
We would like to thank the reviewers for their comments and positive outlook on the paper. We are encouraged that all1

reviewers find our proposed method, claims and empirical methodology to be correct (R1, R2, R3, R4). R1 found our2

paper to be well-motivated in tackling a major efficiency drawback of capsule networks, informative and clear, whereas3

R2 found it to provide an interesting new perspective. R3 acknowledged our theoretical understanding of variational4

inference and capsule networks. R4 stated that we introduce a novel and significant reformulation of capsule networks5

which is more coherent and theoretically sound than previous work, achieving exciting state of the art results and6

enhancing the viewpoint generalizability of capsules by several degrees. We hope our response clarifies all concerns.7

Ours1 Ours2 IDP[9] SR[10] VB[12] DR[2] EM[3]
0

25

50

75

100

it
er

at
io

ns
/s

97.3

59.2

17.9
13.2 16.1

11.0 9.8

36.4

22.5

11.3
6.8 5.6 5.4 4.1

1L2 Norm

2Entropy

Runtime Comparisons (CIFAR-10/100)

training

inference

8 [R1] 1. More runtime comparisons. As requested, we9

conducted more extensive runtime comparisons with the 510

most prominent and publicly reproducible related works. For11

fairness, we use the same {128, 16, 16, 16, 10} architecture12

and replace the routing mechanism. We use Pytorch, 2 Titan13

Xp GPUs and a batch size of 64. As depicted on the right,14

our method offers considerable speedups over previous works,15

whilst enhancing performance on pose-aware tasks (see paper).16

[R2] 2. Feature occlusion experiments (MultiMNIST). We thank the reviewer for the valueable suggestion. We17

empirically demonstrate that, unlike previous methods, modelling uncertainty over part-object connections yields18

significantly more resilient capsnets under feature occlusion (which is a source of uncertainty). We replicated the19

experiment setup in [2], and trained our shallow {128, 16, 16, 16, 10} model on MultiMNIST by generating occluded20

digit pairs on the fly. We trained for 300 epochs on ' 18M training examples. Table 1 reports both test accuracy and21

exact match ratio (MR). As shown, our method outperforms previous work by a large margin using fewer parameters.2223

Table 1: CIFAR10/100 & MultiMNIST.

Method Test Acc. (# params)
CIFAR-10 CIFAR-100

Baseline CNN 82.2 (2.4M) 51.4 (2.4M)
Baseline CNN [9] 87.1 (18.9M) 62.3 (19M)

Dynamic [2] 84.1 (7.9M) 56.9 (32M)
EM-Routing [3] 82.2 (0.5M) 37.7 (0.5M)
IDP-Attention [9] 85.1 (0.6M) 57.3 (1.5M)
VB-Routing [12] 86.2 (0.4M) 58.4 (0.5M)

Ours 88.3 (0.57M) 63.4 (0.65M)

Method MultiMNIST (#params)
Test Acc. (%) Test MR (%)

Baselines [2][9] 91.9 (24.6M) 84.8 (19.6M)

Dynamic [2] 94.8 (8.2M) -
IDP-Attention [9] - 91.17 (42M)
Aff-Caps [42] 95.49 (8.2M) -

Ours 97.96 (0.23M) 96.4 (0.23M)

[R1] [R2] 3. Evaluation on CIFAR-10/100. Although our work is24

focused on enhancing capsule network properties in pose-aware tasks, we25

evaluated our method on CIFAR-10/100 as suggested. We borrow the setup26

and baselines from [9] and compare with the most prominent previous27

works which are publicly reproducible (see Table 1). For fair comparisons,28

we used the shallow model {128, 16, 32, 32, 10} described in Section 5,29

and baseline CNNs of equal depth. By replacing the single Conv layer stem30

with a ResNet-20 backbone we achieve 93.1% (1.92M) on CIFAR-10, and31

72.4% (2.01M) on CIFAR-100. With a thinner {32, 8, 8, 8, 10} model we32

can achieve 90.5% on CIFAR-10 using only 0.1M parameters.33

[R2] [R4] 4. Further details on inference networks qφ(·). This will be34

rectified in the final version. For clarity, each qφ(·) is simply a single layer35

perceptron with sofplus non-linearities that takes the activations of part36

capsules ai and outputs the parameters π(i) of the approximate Dirichlet37

posterior on the part-object connections. For R2, the number of parameters38

is kept small both thanks to our choice of Dirichlet prior as discussed39

in Section 3.3, and our use of fewer capsules than previous work whilst40

achieving better performance, i.e. at most {128, 16, 32, 32, 10}.41

[R3] 5. Explain connection & difference to VB-Routing. Our method is related to VB-Routing but fundamentally42

different. In VB-Routing the authors perform closed-form variational-EM updates, which are still iterative and local,43

just like EM-Routing. Therefore, VB-Routing still suffers from the efficiency drawbacks mentioned in Section 1.1. In44

our case, we perform global variational inference of part-object connections in a fully probabilistic capsule network,45

that is locally non-iterative and is trained end-to-end under a single globally coherent minimum description length46

objective (Eq. 7). Lastly, the VB-Routing framework does not provide predictive uncertainty estimates, whereas our47

work is the first to do so in the capsule domain to the best of our knowledge.48

[R3] 6. Provide main insights of the method for the field. As aptly summarised by R4, we provide a more49

coherent and theoretically sound capsule routing framework by directly optimising an end-to-end MDL objective. Our50

approach offers a significant speedup over previous methods, provides uncertainty estimates, and is the first non-iterative51

non-local routing method to enhance capsule network properties such as viewpoint generalisation by several degrees.52

[R4] [R3] 7. Improvements to paper clarity & related work. We thank the reviewers for the constructive feedback,53

and we agree that the exposition can be difficult to follow. We will make Figures 1 & 4 (R1) more legible, and rearrange54

the equations. Given the availability of an extra page in the camera-ready version, we will include an algorithm cell and55

an additional paragraph on related work, incorporating the reference to (Gu, J. and Tresp, V., 2020) mentioned by R3 and56

prior work on variational inference. Key details from EM-Routing will be added to aid in general understanding (R4).57

Lastly, the tables will be made clearer, better indicating the differences between methods. For R3, ‘Our EM-Routing’58

simply denotes our implementation of EM-Routing [3], and ‘{32, 8, 8, 8, 5}’ denotes a variant of our architecture.59


