Supplementary Material

This document contains the proofs of the results presented in the paper: A Simple and Efficient
Smoothing Method for Faster Optimization and Local Exploration.

Proof of Proposition 1, These two properties directly follow from the formulation f, ,(z) =
_é In (E [e*af(ervX)} )

Proof of Proposition First, note that ¢o(x) = «, and thus we have f,.(z) =
oa" (E [¢a (f(x + /JX))} ) —as0 E[f(z+pX)] = fE5(x). Then, we derive the behavior

when « tends to +oo as follows:
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where C), o (%) is the density of N (O7 \/gl ) at x = 0, and the L,,-norm is taken with respect

to the Lebesgue measure in R?.

Proof of Proposition As discussed in Section fral@)=-L1n (e‘af *pw) (z), and using the

derivation formula for the convolution: (f x g)' = f'xg = f * ¢’, we have
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Let u € R%. Summing over i, j the above terms leads to
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where Yy o ~ q(y) < e=*/Wp, _(y) and p, ., is the density of a Gaussian distribution N(x, y2I).

Proof of Proposition E} First, note that, for any random variable X € R, we have InE [eX ] >
—InE [e*X } . This result follows from Jensen’s inequality on the convex function = +— 1/ (for

z > 0),asthenE [e=*] = E [1/e¥X] > 1/E [¢*] and taking the logarithm leads to the desired
inequality. As a direct consequence, we also have that
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using —| X | < X < |X| and the monotonicity of the logarithm and exponential functions. Finally,
by Proposition BMR smoothing is translation equivariant, and taking f(x) as a constant,
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where the first inequality uses the alternative definition of BMR smoothing f, .(z) =

—11n (E [e=»f(@*+7X)]), and the second inequality uses the Lipschitz assumption on f. The
last term is the logarithm of the moment generating function of a Chi distribution of parameter d,
which is 1-sub-gaussian [32]. Hence, we have, Vt > 0,
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leading to the desired result with ¢ = ayL.

Proof of Proposition First, note that, as f(x) > f(z*) for any 2 € R%, we also have f., ,(z) >
f(x*). Then, as f is L-Lipschitz, we have, V¢ > 0, f(x—O—vX)—f( ) <AL||IX| < *yL(c||XH2 4%),
where the second inequality follows from the convexity of x + x2. Moreover, || X ||? follows a x?(d
distribution, and E {et”X “2} = (1 — 2t)%/2. Finally, we have
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Chosing c = = dL concludes the proof.
Proof of Proposition Let z € RY. One aims at estimating the gradient of f, , at z, that is
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where Y and Y’ are independent random vectors drawn from N(0,~vI;). Let Y7,..., Yk be i.i.d.
random vectors drawn from N(0, vI4). We define the following estimate:
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where Tx 2 (1/K) Zk e~*/(Yk)=f(#)) is the renormalization factor. Using the fact that
Y, Y Yq,..., Yk areiid. one can write the estimate bias as follows:
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The quality of the gradient estimate thus revolves around the gap between the two ratios in the RHS.
This gap may be tricky to upper bound if some values of the function f are very small in comparison
to f(z), so we will try and characterize the gap using the variance of f around x.



For any ¢ > 0, we consider the event €, x(t) = {|f(Yx) — f(2)] < t, 1 < k < K}. Using the
convexity and the Taylor expansion of z — 1/x around E [Tk |€, i (t)], one can check that under
€,k (t) the following holds
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and taking the conditional expectation w.r.t. £, x (¢) yields:
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We can now upper bound the bias of our estimator:
- ot var (T1) o var(Th)
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Since f is L-Lipschitz, standard concentration results on €, r () yields:
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‘We can now bound the bias as follows
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Let ¢ > 0, picking t = Lvy+/3log(cK) yields:
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Let 29 > 0, by concavity of z — +/z, we can write:
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Let ¢ = 3aLvy/(2,/Zo). The upperbound can be rewritten as follows:
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and the result holds.
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