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Abstract

In this paper, we study stochastic structured bandits for minimizing regret. The
fact that the popular optimistic algorithms do not achieve the asymptotic instance-
dependent regret optimality (asymptotic optimality for short) has recently allured
researchers. On the other hand, it is known that one can achieve a bounded regret
(i.e., does not grow indefinitely with n) in certain instances. Unfortunately, existing
asymptotically optimal algorithms rely on forced sampling that introduces an ω(1)
term w.r.t. the time horizon n in their regret, failing to adapt to the “easiness” of
the instance. In this paper, we focus on the finite hypothesis class and ask if one
can achieve the asymptotic optimality while enjoying bounded regret whenever
possible. We provide a positive answer by introducing a new algorithm called
CRush Optimism with Pessimism (CROP) that eliminates optimistic hypotheses by
pulling the informative arms indicated by a pessimistic hypothesis. Our finite-time
analysis shows that CROP (i) achieves a constant-factor asymptotic optimality
and, thanks to the forced-exploration-free design, (ii) adapts to bounded regret,
and (iii) its regret bound scales not with the number of arms K but with an
effective number of armsKψ that we introduce. We also discuss a problem class
where CROP can be exponentially better than existing algorithms in nonasymptotic
regimes. Finally, we observe that even a clairvoyant oracle who plays according to
the asymptotically optimal arm pull scheme may suffer a linear worst-case regret,
indicating that it may not be the end of optimism.

1 Introduction
We consider the stochastic structured multi-armed bandit problem with a fixed arm set. In this problem,
we are given a known structure that encodes how mean rewards of the arms are inter-dependent.
Specifically, the learner is given a space of arms A and a space of hypotheses F where each f ∈ F

maps each arm a ∈ A to its mean reward f(a). Define [n] ∶= {1, . . . , n}. At each time step t ∈ [n],
the learner chooses an arm at ∈ A and observes a (stochastic) noisy version of its mean reward f∗(a)
where f∗ ∈ F is the ground truth hypothesis determined before the game starts and not known to her.
After n time steps, the learner’s performance is evaluated by her cumulative expected (pseudo-)regret:

ERegn = E
⎡
⎢
⎢
⎢
⎣
n ⋅max

a∈A
f∗(a) −

n

∑
t=1
f∗(at)

⎤
⎥
⎥
⎥
⎦
. (1)

Minimizing this regret poses awell-known challenge in balancing between exploration and exploitation;
we refer to Lattimore and Szepesvári [21] for the backgrounds on bandits. We define our problem
precisely in Section 2.

Linear bandits, a special case of structured bandits, have gained popularity over the last decade with
exciting applications (e.g., news recommendation) [6, 11, 1, 22, 9]. While these algorithms use the
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celebrated optimistic approaches to obtain near-optimal worst-case regret bounds (i.e., Õ(
√
dn)

where Õ hides logarithmic factors and d is the dimensionality of the model), Lattimore and Szepesvári
[20] have pointed out that their instance-dependent regret is often far from achieving the asymptotic
instance-dependent optimality (hereafter, asymptotic optimality). This observation has spurred a
flurry of research activities in asymptotically optimal algorithms for structured bandits and beyond,
including OSSB [10], OAM [16] for linear bandits, and DEL [23] for reinforcement learning, although
structured bandits and their optimality have been studied earlier in more general settings [3, 14].

The asymptotically optimal regret in structured bandits is of order c(f) ⋅ ln(n) for instance f ∈ F

where c(f) is characterized by the optimization problem in (2). Its solution γ ∈ [0,∞)K represents
the optimal allocation of the arm pulls over A, and some arms may receive zero arm pulls; we call
those with nonzero arm pulls the informative arms. On the other hand, it is well-known that structured
bandits can admit bounded regret [8, 19, 5, 25, 15, 27]; i.e., lim supn→∞ERegn < ∞. This is because
the hypothesis space, which encodes the side information or constraints, can contain a hypothesis f
whose best arm alone is informative enough so that exploration is not needed, asymptotically.

However, existing asymptotically optimal strategies such as OSSB [10] cannot achieve bounded regret
by design. The closest one we know is OAM [16] that can have a sub-logarithmic regret bound.
The main culprit is their forced sampling, a widely-used mechanism for asymptotic optimality in
structured bandits [10, 16]. Forced sampling, though details vary, ensures that we pull each arm
proportional to an increasing but unbounded function of the time horizon n, which necessarily forces
a non-finite regret. Furthermore, they tend to introduce the dependence on the number of arms K
in the regret unless a structure-specific sampling is performed, e.g., pulling a barycentric spanner
in the linear structure [16].1 While the dependence on K disappears as n → ∞, researchers have
reported that the lower-order terms do matter in practice [16]. Such a dependence also goes against the
well-known merit of exploiting the structure that their regret guarantees can have a mild dependence
on the number of arms or may not scale with the number of arms at all (e.g., the worst-case regret
of linear bandits mentioned above). We discuss more related work in the appendix (found in our
supplementary material) due to space constraints, though important papers are discussed and cited
throughout.2

Towards adapting to the easiness of the instance while achieving the asymptotic optimality, we turn to
the simple case of the finite hypothesis space (i.e., ∣F∣ < ∞) and ask: can we design an algorithm
with a constant-factor asymptotic optimality while adapting to finite regret? Our main contribution
is to answer the question above in the affirmative by designing a new algorithm and analyzing its
finite-time regret. Departing from the forced sampling, we take a fundamentally different approach,
which we call CROP (CRush Optimism with Pessimism). In a nutshell, at each time step t, CROP
maintains a confidence set Ft ⊆ F designed to capture the ground truth hypothesis f∗ and identifies
two hypothesis sets: the optimistic set F̃t and the pessimistic set F t (defined in Algorithm 1). The key
idea is to first pick carefully a f t ∈ F t that we call “pessimism”, and then pull the informative arms
indicated by f t. This, as we show, eliminates either the optimistic set F̃t or the pessimism f t from
the confidence set. Our analysis shows that repeating this process achieves the asymptotic optimality
within a constant factor. Furthermore, our regret bound reduces to a finite quantity whenever the
instance allows it and does not depend on the number of armsK in general; rather it depends on an
effective number of armsKψ defined in (6). We elaborate more on CROP and the role of pessimism
in Section 3. We present the main theoretical result in Section 4 and show a particular problem class
where CROP’s regret bound can be exponentially better than that of forced-sampling-based ones. Our
regret bound of CROP includes an interesting ln ln(n) term. In Section 5, we show a lower bound
result indicating that such a ln ln(n) term is unavoidable in general.

1Some algorithms like OSSB [10] parameterize the exploration rate as ε, introducing εKgn for some
gn = ω(1) in the regret bound. One may attempt to set ε = 1/K to remove the dependence, but there is another
term K/ε in the bound (see [10, Appendix 2.3]). Above all, we believe the dependence on K has to appear
somewhere in the regret if forced sampling is used.

2Concurrent studies by Degenne et al. [12] and Saber et al. [24] avoid forced sampling but still have an
explicit linear dependence onK in the regret.
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Finally, we conclude with discussions in Section 6 where we report a surprising finding that UCB
can be in fact better than a clairvoyant oracle algorithm (that, of course, achieves the asymptotic
optimality) in nonasymptotic regimes. We also show that such an oracle can suffer a linear worst-case
regret under some families of problems including linear bandits, which we find to be disturbing, but
this leaves numerous open problems.

2 Problem definition and preliminaries
In the structured multi-armed bandit problem, the learner is given a discrete arm space A = [K], and
a finite hypothesis class F ⊂ (A → R) where we color definitions in blue, hereafter. There exists an
unknown f∗ ∈ F that is the ground truth mean reward function. Denote by n the time horizon of
the problem. For every f ∈ F , denote by a∗(f) = arg maxa∈A f(a) and µ∗(f) = maxa∈A f(a) the
arm and the mean reward supported by f , respectively. We remark that the focus of our paper is not
computational complexity but the achievable regret bounds. For ease of exposition, we make the
unique best arm assumption as follows:3

Assumption 1 (Unique best arm). For every f ∈ F , there exists a unique best arm a∗(f), i.e., a∗(f)
is singleton.
For an arm a and a hypothesis f , denote by ∆a(f) = µ

∗(f) − f(a) the gap between the arm a and
the optimal arm, if the true reward function were f . Given a set of hypotheses G, we denote by
a∗(G) = {a∗(f) ∶ f ∈ G} and µ∗(G) = {µ∗(f) ∶ f ∈ G} the set of arms and mean rewards supported
by G respectively.

The learning protocol is as follows: for each round t ∈ [n], the learner pulls an arm at ∈ A and then
receives a reward rt = f∗(at) + ξt where ξt is an independent σ2-sub-Gaussian random variable. The
performance of the learner is measured by its expected cumulative regret over n rounds defined in (1).
Given an arm a and time step t, denote by Ta(t) = ∑ts=1 1{as = a} the arm pull count of a up to
round t. With this notation, ERegn = ∑a∈AE[Ta(n)]∆a(f

∗).
Asymptotically optimal regret. Our aim is to achieve an asymptotic instance-dependent regret
guarantee. Hereafter we abbreviate ‘asymptotic optimality’ to AO. Specifically, we would like to
develop uniformly good algorithms, in that for any problem instance, the algorithm satisfies ERegn =
o(np) for any p > 0 where the little-o here is w.r.t. n only. The regret lower bound of structured bandits
is based on the competing class of functions C(f) = {g ∶ g(a∗(f)) = f(a∗(f)) ∧ a∗(g) ≠ a∗(f)}.
The class C(f) consists of hypotheses g ∈ F such that pulling arm a∗(f) provides no statistical
evidence to distinguish g from f . Thus, even if the learner is confident that f is the ground truth, she
has to pull arms other than a∗(f) to guard against the case where the true hypothesis is actually g (in
which case she suffers a linear regret); see the example in Figure 1(a) where C(f4) = {f1}. The lower
bound precisely captures such a requirement as constraints in the following optimization problem:
c(f) ∶= min

γ∈[0,∞)K ∶ γa∗(f)=0
∑
a

γa∆a(f) s.t. ∀g ∈ C(f), ∑
a

γa ⋅KL(f(a), g(a)) ≥ 1 . (2)

where KL(f(a), g(a)) is the KL-divergence between the two reward distributions when the arm a is
pulled under f and g respectively. For the discussion of optimality, we focus on Gaussian rewards
with variance σ2, which means KL(f(a), g(a)) = (f(a)−g(a))2

2σ2 , though our proposed algorithm has
a regret guarantee for more generic sub-Gaussian rewards. We denote by γ(f) the solution of (2).
Then, c(f) = ∑a∈A γa(f) ⋅ ∆a(f). The intuition is that if one could play arms in proportion to
γ∗ = {γa(f

∗)}
a∈A, then, by the constraints of the optimization problem, she would have enough

statistical power to distinguish f∗ from all members of C(f∗); furthermore, γ∗ is the most cost-
efficient arm allocation due to the objective function. The value of γ∗ can be viewed as the allocation
that balances optimally between maximizing the information gap (i.e., the KL divergence in (2)) and
minimizing the reward gap (i.e., ∆a(f)).

It is known from the celebrated works of Agrawal et al. [3] and Graves and Lai [14] that any
uniformly good algorithm must have regret at least (1 − o(1))c(f) ln(n) for large enough n, under

3Our algorithms and theorems can be easily extended to the setting where optimal actions w.r.t. f can be
non-unique. This requires us to redefine the equivalence relationship, which we omit for brevity.
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Figure 1: (a) An example instance. (b) A diagram of various hypothesis classes w.r.t. the ground
truth hypothesis f∗. Best viewed in colors.

environment with ground truth reward function f∗ = f . In other words, if an algorithm has a regret of
(1 −Ω(1))c(f) lnn under the ground truth f , then for large enough n, its expected arm pull scheme
γ = (

E[Ta(n)]
lnn )

a∈A must violate the constraint in (2) for some g ∈ C(f), implying that the algorithm
must not be a uniformly good algorithm (i.e., suffer a polynomial regret under g). They also show the
lower bound is tight by developing algorithms with asymptotic regret bound of (1 + o(1))c(f) lnn.

The oracle. The lower bound suggests that one should strive to ensure E[Ta(n)] ≈ γ
∗
a ln(n). Indeed

a clairvoyant oracle (the oracle, hereafter) who knows f∗ would, at round t, pull the arm a such that
Ta(t−1) ≤ γ∗a ln(t) if there exists such an arm (i.e., exploration), and otherwise pull the best arm (i.e.,
exploitation). The oracle will initially pull the informative arms only, but as t increases, exploitation
will crowd out exploration. We believe mimicking the oracle is what most algorithms with AO are
after. Particularly, the most common strategy is to replace γ∗ with the Empirical Risk Minimizer
(ERM) γ(f̂t) where f̂t ∈ F is the one that best fits the observed rewards. Unlike supervised learning,
however, the observed rewards are controlled by the algorithm itself, making the ERM brittle; i.e., the
ERM may not converge to f∗. Thus, most studies employ a form of forced sampling to ensure that f̂t
converges to f∗ so that γ(f̂t) converges to γ∗. As discussed before, this is precisely where the issues
begin, and we will see that CROP avoids forced sampling and γ(f̂t) altogether.

Example: cheating code. We describe an example inspired by Amin et al. [4] when algorithms with
AO provide an improvement over the popular optimistic algorithms. LetK0 ∈ N+ and ei be the i-th
indicator vector. The idea is to first consider a hypothesis like f = (1,1 − ε,1 − ε, . . . ,1 − ε) and then
add those hypotheses that copy f , pick one of its non-best arms, and replace its mean reward with 1+ ε.
This results in totalK0 − 1 competing hypotheses. Specifically, let ei be the i-th indicator vector and
define h(i, j) ∈ RK0 as follows: ∀i ∈ [K0], h(i,0) = (1− ε)1+ εei and ∀j ∈ [K0]∖{i}, [h(i, j)]k =
⎧⎪⎪
⎨
⎪⎪⎩

1 + ε if k = j
h(i,0) otherwise

. Let F0 = {h(i, j) ∶ i ∈ [K0], j ∈ {0,1, . . . ,K0}∖{i}}, k = ⌈log2(K0)⌉, and

Λ ∈ [0,1/2]. Finally, we define the “cheating code” class withK =K0 + k arms:
F

code
= {(g1∶K0 ,Λ ⋅ b1∶k) ∈ RK0+k ∶ g ∈ F0, b ∈ {0,1}k: binary representation of a∗(g) − 1} ,

which appends k “cheating arms” that tells us the index of the best arm. Let us fix f∗ ∈ F code such
that µ∗(f∗) = 1. Assume 1

2ε >
2

Λ2 so that the informative arms of f∗ are the cheating arms (see
the appendix for reasoning) where we color in green for emphasis, throughout. Let σ2 = 1. For the
instance f∗, an algorithm with a constant-factor AO would have regret O(

log2K
Λ2 ln(n)) (elaborated

more in the appendix). In contrast, optimistic algorithms such as UCB [7] (i.e., run naively without
using the structure) or UCB-S [19], would pull the arm ãt where

(ãt, f̃t) = arg max
a∈A,f∈Ft

f(a) (3)

and Ft is a confidence set designed to trap f∗ with high probability. One can show that ãt is always
one of the firstK0 arms and that their regret is O(K

ε
ln(n)), which can be much larger. In fact, the

gap between the two bounds can be arbitrarily large as ε approaches to 0.
The anatomy of the function classes. There are function classes besides C(f) that will become
useful in our study. We first define an equivalence relationship between hypotheses: we call f ∼ g
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Algorithm 1 CRush Optimism with Pessimism (CROP)
Require: The hypothesis class F , parameters z, z̊, α, α̊ > 1
1: for t = 1,2, . . . , n do
2: Let Ft = {f ∈ F ∶ Lt−1(f) −ming∈F Lt−1(g) ≤ βt ∶= 2σ2 ln (zt(log2 t)2)}
3: if a∗(Ft) is singleton then
4: (Exploit) Pull the arm at ∈ a∗(Ft), observe the reward rt.
5: Continue to the next iteration.
6: end if
7: Let Bt = {(a∗(f), µ∗(f)) ∶ f ∈ Ft} be the best arm candidate set.
8: Find the optimistic arm, mean, and set:

(ãt, µ̃t) = arg max
(a,µ)∈Bt

µ, F̃t = Ft(ãt, µ̃t) .

9: Find the pessimistic arm, mean, set, and hypothesis:
(at, µt) = arg min

(a,µ)∈Bt ∶ a≠ãt
µ, F t = Ft(at, µt), f t = arg min

f∈Ft
Lt−1(f) .

10: Define F̊t = {f ∈ F t ∶ Lt−1(f) −Lt−1(f t) ≤ β̊t ∶= 2σ2 ln(z̊(log2(t))α̊)}. (let β̊1 = ∞)
11: if ∃f, g ∈ F̊t s.t. γ(f) /∝ γ(g) then
12: (Conflict) πt = φ(f t) . (see (5))
13: else if γ(f t) satisfies that ∀f ∈ F̃t,∑a γa(f t)

(ft(a)−f(a))2
2σ2 ≥ 1, then

14: (Feasible) πt = γ(f t).
15: else
16: (Fallback) πt = ψ(f t). (see (4))
17: end if
18: Pull arm at = arg mina

Ta(t−1)
πt,a

(take x
0 with x ≥ 0 as∞; break ties arbitrarily), and then observe the

reward rt.
19: end for

if a∗(f) = a∗(g) and µ∗(f) = µ∗(g); one can verify that it satisfies reflexiveness, symmetry, and
transitivity, and induces a partition over F . Given f ∈ F , we denote by E(f) the equivalent class f
belongs to and byD(f) = {g ∶ g(a∗(f)) ≠ f(a∗(f))} its docile class that can be easily distinguished
from f as we describe later. One can show that for every f ∈ F , the classF is a disjoint union of E(f),
D(f), and C(f). We also define O(f) = {g ∶ µ∗(g) ≥ µ∗(f)} (and P(f) = {g ∶ µ∗(g) ≤ µ∗(f)})
as the set of hypotheses that support mean rewards that are not lower (and not higher) than µ∗(f)
(respectively). We use shorthands E∗ ∶= E(f∗) and D∗,C∗,O∗, and P∗ defined similarly. We draw a
Venn diagram of theses classes in Figure 1(b) along with the example hypotheses in Figure 1(a); we
recommend that the readers verify the example themselves to get familiar with these classes.

Bounded regret. When the ground truth f∗ enjoys C∗ = ∅, then c(f∗) = 0 and the algorithm can
achieve bounded regret, which is well-known as mentioned in our introduction. This is because, when
f∗ has no competing hypothesis, pulling the best arm a∗(f∗) alone provides a nonzero statistical
evidence that distinguishes f∗ from F∖E∗ = D∗. That is, there is no need to explore as exploitation
alone provides sufficient exploration.

3 Crush Optimism with Pessimism (CROP)
We now introduce our algorithm CROP. First, some definitions: for any G, define G(a,µ) = {f ∈ G ∶

a∗(f) = a,µ∗(f) = µ}. Given a set of observations {(as, rs) ∶ s ∈ [t]} up to time step t, and f ∈ F ,
denote by Lt(f) = ∑ts=1(f(as) − rs)

2 the cumulative squared loss of f up to time step t. We use this
loss to construct a confidence set that captures the ground truth f∗, which is inspired by Agarwal et al.
[2], but we extend theirs to allow sub-Gaussian rewards. The loss Lt(f) gives a measure of goodness
of fit of hypothesis class f , in that f∗ is the Bayes optimal regressor that minimizes ELt(f).

We describe CROP in Algorithm 1, where the parameters {α, α̊} are numerical constants and {z, z̊}
should be set to ∣F∣ (precise defined in Theorem 1). CROP has four main branches: Exploit,
Conflict, Feasible, and Fallback. Note that Feasible is the main insight of the algorithm that
we focus first while Conflict deals with some difficult cases, which we describe the last.
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Exploit. At every round t, CROP maintains a confidence set Ft, the set of hypotheses f in F that
fits well with the data observed so far w.r.t. Lt−1(f). This is designed so that the probability of
failing to trap the ground truth hypothesis f∗ is O ( 1

tα
). We first check if a∗(Ft) is a singleton. If

true, we pull the arm a∗(Ft) that is unanimously supported by all f in Ft. Note that the equivalence
relationship ∼ induces a partition of Ft. If we do not enter the exploit case, we select the equivalence
class F̃t that maximizes its shared supported mean reward; we call this the optimistic set. This is
related to the celebrated“optimism in the face of uncertainty” (OFU) principle that pulls arm at by (3).
In line 9, we deviate from the OFU and define the pessimistic set F t, which is the equivalence class
in Ft that minimizes its shared supported mean reward µ∗(F t) with a constraint that they support
an action other than ãt. We then define f t, which we call the pessimism, as the Empirical Risk
Minimizer (ERM) over F t. Next, we compute F̊t, a refined confidence set inside the pessimistic set
F t, and then test a condition to enter Conflict; we will discuss it later as mentioned above. For now,
suppose that we did not enter Conflict and are ready to test the condition for Feasible (line 13).

Feasible. The condition in line 13 first computes γ(f t) and then tests whether all the hypotheses
in F̃t satisfy the information constraint that takes the same form as those in the optimization problem
for c(f t). If this is true, then we set πt = γ(f t) and then move onto line 18 to choose which arm to
pull. The intention here is to pull the arm that is most far away from the pull scheme of γ(f t), which
is often referred to as “tracking” [13]. Note that the arm at is never pulled because γat(f t) = 0.

Arms A1 A2 A3 A4 A5
f1 1 .99 .98 0 0
f2 .98 .99 .98 .25 0
f3 .97 .97 .98 .25 .25
f4

(optional)
.98 .99 .98 .25 .50

Figure 2: The “staircase” example.
Define H = {f1, f2, f3} and H+ =

{f1, f2, f3, f4}. We boldface the best
arm and underline the informative arms
of each hypothesis.

Why the pessimism? To motivate the design choice of
tracking the pessimism, consider the example hypothesis
space H in Figure 2. Suppose that at time t we have
Ft = H = {f1, f2, f3}. Which arms should we pull? The
OFU tells us to pull the optimistic arm ãt as done in
Lattimore and Munos [19], but it does not achieve the
instance optimality. Another idea mentioned in Section 2
is find the ERM f̂t = arg minf∈F Lt−1(t) and then pull the
arms by tracking γ(f̂t); i.e., at = arg mina≠a∗(f̂t) Ta(t −
1)/γa(f̂t). This is essentially themain idea of OSSB [10].4
OAM [16] also relies on the ERM f̂t, though they partly
use the optimism. However, ERMs are brittle in bandits.
For example, when f∗ = f3, in earlier rounds, the ERM f̂t can be f2 with nontrivial probability.
Pulling the informative arm of f2, which is A4, eliminates f1 but will not eliminate f3, and we get
stuck at pulling A4 indefinitely. To avoid such a trap, researchers have introduced forced sampling.

What are the robust alternatives to the ERM? For now, suppose that f∗ is always in the confidence set
Ft. Among {γ(f1), γ(f2), γ(f3)}, which one should we track? We claim that we should follow the
pessimism, which is f3 in this case. Specifically, if f∗ = f3, we are lucky and following the pessimism
will soon remove both f1 and f2 from Ft. We then keep entering Exploit and pull the best arm
A3 for a while. Note that f1 or f2 will come back to Ft again as pulling A3 provides the same loss
to every f ∈ H but the threshold βt of the confidence set Ft increases over time. In this case, the
principle of pessimism will do the right thing, again.

What if f∗ was actually f2? Following the pessimism f3 is not optimal, but it does eliminate f3
from Ft because f2 appears in the constraint of the optimization (2); after the elimination, we have
Ft = {f1, f2} and f t = f2, so the pessimism is back in charge. In sum, the key observation is that the
optimal pull scheme γ(f) is designed to differentiate f from its competing hypotheses that support
arms with higher mean rewards than that of f . Assuming the confidence set works properly, tracking
the pessimism either does the right thing or, if f t is not the ground truth, removes f t from the
confidence set (also the right thing to do). However, to make it work beyond this example, we need
other mechanisms: Fallback and Conflict.

4OSSB in fact does not find the ERM but rather uses the empirical means of the arms to solve the optimization
problem (2), which can work for some problem families. Still, we believe extending OSSB to use the ERM with
suitable loss function should achieve (near) asymptotic optimality for the finite F .
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Fallback. When the condition of Feasible is not satisfied, we know that the arm pull scheme
γ(f t) will not be sufficient to remove every f ∈ F̃t – or, it could even be impossible. Thus, we
should not track γ(f t). Instead, we design a different arm pull scheme ψ(f) defined below so
that tracking ψ(f t) can remove all members of F̃t in a cost-efficient manner. With the notation
∆min(f) = mina≠a∗(f) ∆a∗(f)(f),

ψ(f) ∶= arg min
γ∈[0,∞)K

∆min(f) ⋅ γa∗(f) + ∑
a≠a∗(f)

∆a(f) ⋅ γa

s.t. ∀g ∈ O(f)∖E(f) ∶ ∑
a

γa
(f(a) − g(a))2

2σ2 ≥ 1

γ ⪰ φ(f) ∨ γ(f)

(4)

where φ is defined in (5) and explained below and x ⪰ y means xa ≥ ya,∀a. The constraints above
now ensure that ψ(f t) provides a sufficient arm pull scheme to eliminate F̃t even if the condition of
Feasible is not satisfied. Another difference from γ(f) is that γa∗(f) can be nonzero, but we use
∆min(f) instead of ∆a∗(f)(f) = 0 to avoid γa∗(f) = ∞. That said, there are other design choices for
ψ(f), especially given that ψ appears only with the finite terms in the regret bound. We discuss more
on the motivation and alternative designs of (4) in the appendix.

Conflict. This is an interesting case where the learner faces the challenge not in finding which arm
is the best arm, but rather which informative arms and their pull scheme one should track. Specifically,
consider the other example ofH+ in Figure 2. Suppose at time t we have Ft = {f1, f2, f4} and the
ground truth is f4, which means E∗ = {f2, f4}. If CROP does not have the Conflict mechanism, it
will use f t, the ERM among F t, which can be either f2 or f4. However, as explained before, ERMs
are brittle; one can see that it can get stuck at tracking f2 with nontrivial probability and pull less
informative arms. Interestingly, this would not incur a linear regret. Rather, the regret would still be
like ln(n) but with a suboptimal constant of c(f2) rather than c(f4); one can adjust our example
to make this gap c(f2) − c(f4) arbitrarily large, making it arbitrarily far from the AO. On the other
hand, a closer look at f2 and f4 reveals that A5 is the only arm that can help distinguish f2 from
f4. One might attempt to change CROP so that it pulls A5 in such a case, which results in either
removing f4 from the confidence set if f∗ = f2 or removing f2 if f∗ = f4. However, if f∗ = f2, this
would introduce an extra ln(n) term in the regret bound since A5 is a noninformative arm, which
again can lead to a suboptimal regret bound.

CROP resolves this issue by constructing a refined confidence set F̊t with a more aggressive failure
rate of 1/ ln(t) rather than the usual 1/t, and use this confidence set to weed out conflicting pull
schemes. If the refined set F̊t still contains hypotheses with conflicting pull schemes, then CROP
enters Conflict and computes a different allocation scheme:

φ(f) = arg min
γ∈[0,∞)K ∶γa∗(f)=0

∑
a

∆a(f) ⋅ γa

s.t. ∀g ∈ E(f) ∶ γ(g) /∝ γ(f), ∑
a

γa
(f(a) − g(a))2

2σ2 ≥ 1
, (5)

where we use the convention 0 ∝ 0. ConsiderH+ in Figure 2 with σ2 = 1. Then, φ(f2) = φ(f4) =
(0,0,0,0, 2

(.5)2 = 8). Our regret analysis will show that the quantity φ(f) appears in the regret bound
with ln(ln(n)) term only instead of ln(n), allowing us to achieve the AO within constant-factor.

4 Analysis
Before presenting our analysis, we define the effective number of armsKψ as the size of the union of
the supports of ψ(f) for all f ∈ F :

Kψ =∣{a ∶ ∃f ∈ F , ψa(f) ≠ 0}∣ . (6)

Define φ(G) = (maxf∈G φa(f))a∈A and ψ(G) similarly. Let Λmin = minf∈D∗
∣f(a∗)−f∗(a∗)∣

σ
the

smallest information gap where a∗ ∶= a∗(f∗). We use the shorthand ∆max ∶= maxa∆a(f
∗). We

present our main theorem on the regret bound of CROP.
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Theorem 1. Let (α, α̊, z, z̊) = (2,3, ∣F∣, ∣F∣). Suppose we run CROP with hypothesis class F with
the environment f∗ ∈ F . Then, CROP has the following anytime regret guarantee: ∀n ≥ 2,

ERegn ≤ c1 ⋅ (P1 ln(n) + P2 ln(ln(n)) + P3 (ln(∣F∣) + ln (Q1)) +Kψ∆max) ,

where c1 is a numerical constant, and
P1 = ∑

a

∆aγ
∗
a , P2 = ∑

a

∆aφa(E
∗
), P3 = ∑

a

∆aψa(F), and Q1 = Λ−2
min +Kψ(1 +max

i
ψi(F)) .

Furthermore, when γ∗ = 0, we have P1 = P2 = 0, achieving a bounded regret.

Proof. The main proof is deferred to the appendix. One technical challenge is to deal with Conflict
in CROP via our refined confidence set F̊t. The failure rate of F̊t is set poly(1/ ln(t)) rather than the
usual poly(1/t).5 For example, there is an event where F̊t fails to capture f∗ but f∗ is still in Ft,
which would lead to a ln(n) regret; we manage to prove that this scenario contributes to anO(1) term
in expectation by showing that it happens with probability like 1/ ln(n) times (roughly speaking)
using a technique that we call “regret peeling”. To bound other O(1) terms that are attributed to the
docile class D∗, we borrow techniques from Lattimore and Munos [19].

Our main theorem provide a sharp non-asymptotic instance-dependent regret guarantee. The leading
term O (∑a∆aγ

∗
a log(n)) implies that we achieve the AO up to a constant factor. The second

term is of order ln ln(n), which comes from our analysis on Conflict. The remaining terms are
O (1), which depends on properties of ψa(F) and Λmin. Unlike many strategies that perform forced
exploration on all arms [16, 10] to achieve the asymptotic optimality, our bound has no dependency
on the number of armsK at all, even in the finite terms, but rather depends on the effective number of
armsKψ .

Note that K-free regret bounds still happens with optimistic algorithms; e.g., in F code (defined in
Section 2), UCB depends onK0 rather thanK, and one can add arbitrarily many cheating arms to
make K ≫ K0. Bounded regrets also have been shown via optimism [19, 15, 27], but they are far
from the AO in general. Our novelty is to obtain instance optimality, remove the dependency onK,
and achieve bounded regret whenever possible, simultaneously. We make more remarks on ln ln(n)
term and how one can get rid of ln(∣F∣) and handle infinite hypothesis spaces in the appendix.

Example: Cheating code. Let F = F code and σ2 = 1, and fix f∗ ∈ F such that µ∗(f∗) = 1.
Assume 1

2ε >
2

Λ2 . Then, one can show that γ∗ = ψ(F) = (0, . . . ,0, 2
Λ2 , . . . ,

2
Λ2 ), where the firstK0

coordinates are zeros, and φ(E∗) = 0. We also have ∣F∣ = K2
0 , Kψ = ⌈log2(K0)⌉, and Λmin = ε.

Then, usingK0 ≤K,

ERegn = O (
ln(K)

Λ2 ln(Kn ⋅ (
1
ε
+

ln(K)

Λ2 )) + ln(K)) ,

which is ≈ ln2(K)
Λ2 ln(n

ε
) when taking the highest-order factors for each (n,K, ε,Λ). We speculate

that ln(1/ε) can be removed with a tighter analysis. We compare CROP to algorithms with AO that
use forced sampling (FS in short). Say, during n rounds, FS pulls every arm ln ln(n) times each,
introducing a term O(εK ln ln(n)) in the regret, but let us ignore the ln ln(⋅) factor. For FS, the best
regret bound one can hope for isO(Kε+

log2(K)
Λ2 ln(n)). To satisfy the condition 1

2ε >
2

Λ2 , set Λ = 1/2
and ε = 1/32. Then, CROP’s regret isO(ln2

(K) ln(n)) whereas FS’s regret isO(K + ln(K) ln(n)).
WhenK ≈ n, FS has a linear regret whereas CROP has ln3

(n) regret. IfK = 2d for some d, then the
gap between the two becomes more dramatic: O(2d + d ln(n)) of FS vs O(d2 ln(n)) of CROP, an
exponential gap in the nonasymptotic regime.

5 Lower bound: Necessity of the Ω(ln ln(n)) term
One may wonder if the ln(ln(n)) term in our upper bound is necessary to achieve the asymptotic
optimality up to constant factors. We show that there exist cases where such a dependence is indeed
required. In fact, our lower bound statement is stronger; in a hypothesis class we construct for lower

5Similar aggressive definitions of confidence sets have also appeared in recent works for other purposes [e.g.
20].
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bound, even polynomial-regret algorithms must also pull a non-informative arm at least ln ln(n)
times.

Theorem 2 (Informal version). Assume the Gaussian noise model with σ2 = 1. There exists a
hypothesis class F and an absolute constant C that satisfies the following: If an algorithm has
ERegn ≤ O(nu) for some u ∈ [0,1) under an instance f ∈ F , then there exists another instance
f ′ ∈ F and an arm i with γi(f ′) = 0 (i.e., non-informative arm) such that

Ef ′ Ti(n) = Ω(ln(1 + (1 − u) ln(n)))
where Ef ′ is the expectation under the instance f ′.

The constructed instance for the lower bound is a variation ofH+ in Figure 2. Our theorem shows that,
just because an arm is noninformative, it does not mean that we can pull it a finite number of times.

Our result also has an implication for algorithms with forced sampling. To be specific, suppose that an
algorithm A performs forced sampling by requiring each arm to be pulled at least τ where τ is fixed
at the beginning. Then, to achieve sublinear regret bounds, it is required that A use τ = ω(ln(ln(n)).
We emphasize that even τ = Θ(ln(ln(n))) can suffer a polynomial regret, let alone being uniformly
good. This is because the constant factor matters and is a function of the problem. We provide the
precise constants, the full statement of the theorem, and its proof in our appendix.

6 Discussion
There are improvements to be made including more examples and studying properties of alternative
designs of φ and ψ, which we discuss more in the appendix. Meanwhile, we make a few observations
and open problems below.
It may not be the end of the optimism [20]. Let us forget about CROP and consider the oracle
described in Section 2. Consider F code with 1

2ε >
2

Λ2 . Note that UCB in fact has a regret bound
of O(min{K

ε
ln(n), εn}); the first argument can be vacuous (i.e., ≥ n) in which case we know

the regret so far is εn since UCB by design only pulls arm i with ∆i(f) = ε. The oracle has
regret Θ(min{ ln(K)

Λ2 ln(n), n}) where we have n rather than εn because she pulls informative arms.
However, this implies that, until n ⪅ 1

Λ2 , the oracle has a linear regret. In fact, all known algorithms
with AO would be the same, to our knowledge. This is not just a theoretical observation. In
Hao et al. [16, Figure 1], their algorithm with AO performs worse than an optimistic one until
n ≈ 2000. We ask if one can achieve the minimum of the two; i.e., obtain a finite-time regret bound
of O(min{ ln(K)

Λ2 ln(n), εn}). This is a reminiscent of the “sub-UCB” criterion by Lattimore [18]
(also discussed in Tirinzoni et al. [27]) in the sense that we like to perform no worse than UCB. For
F = F code, we provide a positive answer in the appendix, but a more generic algorithm that enjoys the
AO and performs no worse than UCB for any F is an open problem.
The worst-case regret. For more on the worst-case regret and how it is different from the instance-
dependent regret, see our related work section in the appendix. The example above shows that the
oracle suffers a linear worst-case regret over the family of problems {F code,ε,Λ ∶ ε,Λ ≤ (0,1/2]}.
That is, for any given problem complexity n and K, one can always find ε and Λ for which the
oracle suffers a linear regret. This is in stark contrast to UCB that has Õ (

√
Kn) worst-case regret

over this family. In fact, the oracle suffers a linear regret in linear bandits, too. In Example 4 of
Lattimore and Szepesvári [20], it is easy to see that the oracle has regret min {2α2 ln(n), n} when
ε satisfies 2/ε > 2α2. Thus, given n, this bandit problem with α ≈

√
n for some ε with 2/ε > 2α2

would make the oracle suffer a linear regret for the instance θ = (1,0). To our knowledge, all known
AO algorithms share the same trait as they do not have any device to purposely avoid pulling the
informative arm in the small-n regime.

We believe the issue is not that we study instance-dependent regret but that we tend to focus too much
on the leading term w.r.t. n in the asymptotic regime, which we attribute to the fact that it is the one
where the optimality can be claimed as of now. Less is known about the optimality on the lower order
terms along with other instance-dependent parameters. This is studied a bit more in pure exploration
problems [26, 17]. We hope to see more research on precise instance-dependent regret bounds in
nonasymptotic regimes and practical structured bandit algorithms.
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Broader Impact
Our study is mainly about a novel approach to solve structured bandits algorithms where we try
to overcome some shortcomings of existing methods. Algorithmic developments in bandits have
a huge impact in many potential applications including dose-finding trials. In this application, a
structured bandits that encode a proper inductive bias and can help resolve health issues of many
people by significantly reducing time/trials needed to find dosage or the right types of drugs, leading
to maximum efficacy with minimal side-effects.
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