
Supplementary Material:
Hyperparameter Ensembles for Robustness and Uncertainty Quantification

A Further details about fixed init hyper ensembles and hyper-deep
ensembles

We recall the procedure from [13] in Algorithm 2. In words, given a pre-defined set of modelsM
(e.g., the outcome of random search), we greedily grow an ensemble, until some target size K is met,
by selecting with replacement the model leading to the best improvement of some score S such as
the validation negative log-likelihood.

The with-replacement selection strategy makes it possible to construct ensembles where the contribu-
tions of each member is weighted (see Section 2.1 in [13]). To properly account for the fact that there
may be multiple times the same model selected, we use “.unique()” in Algorithms 1-2 to correctly
count the number of members.

Algorithm 2: hyper_ens(M, K) # Caruana et al. [13]
1 ensemble E = { }, score S(·), Sbest = +∞;
2 while |E .unique()| ≤ K do
3 fθ? = arg minfθ∈M S(E ∪ {fθ});
4 if S(E ∪ {fθ?}) < Sbest then
5 E = E ∪ {fθ?}, Sbest = S(E);
6 else
7 return E ;
8 end
9 end

10 return E ;

B Further details about hyper-batch ensemble

B.1 The structure of the convolutional layer

We detail the structure of the (two-dimensional) convolutional layer of hyper-batch ensemble in the
case of K ensemble members. Similar to the dense layer presented in Section 4.1, the convolutional
layer is obtained by composing the layer of batch ensemble [69] and that of self-tuning networks [52].

Let us denote by K ∈ Rl×l×cin×cout and bk ∈ Rcout the convolution kernel and the k-th member-
specific bias term, with l the kernel size, cin the number of input channels and cout the number of
output channels (also referred to as the number of filters).

For k ∈ {1, . . . ,K}, let us consider the following auxiliary vectors rk,uk ∈ Rcin and sk,vk ∈ Rcout .
For ∆ of the same shape as K and the embedding e(λk) ∈ Rcout , we have

Kk(λk) = K ◦ (rks
>
k) + [∆ ◦ (ukv

>
k)] ◦ e(λk)> (10)

where the rank-1 factors are understood to be broadcast along the first two dimensions. Similar, for
the bias terms, we have

bk(λk) = bk + δk ◦ e′(λk) (11)

with δk, e
′(λk) of the same shape as bk.

Given the form of (10) and (11), we can observe that the conclusions drawn for the dense layer
in Section 4.1 also hold for the convolutional layer.

B.2 Efficient computation of the L2 regularizer

We recall that each ensemble member manipulates its own hyperparameters λk ∈ Rm and, as
required by the training procedure in (8), those hyperparameters are sampled as part of the stochastic
optimization.

15

We focus on the example of a given dense layer, with weight matrix Wk(λk) and bias term bk(λk),
as exposed in Section 4.1.

Let us consider a minibatch of size b for the K ensemble members, i.e., {λk,i}Kk=1 for i ∈ {1, . . . , b}.
Moreover, let us introduce the scalar νk,i that is equal to the entry in λk,i containing the value of the
L2 penalty for the particular dense layer under study.2

With that notation, we concentrate on the efficient computation (especially the vectorization with
respect to the minibatch dimension) of

1

bK

b∑
i=1

K∑
k=1

νk,i‖Wk(λk,i)‖2, (12)

the case of the bias term following along the same lines. From Section 4.1 we have

Wk(λk,i) = W ◦ (rks
>
k) + [∆ ◦ (ukv

>
k)] ◦ e(λk,i)

> = Wk + ∆k ◦ e>k,i

which we have simplified by introducing a few additional shorthands. Let us further introduce

〈νk〉 =
1

b

b∑
i=1

νk,i and 〈νkek〉 =
1

b

b∑
i=1

νk,iek,i and 〈νke2
k〉 =

1

b

b∑
i=1

νk,i(ek,i ◦ ek,i).

We then develop ‖Wk(λk,i)‖2 into ‖Wk‖2 + 2W>
k (∆k ◦ e>k,i) + ‖∆k ◦ e>k,i‖2 and plug the

decomposition into (12), with ∆2
k = ∆k ◦∆k, leading to

1

K

K∑
k=1

{
〈νk〉‖Wk‖2 + 2W>

k (∆k ◦ 〈νkek〉>) +
∑
l,l′

(∆2
k)l,l′〈νke2

k〉l′
}

for which all the remaining operations can be efficiently broadcast.

B.3 Details about the choice of the distributions pt

We discuss in this section additional details about the choice of the distributions over the hyperparam-
eters pt(λk) = p(λk|ξk,t).

In the experiments of Section 5, we manipulate hyperparameters λk’s that are positive and bounded
(e.g., a dropout rate). To simplify the exposition, let us focus momentarily on a single ensemble
member (K = 1). Let us further consider such a positive, bounded one-dimensional hyperparameter
λ ∈ [a, b], with 0 < a < b, and define φ(t) = (b− a) sigmoid(t) + a, with φ−1 its inverse. In that
setting, [52] propose to use for pt(λ) = p(λ|ξt) the following distribution:

λ|ξt ∼ φ
(
φ−1(λt) + ε

)
with ε ∼ N (0, σt) and ξt = {σt, λt}. (13)

In preliminary experiments we carried out, we encountered issues with (13), e.g., λ consistently
pushed to its lower bound a during the optimization.

We have therefore departed from (13) and have focused instead on a simple log-uniform distribution,
which is a standard choice for hyperparameter tuning, e.g., [5, 6, 53]. Its probability density function
is given by

p(λ|ξt) = 1/(λ log(b/a)) with ξt = {a, b},
while its entropy equals H[p(λ|ξt)] = 0.5(log(a) + log(b)) + log(log(b/a)). The mean of the
distribution is given by (b− a)/(log(b)− log(a)) and is used to make predictions.

To summarize, and going back to the setting with K ensemble members and m-dimensional λk’s,
the optimization of {ξk,t}Kk=1 in the validation step involves 2mK parameters, i.e., the lower/upper
bounds for each hyperparameter and for each ensemble member (in practice, K ≈ 5 andm ≈ 5−10).

C Further details about the MLP and LeNet experiments

We provide in this section additional material about the experiments based on MLP and LeNet.
2The precise relationship between νk,i and λk,i depends on the implementation details and on how the

hyperparameters of the problem, e.g., the dropout rates or L2 penalties, are stored in the vector λk,i.

16

C.1 MLP and LeNet archtectures and experimental settings

The architectures of the models are:

• MLP: The multi-layer perceptron is composed of 2 hidden layers with 200 units each. The
activation function is ReLU. Moreover a dropout layer is added before the last layer.

• LeNet [44]: This convolutional neural network is composed of a first conv2D layer (32
filters) with a max-pooling operation followed by a second conv2D layer (64 filters) with a
max-pooling operation and finally followed by two dense layers (512 and number-of-classes
units). The activation function is ReLU everywhere. Moreover, we add a dropout layer
before the last dense layer.

As briefly discussed in the main paper, in the first tuning setting (i), there are two L2 regularization
parameters for those models: one for all the weight matrices and one for all the bias terms of the
conv2D/dense layers; in the second tuning setting (ii), the L2 regularization parameters are further
split on a per-layer basis (i.e., a total of 3× 2 = 6 and 4× 2 = 8 L2 regularization parameters for
MLP and LeNet respectively).

The ranges for the dropout and L2 parameters are [10−3, 0.9] and [10−3, 103] across all settings
(i)-(ii), models and datasets (CIFAR-100 and Fashion MNIST).

We take the official train/test splits of the two datasets, and we further subdivide (80%/20%) the
train split into actual train/validation sets. We use everywhere Adam [39] with learning rate 10−4, a
batchsize of 256 and 200 (resp. 500) training epochs for LeNet (resp. MLP). We tune all methods to
minimize the validation NLL. All the experiments are repeated with 3 random seeds.

C.2 Selection of the hyperparameters of batch ensemble

Following the recommendations from [69], we tuned

• The type of the initialization of the vectors rk’s and sk’s (see Section 2.1). We indeed
observed that the performance was sensitive to this choice. We selected from the different
initialization schemes proposed in [69]

– Entries distributed according to the Gaussian distribution N (1, 0.5× I)

– Entries distributed according to the Gaussian distribution N (1, 0.75× I)

– Random independent signs, with probability of +1 equal to 0.5

– Random independent signs, with probability of +1 equal to 0.75

• A scale factor κ to make it possible to reduce the learning rate applied to the vectors rk’s
and sk’s. Following [69], we considered the scale factor κ in {1.0, 0.5}.

• Whether to use the Gibbs or ensemble cross-entropy at training time. Early experiments
showed that Gibbs cross-entropy was substantially better so that we kept this choice fixed
thereafter.

• Whether to regularize the vectors rk’s and sk’s. [69] mentioned that the two options perform
equally well while we observed in those smaller-scale experiments that batch ensemble
could overfit in absence of regularization.

The two batch ensemble-specific hyperparameters above (initialization type and κ) together with the
MLP/LeNet hyperparameters were tuned by 50 trials of random search, separately for each ensemble
size (3 and 5) and for each triplet (dataset, model type, tuning setting).

C.3 Selection of the hyperparameters of self-tuning networks

We re-used as much as possible the hyperparameters and design choices from [52], i.e., 5 warm-up
epochs (during which no tuning happens) before starting the alternating scheme (2 training steps
followed by 1 tuning step).

For the tuning step, the batch size is taken to be the same as that of the training step (256), while the
learning was set to 5× 10−4.

17

0 64 128 256
Number of hidden units in e()

1.5

1.6

1.7

Va
lid

at
io

n
NL

L

ensemble size 1
ensemble size 3
ensemble size 5

-4 -3 -2
log10()

1.40

1.45

1.50

1.55

Va
lid

at
io

n
NL

L

ensemble size 3
ensemble size 5

Figure 4: LEFT: Evolution of the validation NLL for different choices of the embedding model
e(·). The validation NLL is averaged over all the datasets (Fashion MNIST/CIFAR 100), model
types (MLP/LeNet), tuning settings and random seeds. Zero unit means a linear transformation
without hidden layer, while {64, 128, 256} units are for a single hidden layer. RIGHT: Evolution of
the validation NLL for different values of τ . The validation NLL is averaged over all the datasets
(Fashion MNIST/CIFAR 100), model types (MLP/LeNet), tuning settings and random seeds.

We tuned the entropic regularization parameter τ ∈ {0.01, 0.001, 0.0001}, separately for each triplet
(dataset, model type, tuning setting), as done for all the methods compared in the benchmark. We
observed that τ = 0.001 was often found to be the best option, and it therefore constitutes a good
default value, as reported in [52].

As studied in Appendix C.5, we fix the embedding model e(·) to be an MLP with one hidden layer of
64 units and a tanh activation.

C.4 Selection of the hyperparameters of hyper-batch ensemble

We followed the very same protocol as that used for the standard self-tuning network (as described in
Appendix C.3).

By construction, we also inherit from the batch ensemble-specific hyperparameters (see Ap-
pendix C.2). To keep the protocol simple, we only tune the most important hyperparameter, namely
the type of the initialization of the rank-1 terms (while the scale factor κ to discount the learning rate
was not considered). As for any other methods in the benchmark, τ and the initialization type were
tuned separately for each triplet (dataset, model type, tuning setting).

For good default choices, we recommend to take τ = 0.001 and use an initialization scheme with
random independent signs (with the probability of +1 equal to 0.75).

C.5 Choice of the embedding e(·)

We study the impact of the choice of the model that defines the embedding e(·).

In [52], e(·) is taken to be a simple linear transformation. In a slightly different context, the authors
of [16] consider MLPs with one hidden layer of 128 or 256 units, depending on their applications.

In the light of those previous choices, we compare the performance of different architectures of
e(·), namely linear (i.e., 0 units) and one hidden layer of 64, 128, and 256 units. The results are
summarized in Figure 4-(left), for different ensemble sizes (one corresponding to the standard self-
tuning networks [52]). We computed the validation NLL averaged over all the datasets (Fashion
MNIST/CIFAR 100), model types (MLP/LeNet), tuning settings and random seeds.

Based on Figure 4-(left), we select for e(·) an MLP with a single hidden layer of 64 units and a tanh
activation function.

C.6 Sensitivity analysis with respect to the entropy regularization parameter τ

We study the impact of the choice of the entropy regularization parameter τ in (9). We report
in Figure 4-(right) how the validation negative log-likelihood—aggregated over all the datasets

18

Table 3: Comparison over CIFAR 100 and Fashion MNIST with MLP and LeNet architectures. The
table reports means± standard errors (over the 3 random seeds and pooled over the 2 tuning settings),
for ensemble approaches with 3 and 5 members (the efficient approaches are compared separately
in Table 4). “fixed init ens” is a shorthand for fixed init hyper ens, i.e., a “row” in Figure 2-(left).
Our method hyper-deep ensemble improves upon deep ensemble (in Appendix C.7.2, we assess the
statistical significance of those improvements with a Wilcoxon signed-rank test, paired along settings,
datasets and model types).

fixed init ens (3) fixed init ens (5) hyper-deep ens (3) hyper-deep ens (5) deep ens (3) deep ens (5)

cifar100
(mlp)

nll ↓ 2.943 ± 0.010 2.920 ± 0.007 2.953 ± 0.058 2.919 ± 0.041 2.969 ± 0.057 2.946 ± 0.041
acc ↑ 0.287 ± 0.003 0.292 ± 0.002 0.291 ± 0.004 0.296 ± 0.003 0.289 ± 0.003 0.292 ± 0.004
brier ↓ -0.161 ± 0.002 -0.165 ± 0.001 -0.164 ± 0.003 -0.169 ± 0.002 -0.160 ± 0.004 -0.163 ± 0.003
ece ↓ 0.029 ± 0.007 0.025 ± 0.006 0.022 ± 0.007 0.023 ± 0.005 0.038 ± 0.014 0.035 ± 0.007

cifar100
(lenet)

nll ↓ 2.259 ± 0.067 2.248 ± 0.069 2.211 ± 0.066 2.136 ± 0.057 2.334 ± 0.141 2.298 ± 0.146
acc ↑ 0.439 ± 0.008 0.445 ± 0.010 0.452 ± 0.007 0.466 ± 0.006 0.421 ± 0.026 0.428 ± 0.027
brier ↓ -0.301 ± 0.010 -0.305 ± 0.012 -0.315 ± 0.010 -0.330 ± 0.008 -0.282 ± 0.030 -0.288 ± 0.031
ece ↓ 0.049 ± 0.023 0.045 ± 0.021 0.039 ± 0.013 0.034 ± 0.008 0.050 ± 0.015 0.045 ± 0.022

fmnist
(mlp)

nll ↓ 0.312 ± 0.003 0.305 ± 0.003 0.310 ± 0.001 0.305 ± 0.001 0.319 ± 0.005 0.318 ± 0.006
acc ↑ 0.893 ± 0.001 0.897 ± 0.000 0.895 ± 0.001 0.897 ± 0.000 0.889 ± 0.003 0.889 ± 0.003
brier ↓ -0.843 ± 0.001 -0.848 ± 0.001 -0.845 ± 0.001 -0.848 ± 0.001 -0.839 ± 0.003 -0.840 ± 0.003
ece ↓ 0.012 ± 0.005 0.014 ± 0.002 0.014 ± 0.003 0.017 ± 0.001 0.010 ± 0.003 0.009 ± 0.003

fmnist
(lenet)

nll ↓ 0.219 ± 0.002 0.215 ± 0.002 0.216 ± 0.002 0.210 ± 0.002 0.226 ± 0.004 0.222 ± 0.005
acc ↑ 0.924 ± 0.001 0.926 ± 0.001 0.926 ± 0.002 0.928 ± 0.001 0.920 ± 0.002 0.921 ± 0.002
brier ↓ -0.889 ± 0.001 -0.891 ± 0.001 -0.890 ± 0.002 -0.893 ± 0.001 -0.883 ± 0.003 -0.884 ± 0.003
ece ↓ 0.014 ± 0.004 0.015 ± 0.002 0.018 ± 0.002 0.014 ± 0.003 0.013 ± 0.004 0.011 ± 0.003

(Fashion MNIST/CIFAR 100), model types (MLP/LeNet), tuning settings and random seeds—varies
with τ ∈ {0.01, 0.001, 0.0001}.
As discussed in Appendix C.3 and in Appendix C.2, a good default value, as already reported in [52]
is τ = 0.001.

C.7 Complementary results

C.7.1 Results for ensembles of size 3 and 5

In Table 3 and Table 4 (the latter table contains the efficient ensemble methods), we complete Table 9
with the addition of the results for the ensembles of size 5. To ease the comparison across different
ensemble sizes, we incorporate as well the results for the size 3.

The conclusions highlighted in the main paper also hold for the larger ensembles of size 5. In Table 4,
we can observe that hyper-batch ens with 5 members does not consistently improve upon its
counterpart with 3 members. This trend is corrected if more training epochs are considered (see
in Table 7 the effect of twice as many training epochs).

C.7.2 Assessment of the statistical significance of the results

To assess the statistical significance of the improvements displayed in Table 1, Table 3 and Table 4,
we run the Wilcoxon signed-rank test, paired along settings, datasets and model types. We report the
results in Table 5. The pairing of the tests is especially important for the comparisons between deep
ens, fixed init hyper ens and hyper-deep ens since their respective performances are heavily
conditioned on the initial random searches they build upon.

First, we can see that hyper-deep ens significantly improves upon both deep ens and
fixed init hyper ens (with larger p-values in the latter case, though). Second, while
hyper-batch ens significantly improves upon STN, hyper-batch ens can only be shown to be
better than batch ens in terms of likelihood (with a 5% significance level). Overall, we also observe
that we do not have significant improvements with respect to ECE which is known to be more
noisy [57].

19

Table 4: Comparison of the efficient ensemble methods over CIFAR 100 and Fashion MNIST with
MLP and LeNet architectures. The table reports means ± standard errors (over the 3 random seeds
and pooled over the 2 tuning settings), for ensemble approaches with 3 and 5 members. Our method
hyper-batch ensemble improves upon batch ensemble (in Appendix C.7.2, we assess the statistical
significance of those improvements with a Wilcoxon signed-rank test, paired along settings, datasets
and model types).

hyper-batch ens (3) hyper-batch ens (5) batch ens (3) batch ens (5)

cifar100
(mlp)

nll ↓ 2.979 ± 0.004 2.983 ± 0.001 3.015 ± 0.003 3.056 ± 0.004
acc ↑ 0.281 ± 0.002 0.282 ± 0.001 0.275 ± 0.001 0.265 ± 0.001
brier ↓ -0.157 ± 0.000 -0.157 ± 0.000 -0.153 ± 0.001 -0.141 ± 0.000
ece ↓ 0.030 ± 0.002 0.034 ± 0.001 0.022 ± 0.002 0.033 ± 0.002

cifar100
(lenet)

nll ↓ 2.283 ± 0.016 2.297 ± 0.009 2.350 ± 0.024 2.239 ± 0.027
acc ↑ 0.428 ± 0.003 0.425 ± 0.002 0.438 ± 0.003 0.437 ± 0.006
brier ↓ -0.288 ± 0.003 -0.282 ± 0.002 -0.295 ± 0.003 -0.296 ± 0.008
ece ↓ 0.058 ± 0.004 0.069 ± 0.006 0.058 ± 0.015 0.038 ± 0.018

fmnist
(mlp)

nll ↓ 0.308 ± 0.002 0.304 ± 0.001 0.351 ± 0.004 0.320 ± 0.002
acc ↑ 0.892 ± 0.001 0.892 ± 0.001 0.884 ± 0.001 0.892 ± 0.000
brier ↓ -0.844 ± 0.001 -0.845 ± 0.001 -0.830 ± 0.001 -0.844 ± 0.001
ece ↓ 0.016 ± 0.001 0.013 ± 0.001 0.020 ± 0.001 0.024 ± 0.001

fmnist
(lenet)

nll ↓ 0.212 ± 0.001 0.209 ± 0.002 0.230 ± 0.005 0.221 ± 0.002
acc ↑ 0.924 ± 0.001 0.925 ± 0.001 0.920 ± 0.001 0.922 ± 0.001
brier ↓ -0.889 ± 0.001 -0.891 ± 0.001 -0.883 ± 0.001 -0.886 ± 0.001
ece ↓ 0.009 ± 0.001 0.008 ± 0.001 0.017 ± 0.002 0.015 ± 0.001

Table 5: Results of the one-sided, Wilcoxon signed-rank test, paired along settings, datasets and
model types. We report the p-values corresponding to the hypothesis that our method (in blue) has
worse value than the corresponding competing methods.

ens size p-value (nll) p-value (acc) p-value (ece) ens size p-value (nll) p-value (acc) p-value (ece)

deep ens↔ hyper-deep ens 3 1.1× 10−5 2.1× 10−5 0.25 5 9.1× 10−6 1.9× 10−5 0.33
fixed init hyper ens↔ hyper-deep ens 3 0.0725 0.0017 0.43 5 0.0088 0.0018 0.44

batch ens↔ hyper-batch ens 3 6.4× 10−5 0.13 0.31 5 0.038 0.22 0.39
STN↔ hyper-batch ens 3 9.1× 10−6 2.6× 10−5 0.23 5 4.5× 10−5 1.3× 10−5 0.33

20

Table 6: Normalized predictive disagreement from [22] compared over CIFAR 100 and Fashion
MNIST with MLP and LeNet architectures. Higher values mean more diversity in the ensemble
predictions. The table reports means ± standard errors (over the 3 random seeds and pooled over the
2 tuning settings), for ensemble approaches with 3 and 5 members.

deep ens (3) deep ens (5) hyper-deep ens (3) hyper-deep ens (5) batch ens (3) batch ens (5) hyper-batch ens (3) hyper-batch ens (5)

cifar100
(mlp)

0.570 ± 0.099 0.573 ± 0.103 0.707 ± 0.072 0.732 ± 0.055 0.700 ± 0.003 0.453 ± 0.010 0.765 ± 0.004 0.841 ± 0.004

cifar100
(lenet)

0.688 ± 0.107 0.695 ± 0.114 0.896 ± 0.045 0.896 ± 0.038 0.692 ± 0.028 0.583 ± 0.034 0.716 ± 0.005 0.479 ± 0.011

fmnist
(mlp)

0.461 ± 0.063 0.457 ± 0.040 0.588 ± 0.046 0.702 ± 0.057 0.490 ± 0.014 0.716 ± 0.003 0.509 ± 0.009 0.573 ± 0.008

fmnist
(lenet)

0.475 ± 0.057 0.479 ± 0.060 0.594 ± 0.041 0.656 ± 0.043 0.481 ± 0.047 0.647 ± 0.015 0.446 ± 0.015 0.487 ± 0.008

C.7.3 Diversity analysis

In this section, we study the diversity of the predictions made by the ensemble approaches from the
experiments of Section 5.1.

To this end, we use the predictive disagreement metric from [22]. This metric is based on the average
of the pairwise comparisons of the predictions across the ensemble members. For a given pair of
members, it is zero when they are making identical predictions, and one when all their predictions
differ. We also normalize the diversity metric by the error rate (i.e., one minus the accuracy) to avoid
the case where random predictions provide the best diversity.

For ensemble sizes 3 and 5, we compare in Table 6 the approaches hyper-deep ensemble, deep
ensemble, hyper-batch ensemble and batch ensemble with respect to this metric. We can draw the
following conclusions:

• hyper-deep ensemble vs. deep ensemble: Compared to deep ensemble, we can observe
that hyper-deep ensemble leads to significantly more diverse predictions, across all combina-
tion of (dataset, model type) and ensemble sizes. Moreover, we can also see that the diversity
only slightly increases for deep ensemble going from 3 to 5 members, while it increases
more markedly for hyper-deep ensemble. We hypothesise this is due to the more diverse set
of models (with varied initialization and hyperparameters) that hyper-deep ensemble can tap
into.

• hyper-batch ensemble vs. batch ensemble: The first observation is that in this setting (the
observation turns out to be different in the case of the Wide Resnet 28-10 experiments),
batch ensemble leads to the largest diversity in predictions compared to all the other methods.
Although lower compared with batch ensemble, the diversity of hyper-batch ensemble is
typically higher than, or competitive with the diversity of deep ensembles.

21

Table 7: Comparison of batch hyperparameter ensemble and batch ensemble over CIFAR 100 and
Fashion MNIST with MLP and LeNet models, while accounting for the number of parameters. The
table reports means± standard errors (over the 3 random seeds and pooled over the 2 tuning settings),
for ensemble approaches with 3 and 5 members. “2x-” indicates the method benefited from twice
as many training epochs. The two rightmost columns correspond to the combination of two batch
ensemble models with 3 and 5 members, resulting in 6 and 10 members.

hyper-batch ens (3) hyper-batch ens (5) 2x-hyper-batch ens (3) 2x-hyper-batch ens (5) batch ens (3×2) batch ens (5×2)

cifar100
(mlp)

nll ↓ 2.979 ± 0.004 2.983 ± 0.001 2.974 ± 0.006 2.950 ± 0.003 2.980 ± 0.002 3.031 ± 0.002
acc ↑ 0.281 ± 0.002 0.282 ± 0.001 0.277 ± 0.003 0.284 ± 0.002 0.282 ± 0.001 0.268 ± 0.001
brier ↓ -0.157 ± 0.000 -0.157 ± 0.000 -0.153 ± 0.001 -0.159 ± 0.001 -0.157 ± 0.000 -0.144 ± 0.000
ece ↓ 0.030 ± 0.002 0.034 ± 0.001 0.033 ± 0.004 0.034 ± 0.005 0.032 ± 0.001 0.040 ± 0.002

cifar100
(lenet)

nll ↓ 2.283 ± 0.016 2.297 ± 0.009 2.255 ± 0.014 2.269 ± 0.006 2.188 ± 0.008 2.163 ± 0.012
acc ↑ 0.428 ± 0.003 0.425 ± 0.002 0.430 ± 0.003 0.428 ± 0.001 0.460 ± 0.002 0.451 ± 0.003
brier ↓ -0.288 ± 0.003 -0.282 ± 0.002 -0.295 ± 0.002 -0.291 ± 0.001 -0.321 ± 0.001 -0.309 ± 0.004
ece ↓ 0.058 ± 0.004 0.069 ± 0.006 0.028 ± 0.001 0.036 ± 0.006 0.017 ± 0.004 0.060 ± 0.009

fmnist
(mlp)

nll ↓ 0.308 ± 0.002 0.304 ± 0.001 0.307 ± 0.001 0.303 ± 0.001 0.333 ± 0.003 0.308 ± 0.001
acc ↑ 0.892 ± 0.001 0.892 ± 0.001 0.893 ± 0.001 0.894 ± 0.001 0.887 ± 0.001 0.894 ± 0.001
brier ↓ -0.844 ± 0.001 -0.845 ± 0.001 -0.845 ± 0.001 -0.847 ± 0.001 -0.836 ± 0.001 -0.847 ± 0.000
ece ↓ 0.016 ± 0.001 0.013 ± 0.001 0.015 ± 0.001 0.013 ± 0.001 0.016 ± 0.001 0.020 ± 0.001

fmnist
(lenet)

nll ↓ 0.212 ± 0.001 0.209 ± 0.002 0.211 ± 0.002 0.209 ± 0.001 0.220 ± 0.001 0.213 ± 0.001
acc ↑ 0.924 ± 0.001 0.925 ± 0.001 0.925 ± 0.001 0.925 ± 0.000 0.922 ± 0.000 0.923 ± 0.001
brier ↓ -0.889 ± 0.001 -0.891 ± 0.001 -0.890 ± 0.001 -0.891 ± 0.001 -0.887 ± 0.000 -0.889 ± 0.001
ece ↓ 0.009 ± 0.001 0.008 ± 0.001 0.013 ± 0.001 0.012 ± 0.001 0.013 ± 0.001 0.011 ± 0.001

C.7.4 Further comparison between batch ensemble and hyper-batch ensemble

As described in Section 4.1, the structure of the layers of hyper-batch ens leads to a 2x increase in
memory compared with standard batch ens.

In an attempt to fairly account for this difference in memory footprints, we combine two batch ensem-
ble models trained separately and whose total memory footprint amounts to that of hyper-batch ens.
This procedure leads to ensembles with 6 and 10 members to compare to hyper-batch ens instanti-
ated with 3 and 5 members respectively. To also normalize the training budget, hyper-batch ens is
given twice as many training epochs as each of the batch ens models.

Table 7 presents the results of that comparison. In an nutshell, hyper-batch ens either continues
to improve upon, or remain competitive with, batch ens, while still having the advantage of
automatically tuning the hyperparameters of the underlying model (MLP or LeNet).

C.7.5 Ablation study about hyper-deep ensemble

In this section, we conduct two ablation studies about hyper-deep ensemble to better understand its
components. We first focus on the effect of using the greedy algorithm of [13] compared with the
top-K procedure used in [60]. Second, we relate Algorithm 1 to the NES-RS procedure concurrently
proposed by [75].

Greedy [13] versus top-K selection? Starting from the set of models generated by random search
(according to the setting of Section 5.1), we apply both the greedy and top-K selection strategies, as
previously used in [60], to form ensembles of size 5. We report the results of the evaluations of those
strategies in Figure 5.

We can observe that the greedy procedure outperforms the top-K procedure. While the former has
an objective aware of the ensemble performance, the latter selects the models based only on their
individual performance.

More models from random search versus fewer models with stratification? We still focus on
the setting of Section 5.1, with ensembles of size 3 and 5. We study the value of the stratification step
in Algorithm 1. To this end, we consider the following comparison that accounts for the total number
of trained models:

(A) hyper ens (70): Random search with 70 models followed by the greedy procedure of [13].
Note that there is no stratification step in this variant. The resulting method falls back to
NES-RS from [75] where the architecture is kept fixed while hyperparameters are varied.

22

cifar100 (lenet) cifar100 (mlp)

0.30

0.35

0.40

0.45

ac
cu

ra
cy

greedy vs. top-k ensemble strategy
greedy
top-k

fmnist (lenet) fmnist (mlp)
0.88
0.89
0.90
0.91
0.92
0.93
0.94

ac
cu

ra
cy

greedy vs. top-k ensemble strategy
greedy
top-k

Figure 5: Test accuracy evaluated over CIFAR 100 (LEFT) and Fashion MNIST (RIGHT) for both
MLP and LeNet models, when using the greedy and top-K selection strategies to construct ensembles
with 5 members. The accuracy is averaged over tuning settings and random seeds.

Table 8: Study of the impact of the stratification when accounting for the total number of models to
train. hyper-deep ens uses stratification while hyper ens (70) does not. The comparison is over
CIFAR 100 and Fashion MNIST with MLP and LeNet models. The table reports means ± standard
errors (over the 3 random seeds and pooled over the 2 tuning settings).

ens size cifar100 (lenet) cifar100 (mlp) fmnist (lenet) fmnist (mlp)

hyper ens (70) 3
ce: 2.214± 0.054
acc: 0.451± 0.006
ece: 0.039± 0.009

ce: 2.957± 0.047
acc: 0.291± 0.002
ece: 0.033± 0.008

ce: 0.216± 0.003
acc: 0.926± 0.001
ece: 0.016± 0.003

ce: 0.310± 0.003
acc: 0.894± 0.001
ece: 0.015± 0.002

hyper-deep ens 3
ce: 2.211± 0.066
acc: 0.452± 0.007
ece: 0.039± 0.013

ce: 2.953± 0.058
acc: 0.291± 0.004
ece: 0.022± 0.007

ce: 0.216± 0.002
acc: 0.926± 0.002
ece: 0.018± 0.002

ce: 0.310± 0.001
acc: 0.895± 0.001
ece: 0.014± 0.003

ens size cifar100 (lenet) cifar100 (mlp) fmnist (lenet) fmnist (mlp)

hyper ens (70) 5
ce: 2.182± 0.053
acc: 0.459± 0.005
ece: 0.033± 0.005

ce: 2.924± 0.035
acc: 0.297± 0.002
ece: 0.024± 0.004

ce: 0.210± 0.001
acc: 0.928± 0.001
ece: 0.014± 0.002

ce: 0.305± 0.002
acc: 0.897± 0.001
ece: 0.018± 0.004

hyper-deep ens 5
ce: 2.136± 0.057
acc: 0.466± 0.006
ece: 0.034± 0.008

ce: 2.919± 0.041
acc: 0.296± 0.003
ece: 0.023± 0.005

ce: 0.210± 0.002
acc: 0.928± 0.001
ece: 0.014± 0.003

ce: 0.305± 0.001
acc: 0.897± 0.000
ece: 0.017± 0.001

(B) hyper-deep ens: The procedure described in Algorithm 1 that uses stratification and starts
from 50 models obtained by random search (as used in the experiments of Section 5.1).
Note that even though we need to stratify 5 models with 5 seeds, i.e., 52=25 models, we can
reuse 5 models from the initial random search so that the total budget is 50+20=70 models
to train (plus the cost of the calls to the greedy algorithm which is assumed negligible). The
two approaches (A)-(B) therefore involve the same number of models to train.

The results of the comparison are reported in Table 8. While hyper-deep ens works slightly better,
the differences with hyper ens (70) are not substantial. In the setting of Section 5.1, it thus appears
that, provided that the initial random search produces enough models, the stratification step may be
bypassed. In practice, this scheme, without stratification, can also be more convenient to implement.

C.7.6 Addendum to the results of Table 1

In Table 9, we complete the results of Table 1 with the addition of the Brier scores. Moreover, we
provide the details of the performance of rand search and Bayes opt since only their aggregated
best results were reported in Table 1.

23

Table 9: Comparison over CIFAR 100 and Fashion MNIST with MLP and LeNet architectures.
The table reports means ± standard errors (over the 3 random seeds and pooled over the 2 tuning
settings). “fixed init ens” is a shorthand for fixed init hyper ens, i.e., a “row” in Figure 2-(left).
We separately compare the efficient methods (3 rightmost columns) and we mark in bold the best
results (within one standard error). Our two methods hyper-deep/hyper-batch ensembles improve
upon deep/batch ensembles respectively (in Appendix C.7.2, we assess the statistical significance of
those improvements with a Wilcoxon signed-rank test, paired by settings, datasets and model types).

rand search (1) Bayes opt (1) fixed init ens (3) hyper-deep ens (3) deep ens (3) batch ens (3) STN (1) hyper-batch ens (3)

cifar100
(mlp)

nll ↓ 3.082 ± 0.127 2.977 ± 0.010 2.943 ± 0.010 2.953 ± 0.058 2.969 ± 0.057 3.015 ± 0.003 3.029 ± 0.006 2.979 ± 0.004
acc ↑ 0.272 ± 0.003 0.277 ± 0.002 0.287 ± 0.003 0.291 ± 0.004 0.289 ± 0.003 0.275 ± 0.001 0.268 ± 0.002 0.281 ± 0.002
brier ↓ -0.142 ± 0.016 -0.152 ± 0.003 -0.161 ± 0.002 -0.164 ± 0.003 -0.160 ± 0.004 -0.153 ± 0.001 -0.145 ± 0.001 -0.157 ± 0.000
ece ↓ 0.048 ± 0.037 0.034 ± 0.008 0.029 ± 0.007 0.022 ± 0.007 0.038 ± 0.014 0.022 ± 0.002 0.033 ± 0.004 0.030 ± 0.002

cifar100
(lenet)

nll ↓ 2.523 ± 0.140 2.399 ± 0.204 2.259 ± 0.067 2.211 ± 0.066 2.334 ± 0.141 2.350 ± 0.024 2.329 ± 0.017 2.283 ± 0.016
acc ↑ 0.395 ± 0.026 0.420 ± 0.011 0.439 ± 0.008 0.452 ± 0.007 0.421 ± 0.026 0.438 ± 0.003 0.415 ± 0.003 0.428 ± 0.003
brier ↓ -0.249 ± 0.028 -0.270 ± 0.029 -0.301 ± 0.010 -0.315 ± 0.010 -0.282 ± 0.030 -0.295 ± 0.003 -0.280 ± 0.002 -0.288 ± 0.003
ece ↓ 0.064 ± 0.036 0.071 ± 0.054 0.049 ± 0.023 0.039 ± 0.013 0.050 ± 0.015 0.058 ± 0.015 0.024 ± 0.007 0.058 ± 0.004

fmnist
(mlp)

nll ↓ 0.327 ± 0.005 0.323 ± 0.003 0.312 ± 0.003 0.310 ± 0.001 0.319 ± 0.005 0.351 ± 0.004 0.316 ± 0.003 0.308 ± 0.002
acc ↑ 0.888 ± 0.002 0.889 ± 0.002 0.893 ± 0.001 0.895 ± 0.001 0.889 ± 0.003 0.884 ± 0.001 0.890 ± 0.001 0.892 ± 0.001
brier ↓ -0.836 ± 0.003 -0.838 ± 0.002 -0.843 ± 0.001 -0.845 ± 0.001 -0.839 ± 0.003 -0.830 ± 0.001 -0.840 ± 0.002 -0.844 ± 0.001
ece ↓ 0.013 ± 0.003 0.022 ± 0.004 0.012 ± 0.005 0.014 ± 0.003 0.010 ± 0.003 0.020 ± 0.001 0.016 ± 0.001 0.016 ± 0.001

fmnist
(lenet)

nll ↓ 0.232 ± 0.002 0.237 ± 0.002 0.219 ± 0.002 0.216 ± 0.002 0.226 ± 0.004 0.230 ± 0.005 0.224 ± 0.003 0.212 ± 0.001
acc ↑ 0.919 ± 0.001 0.918 ± 0.002 0.924 ± 0.001 0.926 ± 0.002 0.920 ± 0.002 0.920 ± 0.001 0.920 ± 0.001 0.924 ± 0.001
brier ↓ -0.881 ± 0.001 -0.879 ± 0.002 -0.889 ± 0.001 -0.890 ± 0.002 -0.883 ± 0.003 -0.883 ± 0.001 -0.884 ± 0.001 -0.889 ± 0.001
ece ↓ 0.019 ± 0.004 0.017 ± 0.005 0.014 ± 0.004 0.018 ± 0.002 0.013 ± 0.004 0.017 ± 0.002 0.015 ± 0.001 0.009 ± 0.001

24

D Further details about the ResNet experiments

D.1 Details about the optimization methods

We first explain the setting we used for training the ResNet 20 and Wide ResNet 28-10 architectures
in Section 5 and conclude with the results of an empirical study over different algorithmic choices.

Training and model definition. In the following we present the details for our training procedures.
A similar training setup to ours for batch ens based on a Wide ResNet architecture can be found in
the uncertainty-baselines repository3.

For all methods (hyper-batch ens, batch ens, hyper-deep ens and deep ens), we optimize
the model parameters using stochastic gradient descent (SGD) with Nesterov momentum of 0.9. For
the ResNet 20 model we decay the learning rate by a factor of 0.1 after the epochs {80, 180, 200}
and for the Wide ResNet 28-10 model by a factor of 0.2 after the epochs {100, 200, 225}. For
tuning the hyperparameters in hyper-batch ens, we use Adam [39] with a fixed learning rate. For
hyper-batch ens, we use 95% of the data for training and the remaining 5% for optimizing the
hyperparameters λ in the tuning step. For the other methods we use the full training set.

For the efficient ensemble methods (hyper-batch ens and batch ens), we initialize the rank-1
factors, i.e., rks

>
k and ukv

>
k in (7), with entries independently sampled according to N (1, 0.5) for

ResNet 20 and sampled according to N (1, 1) for Wide ResNet 28-10.

We make two minor adjustments of our model to adapt to the specific structure of the highly
overparametrized ResNet models. First, we find that coupling the rank-1 factors corresponding to the
hyperparamters to the rank-1 factors of weights is beneficial, i.e. we set uk := rk and vk := sk. This
slightly decreases the flexibility of hyper-batch ens and makes it more robust against overfitting.

Second, we exclude the rank-1 factors from being regularized. In the original paper introducing
batch ens [69], the authors mention that both options were found to work equally well and they
finally choose not to regularize the rank-1 factors (to save extra computation). In our setting, we
observe that this choice is important and regularizing the rank-1 factors leads to worse performance
(a detailed analysis is given in Appendix D.2). Hence, we do not include the rank-1 factors in the
regularization.

Table 10: Wide ResNet 28-10. Ablation for including the rank-1 factors of the efficient ensemble
methods into the regularization. We run a grid search over all optimization parameters outlined
in Appendix D.1 and report the mean performance on CIFAR-100 along with the standard error
as well as the best performance attained by all configurations considered. Regularizing the factors
substantially decreases the performance of both methods. The results for the unregularized version
can be found in the main text, in Table 2.

Mean acc. Max. acc. Mean NLL Min. NLL

hyper-batch ens 0.797 ± 0.004 0.802 0.783 ± 0.023 0.750

batch ens 0.797 ± 0.004 0.803 0.782 ± 0.028 0.750

For hyper-batch ens we usually start with a log-uniform distribution over the hyperparameters pt
over the full range for the given bounds of the hyperparameters. For the ResNet models we find that
reducing the initial ranges of pt for the L2 regularization parameters by one order of magnitude is
more stable (but we keep the original bounds for clipping the parameters).

Tuning of optimization method hyperparameters. We perform an exhaustive ablation of the
different algorithmic choices for hyper-batch ens as well as for batch ens using the validation
set. We run a grid search procedure evaluating up to five different values for each parameter listed
below and repeat each run three times using different seeds. We find that the following configuration
works best.

Shared parameters for both methods:
3https://github.com/google/uncertainty-baselines/tree/master/baselines/cifar

25

https://github.com/google/uncertainty-baselines/tree/master/baselines/cifar

2 4 6 8 10 12 14 16
Ensemble size

0.960

0.965

0.970

Ac
cu

ra
cy

hyper-deep ensemble
deep ensemble

2 4 6 8 10 12 14 16
Ensemble size

0.10

0.12

Cr
os

s e
nt

ro
py

2 4 6 8 10 12 14 16
Ensemble size

0.05

0.06

Br
ie

r s
co

re

2 4 6 8 10 12 14 16
Ensemble size

0.01

0.02

EC
E

Figure 6: CIFAR-10. Comparison of our hyper-deep ensemble with deep ensemble, for different
ensemble sizes in terms of cross entropy (negative log-likelihood), accuracy, Brier score and expected
calibration error for a Wide ResNet 28-10 over CIFAR-10.

• The base learning rate of SGD: 0.1.

• Learning rate decay ratio: 0.2.

• Batch size: 64.

• Initialization of each entry of the fast weights according to N (1, 1).

• We multiply the learning rate for the fast weights by: 2.0.

Parameters specific to hyper-batch ensemble:

• Range for the L2 parameters: [0.1, 100].

• Range for the label smoothing parameter: [0, 0.2].

• Entropy regularization parameter: τ = 10−3 (as also used in the other experiments and used
by [52]).

• Learning rate for the tuning step (where we use Adam): 10−5.

Remarkably, we find that the shared set of parameters which work best for batch ensembles, also
work best for hyper-batch ensembles. This makes our method an easy-to-tune drop-in replacement
for batch ensembles.

D.2 Regularization of the rank-1 factors

As explained in the previous section, we find that for the Wide ResNet architecture, both hyper-batch
ensemble and batch ensemble work best when the rank-1 factors (rks>k and ukv

>
k) are not regularized.

We examine the performance of both models when using a regularization of the rank-1 factors. For
these versions of the models, we run an ablation over the same algorithmic choices as done in
the previous section. The results are displayed in Table 10. The performance of both methods is
substantially worse than the unregularized versions as presented in the main text, Table 2.

D.3 Out-of-distribution experiments

In this section, we provide an out-of-distribution evaluation along the line of Table 1 in [32].
More precisely, for each of the four approaches deep ens, hyper-deep ens, batch ens and
hyper-batch ens, we compute on out-of-distribution samples from other image datasets the fol-
lowing metrics:

• Mean maximum confidence (MMC) on out-distribution samples (lower is better)

26

1 2 3 4 5
Shift intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

EC
E

hyper-deep ens.
deep ens.
hyper-batch ens.
batch ens.
single

1 2 3 4 5
Shift intensity

0

1

2

3

4

Cr
os

s E
nt

ro
py

hyper-deep ens.
deep ens.
hyper-batch ens.
batch ens.
single

Figure 7: CIFAR-10. Additional plots for calibration on CIFAR-10 corruptions. The boxplots show
a comparison of expected calibration error and cross entropy (negative log-likelihood) on different
levels of corruption. Each box shows the quartiles summarizing the results across all types of skew
while the error bars indicate the min and max across different skew types. The plot for accuracy
under corruptions can be found in Figure 3.

Table 11: Out-of-distribution evaluation based on other image datasets. The table reports MMC (↓)/
AUROC (↑) / FPR@95 (↓) (see the precise definitions of the metrics in the text).

Trained on CIFAR-100 Trained on CIFAR-10
CIFAR-10 SVHN CIFAR-100 SVHN

deep ens (4) 0.502 / 0.816 / 0.762 0.538 / 0.796 / 0.792 0.742 / 0.912 / 0.482 0.599 / 0.972 / 0.185
hyper-deep ens (4) 0.524 / 0.822 / 0.741 0.580 / 0.787 / 0.787 0.730 / 0.915 / 0.469 0.608 / 0.967 / 0.237

batch ens (4) 0.568 / 0.810 / 0.753 0.594 / 0.795 / 0.771 0.800 / 0.908 / 0.493 0.700 / 0.961 / 0.269
hyper-batch ens (4) 0.544 / 0.814 / 0.748 0.553 / 0.813 / 0.753 0.746 / 0.907 / 0.519 0.675 / 0.951 / 0.364

• The AUC of the ROC curve (AUROC) for the task of discriminating between in- and
out-distributions based on the confidence value (higher is better)

• The false positive rate at 95% true positive rate (FPR@95) in the same discriminative task
(lower is better).

We summarize the results in Table 11, where we consider models both trained on CIFAR-10 (with
evaluation on CIFAR-100 and SVHN) and CIFAR-100 (with evaluation on CIFAR-10 and SVHN).
In a nutshell, hyper-deep ens (respectively hyper-batch ens) tends to favourably compare with
deep ens (respectively batch ens) on CIFAR-10 and CIFAR-100, while they appear to perform
worse over SVHN.

D.4 Complementary results for CIFAR-10

In this section we show complementary results to those presented in the main text for CIFAR-10.
Figure 6 compares hyper-deep ensembles against deep ensembles for varying ensemble sizes. We
find that the performance gain on CIFAR-10 is not as substantial as on CIFAR-100 presented in
Figure 1. However, hyper-deep ens improves upon deep ens for large ensemble sizes in terms
of NLL (cross entropy) and expected calibration error (ECE). The accuracy of hyper-deep ens is
slightly higher for most ensemble sizes (except for ensemble sizes 3 and 10).

Figure 7 shows a comparison of additional metrics on the out of distribution experiment presented in
the main text, Figure 3. We observe the same trend as in Figure 3 that hyper-batch ens is more
robust than batch ens as it typically leads to smaller worst values (see top whiskers in the boxplot).

D.5 Complementary results for CIFAR-100

In this section we show complementary results to those presented in the main text for CIFAR-100.
Figure 8 presents additional metrics (Brier score and expected calibration error) for varying ensemble
sizes for hyper-deep ensemble and deep ensemble. Additionally to the strong improvements in terms
of accuracy and NLL presented in Figure 1, we find that hyper-deep ens also improves in terms of
Brier score and but is slightly less calibrated than deep ensemble for large ensemble sizes.

27

2 4 6 8 10 12 14 16
Ensemble size

0.225
0.250
0.275

Br
ie

r s
co

re

2 4 6 8 10 12 14 16
Ensemble size

0.025

0.050

EC
E

hyper-deep ensemble
deep ensemble

Figure 8: CIFAR-100. Comparison of our hyper-deep ensemble with deep ensemble, for different
ensemble sizes, in terms of Brier score and expected calibration error for a Wide ResNet 28-10 over
CIFAR-100. Plots for negative log-likelihood and accuracy can be found in the main text, in Figure 1.

Table 12: Comparison of the numbers of parameters and training cost for hyper-batch ens and
batch ens for Wide ResNet 28-10.

CIFAR-10 Time/epoch. total epochs. total time # parameters

hyper-batch ens 2.07 min. 300 10.4h 73.1M

batch ens 1.01 min. 250 4.2h 36.6M

CIFAR-100

hyper-batch ens 2.16 min. 300 10.8h 73.2M

batch ens 1.10 min. 250 4.6h 36.6M

D.6 Memory and training time cost

For hyper-batch ensemble and batch ensemble, Table 12 reports the training time and memory cost
in terms of number of parameters. Our method is roughly twice as costly as batch ensemble with
respect to those two aspects. As demonstrated in the main text, this comes with the advantage of
achieving better prediction performance. In Appendix C.7.4 we show that doubling the number of
parameters for batch ensemble still leads to worse performance than our method.

E Towards more compact self-tuning layers

The goal of this section is to motivate the introduction of different, more compact parametrizations of
the layers in self-tuning networks.

In [52], the choice of their parametrization (i.e., shifting and rescaling) is motivated by the example
of ridge regression whose solution is viewed as a particular 2-layer linear network (see details in
Section B.2 of [52]). The parametrization is however not justified for other losses beyond the square
loss. Moreover, by construction, this parametrization leads to at least a 2x memory increase compared
to using the corresponding standard layer.

If we take the example of the dense layer with input and output dimensions r and s respectively,
recall that we have

W + ∆ ◦ e(λ), with W,∆ ∈ Rr×s.
Let us denote by ζj ∈ {0, 1}s the one-hot vector with its j-th entry equal to 1 and 0 elsewhere, ej(λ)
the j-th entry of e(λ) and δj the j-th column of ∆. We can rewrite the above equation as

W+

s∑
j=1

ej(λ)δjζ
>
j = W+

s∑
j=1

ej(λ)Wj =

s∑
j=0

ej(λ)Wj with e0(λ) = 1 and W0 = W. (14)

As a result, we can re-interpret the parametrization of [52] as a very specific linear combination of
parameters Wj where the coefficients of the combination, i.e., e(λ), depend on λ.

Based on this observation and insight, we want to further motivate the use of self-tuned layers with
more general linear combinations (dependent on λ) of parameters, paving the way for more compact
parametrizations. For instance, with W ∈ Rr×s,G ∈ Rr×h and H ∈ Rs×h as well as e(λ) ∈ Rh,

28

we could consider

W +

h∑
j=1

ej(λ)gjh
>
j = W + (G ◦ e(λ))H>. (15)

Formulation (15) comes with two benefits. On the one hand, it reduces the memory footprint, as
controlled by the low-rank factor h which impacts the size of both (G ◦ e(λ))H> and e(λ). On the
other hand, we can hope to get more expressiveness and flexibility since in (14), only the δj’s are
learned, while in (15), both the vector gj’s and hj’s are learned.

E.1 Problem statement

Along the line of [52], but with a broader scope, beyond the ridge regression setting, we now provide
theoretical arguments to justify the use of such a parametrization. We focus on the linear case with
arbitrary convex loss functions. We start by recalling some notation, some of which slightly differ
from the rest of the paper.

Notations. In the following derivations, we will use

• Input point x ∈ Rd with target y
• The distribution over pair (x, y) is denoted by P
• Domain Λ ⊆ Rm+1 of (m + 1)-dimensional hyperparameter λ = (λ0,λ1) ∈ Λ (with

λ1 of dimension m). We split the vector representation to make explicitly appear λ0, the
regularization parameter, for a reason that will be clear afterwards.

• Feature transformation of the input points φ : Rd 7→ Rk. When the feature transformation
is itself parametrized by some hyperparameters λ1, we write φλ1

(x).
• The distribution over hyperparameters (λ0,λ1) is denoted by Q
• Embedding of the hyperparameters e : Λ 7→ Rq

• The loss function ŷ 7→ `λ1
(y, ŷ), potentially parameterized by some hyperparameters λ1.

We focus on the following formulation

min
U∈Rk×q

E(λ0,λ1)∼Q

[
E(x,y)∼P

[
`λ1

(y, φλ1
(x)>Ue(λ))

]
+
λ0

2
‖Ue(λ)‖2

]
. (16)

Note the generality of (16) where the hyperparameters sampled from Q influence the regularization
term (via λ0), the loss (via `λ1) and the data representation (with φλ1).

In a nutshell, we want to show that, for any λ ∈ Λ, Ue(λ)—i.e., a linear combination of parameters
whose combination depends on λ, as in (15)—can well approximate the solution w(λ) of

min
w∈Rk

E(x,y)∼P

[
`λ1

(y, φλ1
(x)>w)

]
+
λ0

2
‖w‖2.

In Proposition E.3, we show that when we apply a stochastic optimization algorithm to (16), e.g.,
SGD or variants thereof, with solution Û, it holds in expectation over λ ∼ Q that w(λ) ≈ Ûe(λ)
under some appropriate assumptions.

Our analysis operates with a fixed feature transformation φλ1
(e.g., a pre-trained network) and with

a fixed embedding of the hyperparameters e (e.g., a polynomial expansion). In practice, those two
quantities would however be learnt simultaneously during training. We stress that, despite those two
technical limitations, the proposed analysis is more general than that of [52], in terms of both the loss
functions and the hyperparameters covered (in [52], only the squared loss and λ0 are considered).

We define (remembering the definition λ = (λ0,λ1))

gλ(w) = E(x,y)∼P

[
`λ1

(y, φλ1
(x)>w)

]
fλ(Ue(λ)) = gλ(Ue(λ)) +

λ0

2
‖Ue(λ)‖2

F (U) = Eλ∼Q
[
fλ(Ue(λ))

]
= Eλ∼Q

[
gλ(Ue(λ))

]
+

1

2
Tr(UCU>)

29

E.2 Assumptions

(A1) For all λ ∈ Λ, gλ(·) is convex and has Lλ-Lipschitz continuous gradients.

(A2) The matrices C = Eλ∼Q[λ0e(λ)e(λ)>] and Σ = Eλ∼Q[e(λ)e(λ)>] are positive definite.

E.3 Direct consequences

Under the assumptions above, we have the following properties:

• For all λ ∈ Λ, the problem

min
w∈Rk

{
gλ(w) +

λ0

2
‖w‖2

}
admits a unique solution which we denote by w(λ). Moreover, it holds that

∇gλ(w(λ)) + λ0w(λ) = 0 (17)

• F (·) is strongly convex (C � 0) and the problem

min
U∈Rk×q

F (U)

admits a unique solution which we denote by U?.

E.4 Preliminary lemmas

Before listing some lemmas, we define for any λ ∈ Λ and any ∆(λ) ∈ Rk

R(∆(λ)) = gλ(∆(λ) + w(λ))− gλ(w(λ))−∆(λ)>∇gλ(w(λ))

which is the residual of the first-order Taylor expansion of gλ(·) at w(λ). Given Assumption (A1), it
notably holds that

0 ≤ R(∆(λ)) ≤ Lλ

2
‖∆(λ)‖22. (18)

Lemma E.1. We have for any U ∈ Rk×q and any λ ∈ Λ, with ∆(λ) = Ue(λ)−w(λ),

fλ(Ue(λ)) = gλ(Ue(λ)) +
λ0

2
‖Ue(λ)‖2

= gλ(∆(λ) + w(λ)) +
λ0

2
‖∆(λ) + w(λ)‖2

= fλ(w(λ)) +R(∆(λ)) +
λ0

2
‖∆(λ)‖2 + ∆(λ)>[∇gλ(w(λ)) + λ0w(λ)]

= fλ(w(λ)) +R(∆(λ)) +
λ0

2
‖∆(λ)‖2

where in the last line we have used the optimality condition (17) of w(λ).

As a direct consequence, we have the following result:
Lemma E.2. For any U1,U2 ∈ Rk×q and defining for any λ ∈ Λ, with ∆j(λ) = Uje(λ)−w(λ),
it holds that

F (U1) ≤ F (U2)

if and only if

Eλ∼Q
[
R(∆1(λ)) +

λ0

2
‖∆1(λ)‖2

]
≤ Eλ∼Q

[
R(∆2(λ)) +

λ0

2
‖∆2(λ)‖2

]
.

E.5 Main proposition

Before presenting the main result, we introduce a key quantity that will drive the quality of our
guarantee. To measure how well we can approximate the family of solutions {w(λ)}λ∈Λ via the
choice of e and Q, we define

Uapp = arg min
U∈Rk×q

Eλ∼Q
[
‖Ue(λ)−w(λ)‖2

]
and ∆app(λ) = Uappe(λ)−w(λ).

The definition is unique since according to (A2), we have Σ � 0.

30

Proposition E.3. Let assume we have an, possibly stochastic, algorithm A such that after t steps of
A to optimize (16), we obtain Ut satisfying

EA[F (Ut)] ≤ F (U?) + εAt

for some tolerance εAt ≥ 0 depending on both t and the algorithm A. Denoting by ∆t(λ) =
Ute(λ) −w(λ) the gap between the estimated and actual solution w(λ) for any λ ∈ Λ, it holds
that

EA, λ∼Q
[
R(∆t(λ)) +

λ0

2
‖∆t(λ)‖2

]
≤ Eλ∼Q

[
R(∆app(λ)) +

λ0

2
‖∆app(λ)‖2

]
+ εAt .

In particular, we have:

EA, λ∼Q
[
λ0‖Ute(λ)−w(λ)‖2

]
≤ Eλ∼Q

[
(Lλ + λ0)‖∆app(λ)‖2

]
+ εAt .

Proof. Starting from
EA[F (Ut)] ≤ F (U?) + εAt

and applying Lemma E.2, we end up with (the expectation EA does not impact the result of
Lemma E.2 since the term fλ(w(λ)) that cancels out on both sides is not affected by A)

EA, λ∼Q
[
R(∆t(λ)) +

λ0

2
‖∆t(λ)‖2

]
≤ Eλ∼Q

[
R(∆?(λ)) +

λ0

2
‖∆?(λ)‖2

]
+ εAt .

Similarly, by definition of U? as the minimum of F (·), we have

F (U?) ≤ F (Uapp)

which leads to

Eλ∼Q
[
R(∆?(λ)) +

λ0

2
‖∆?(λ)‖2

]
≤ Eλ∼Q

[
R(∆app(λ)) +

λ0

2
‖∆app(λ)‖2

]
.

Chaining the two inequalities leads to the first conclusion. The second conclusion stems from the
application of (18).

31

