H) is not arbitrary (it’s an Ising model), however the marginal on40

X is arbitrary as long as we have enough hidden units. In prior work, [18] showed that any order r Markov41

Random Field can be represented as the distribution on the observed units of an RBM with hidden units of42

degree r. By the Hammersley-Clifford Theorem, every distribution p(x) on {±1}n with p(x) 6= 0 for all x43

is an order r MRF for some r ≤ n, so such a distribution can be exactly represented as the marginal over44

observable units in the RBM. They also gave several examples of RBMs which have different parameters45

but represent the same distribution (e.g. by having hidden units which cancel out each others effects on the46

observed units), which proves non-identifiability.47

• Reviewer 1 asked for references for the statement on line 57, that learning full-observed Ising models is well48

understood. Some recent references with results for learning Ising models under weak assumptions are [5-8].49

• Answers to the other questions asked by reviewer 1: on lines 209-220, here d stands for the maximum degree50

of nodes in the RBM. In Theorem 2, ` is indeed the logistic loss. In Examples 1 and 2, η indeed represents the51

maximum η such that all 2-hop neighbors are η-nondegenerate.52

• Reviewer 3 questions: On line 129, the feature map is all monomials of degree up to D, d is a typo. Line 100:53

nV here is the number of visible units, nH is the number of hidden units.54


