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Abstract

Entropy regularization, smoothing of Q-values and neural network function ap-
proximator are key components of the state-of-the-art reinforcement learning (RL)
algorithms, such as Soft Actor-Critic [1]. Despite the widespread use, the impact
of these core techniques on the convergence of RL algorithms is not yet fully
understood. In this work, we analyse these techniques from error propagation
perspective using the approximate dynamic programming framework. In particular,
our analysis shows that (1) value smoothing results in increased stability of the
algorithm in exchange for slower convergence, (2) entropy regularization reduces
overestimation errors at the cost of modifying the original problem, (3) we study a
combination of these techniques that describes the Soft Actor-Critic algorithm.

1 Introduction

In practical settings, the reinforcement learning (RL) algorithms are faced with a challenge of
maximizing the cumulative reward given a finite sample of environment transitions and inexact
representation of policy and value function. This gives rise to errors that propagate across learning
iterations and, combined, can result in divergence. Recently, state-of-the-art RL algorithms have
been successful in solving complex environments and, hence, overcoming inaccuracies and their
accumulation.
A number of techniques is commonly used in the large-scale RL setting, namely, entropy regulariza-
tion, smoothing of Q-values and neural network function approximation. The entropy regularized
methods [2, 3, 1] have shown robust behaviour on a variety of simulated and real-world tasks. In
addition to regularization, smoothing of Q-value function, known as "soft" or delayed target update,
is reported to increase stability of the algorithm and lower the risk of divergence [4, 5, 1]. Besides
entropy regularization and value smoothing, notable progress on complex environments has been
achieved with the use of neural network function approximators [6].

Despite practically valuable results, the theory behind these components is incomplete. Recently,
several theoretical frameworks have been proposed to capture a multitude of entropy-regularized
methods [7, 8, 9], still the practical effectiveness of entropy regularization is not yet fully understood.
Recent works contributed to the theoretical grounding of the state-of-the-art entropy regularized
policy-gradient algorithms [10, 11] and understanding the geometry of their objective function [12].

Contributions. In this paper, we show the implications of the above techniques on error propagation
and convergence of actor-critic and value-based RL algorithms. We carry the error propagation
analysis of abstract algorithms implementing entropy regularization and value smoothing using
approximate dynamic-programming framework [13].

In detail, (1) We formalize the value smoothing technique using a new smooth Bellman operator.
The analysis of the resulting dynamic programming scheme shows that value smoothing results in
increased stability in exchange for slower convergence. (2) Based on the formalism of regularized
Bellman operators [8], we show that the entropy regularization reduces overestimation errors [14]
at the cost of modifying the original problem. The amount of this reduction depends on the size
of state-action advantages scaled by the regularization parameter. (3) Motivated by the popular
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Soft Actor-Critic algorithm [1], we provide error bounds for an abstract algorithm that combines
smoothing with regularization and utilises neural network function approximation.

Related work Prior works build their analysis on the top of approximate dynamic programming
framework [13] (ADP). Regularized ADP [8] unifies (relative) entropy regularized algorithms through
the use of regularization function. A related value-based scheme [9] generalizes the entropy reg-
ularized value iteration and gap-increasing methods. Another extension of ADP [15] proposes a
value iteration algorithm with time-varied degree of value smoothing. Yet another study [16] shows
that the KL divergence regularizer leads to the error averaging effect. Our work is different from
the above-cited work since (1) we study a fixed value smoothing through a new type of Bellman
operator, (2) we provide an alternative analysis of the regularized value iteration that highlights the
effectiveness of entropy regularization.

Outline The paper is organized as follows. First, the necessary background is presented in Sec. 2.
Next, we analyse the value smoothing technique in Sec 3 and the entropy regularization in Sec. 4.
Finally, in Sec. 5 we introduce an abstract algorithm that combines both techniques and neural
network function approximation as in the Soft Actor-Critic algorithm.

2 Setting

2.1 Markov decision process

∆X will denote the set of probability distributions over finite set (or general measurable space) X and
Y X is a set of functions from setX to set Y . We consider a Markov decision process (MDP) is a tuple
M := (S,A, P, r, γ) where S is a state space, A is a finite action space, P ∈ ∆S×AS is the transition
kernel with P (s′|s, a) being a probability of environment moving to a state s′ given an action a in a
state s, accompanied by a reward r(s, a) (assumed to be bounded). We define a stochastic stationary
policy π ∈ ∆SA. We consider the discounted setting with discount factor γ ∈ [0, 1).

We define the Bellman operator T π for any function V ∈ RS , ∀s ∈ S as follows

[T πV ](s) := Ea∼π(·|s)
[
r(s, a) + γEs′∼P (·|s,a)[V (s′)]

]
= rπ(s) + γPπ(·|s)V, (1)

where rπ ∈ RS and Pπ ∈ ∆SS are defined by rπ(s) := Ea∼π(·|s)[r(s, a)] and Pπ(s′|s) :=
Ea∼π(·|s)[P (s′|s, a)]. T π is a γ-contraction in `∞ norm and its unique fixed-point is V π:=
limk→∞(T π)kV = V π, where equality holds component-wise. For any function V ∈ RS , as-
sociate a function QV ∈ RS×A as follows QV (s, a) := r(s, a) + γEs′∼P (s′|s,a)[V (s′)].

Finally, we define the optimal Bellman operator as follows (the max is point-wise)

T V := max
π
T πV, (2)

which again is a γ-contraction in `∞ norm and its unique fixed-point is the optimal value function V ∗.
We denote by G(V ) the set of optimal (greedy) policies that achieve the maximum of (2) state-wise

G(V ) := arg max
π

T πV ⊆ ∆SA.

Further, we will omit the per-state notation and imply that the relations hold state-wise.

2.2 Modified policy-iteration schemes

Modified Policy Iteration (MPI) [17]. MPI is a classical dynamic programming algorithm that
alternates between policy improvement and (partial) policy evaluation steps. For m ≥ 1, the m-step
MPI algorithm is defined as follows

(MPI)
{
πt+1 ← G(Vt)
Vt+1 ← (T πt+1)mVt,

(3)

where m = 1 corresponds to Value Iteration and m =∞ corresponds to Policy Iteration. Here Vt
denotes an approximation of V πt .
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Approximate Modified Policy Iteration (AMPI) [13]. AMPI is an approximate counterpart of (3)
that can be seen as a generalization of MPI that allows errors in the policy improvement (ε′t) and
policy evaluation (εt) steps

(AMPI)
{
πt+1 ← Gε

′
t+1(Vt)

Vt+1 ← (T πt+1)mVt + εt+1,
(4)

where εt, ε′t ∈ RS are respectively the evaluation step and the policy improvement step error vectors
(one component per state) and π ∈ Gε′(V ) ⇐⇒ ∀π′ T π′V ≤ T πV + ε′. AMPI naturally arises
from MPI in practical settings with large or infinite state-action spaces. Commonly, the errors include
sampling errors due to the limited number of rollouts at each iteration and function approximation
errors due to solving the regression problem to represent policy and value function. From (4), the
approximation errors are defined as follows

εt := Vt − T πtVt−1, ε′t := T Vt−1 − T πtVt−1. (5)

The error propagation analysis links the error sequence that occurred at previous iterations to
the distance to optimality of the current value iterate. The following Lemma shows that (a) the
convergence of the AMPI algorithm depends on the cumulative error term EN , (b) the error-free MPI
algorithm converges with the rate γ.
Lemma 1 (AMPI error propagation [13]). For any initial value function V0, consider the AMPI
scheme (4) with m ≥ 1. Then, one has

‖V πN − V ∗‖∞ ≤
2

1− γ
(
EN + γN‖V0 − V ∗‖∞

)
, (6)

where EN :=
∑N−1
t=1 γN−t(‖εt‖∞ + ‖ε′t‖∞).

3 Smooth Approximate Modified Policy Iteration

Besides approximation, state-of-the-art RL algorithms employ value smoothing [4, 5] that consists in
applying exponential smoothing rule to the result of approximate policy evaluation step Vt+1

Ṽt+1 = (1− β)Ṽt + βVt+1,

where β ∈ (0, 1] controls the degree of smoothing. Value smoothing has been consistently reported
to bring stability in the large-scale RL setting [4, 5, 1]. However, these practical benefits are not fully
supported by theoretical understanding. In this paper, we analyse the smoothing technique using a
new type of Bellman operator, called smooth Bellman operator.

3.1 Smooth Bellman operators

Definition 1 (Smooth Bellman operators). Given β ∈ (0, 1] define a smooth Bellman operator
T πβ : V → V as a convex combination of standard Bellman operator T π : V → V and identity
operator I : V → V

T πβ := βT π + (1− β)I, (7)

the optimal smooth Bellman operator and the set of smooth optimal policies

Tβ := max
π
T πβ , Gβ(V ) := arg max

π
T πβ V.

It can be shown that smooth Bellman operators satisfy the contraction, monotonicity and distributivity
properties (see proof in Appendix B.1). In particular, the (optimal) smooth Bellman operator is a
contraction mapping with coefficient βγ + (1− β) in sup-norm

‖T πβ V1 − T πβ V2‖∞ ≤ (βγ + (1− β))‖V1 − V2‖∞.

This contraction property is weaker than for the standard Bellman operator since 0 ≤ γ ≤ βγ + (1−
β) < 1 for γ, β ∈ (0, 1]. Importantly, the set of optimal policies of the smooth Bellman operator
remains the same as with the one of the standard Bellman operator (see section 3.2 for more on this)

Gβ(V ) := arg max
π

T πβ V = arg max
π

T πV,
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and the optimal value function V ∗ remains the fixed point of the optimal smooth Bellman operator

TβV ∗ = βmax
π
T πV ∗ + (1− β)V ∗ = V ∗.

3.2 Smooth AMPI scheme

Using the smooth Bellman operators, the approximate policy evaluation step and the smoothed update
can be represented as follows by re-arranging terms

Vt+1 = (1− β)Vt + β(rπ + γPπVt + εt) = T πβ Vt + βεt.

Further, the set of β-smoothed βε′-approximation optimal policies equals to the standard set of
ε′-approximate optimal policies, i.e Gε′(V ) = Gβε

′

β (V ). Indeed,

π ∈ Gε
′
t(Vt) ∀π′ ⇐⇒ T π

′
Vt ∀π′ ≤ T πVt + ε′t ∀π′

⇐⇒ βT π
′
Vt + (1− β)Vt ≤ βT πVt + (1− β)Vt + βε′t ∀π′

⇐⇒ π ∈ Gβε
′
t

β .

This allows to formulate the value smoothing as a valid AMPI scheme with the smooth Bellman
operator, called the smooth AMPI scheme

(smooth AMPI)

{
πt+1 = Gβε

′
t+1

β (Vt)

Vt+1 = T πt+1

β Vt + βεt+1.
(8)

where εt, ε′t ∈ RS are the error vectors in the AMPI scheme as defined by (5). A direct consequence
of the smooth AMPI scheme is that the size of approximation errors is lowered by a factor of β.
Below, we detail the implications of smoothing on convergence through the errors propagation
analysis of the scheme (8).

3.3 Error propagation of the smooth AMPI

Proposition 1 (Smooth AMPI error propagation). For any initial value function V0, consider the
smooth AMPI scheme (8) with smoothing coefficient β ∈ (0, 1]. Let γ̃ := βγ + (1− β). Then

‖V πN − V ∗‖∞ ≤
2

1− γ̃
(
βEN + γ̃N‖V0 − V ∗‖∞

)
, (9)

where EN :=
∑N−1
t=1 γ̃N−t(‖εt‖∞ + ‖ε′t‖∞) and εt, ε′t ∈ RS are the error vectors of approximate

policy evaluation and policy improvement step defined by (5).

Increased stability The above error bound stabilizes training of the smooth AMPI compared to
the standard AMPI (6) since the size of the error term EN is reduced by a smoothing factor of
β ∈ (0, 1]. The error down-weighting results in a smaller variance of performance and thus, increased
stability. With sufficiently small β, the smooth AMPI induces lower risk of divergence, that arises
due to the composition of approximation and contraction, i.e. ‖T πβ V1 + βε1 − T πβ V2 − βε2‖∞ ≤
γ̃‖V1 − V2‖∞ + β‖ε1 − ε2‖∞ < ‖V1 − V2‖∞ for β � 1. These benefits have been also observed
empirically [1, 5, 4].

Slower convergence The above benefits are achieved at the cost of slowing down the convergence
through an increased value of the contraction coefficient γ̃, since the standard AMPI scheme conver-
gences faster at rate γ ≤ γ̃. Moreover, at a fixed number of iterations, the smooth AMPI scheme is
more sensitive to initialization, e.g. random seed. Indeed, high variability in performance depending
on a random seed is reported in the deep RL literature [5, 18].

Numerical illustration We numerically confirm the implications of the smoothing technique on the
convergence, provided by Proposition 4. We run experiments on a toy stochastic gridworld problem
with the evaluation step error due to the sampling of state-transitions. We plot the performance loss
over 30 runs with varying values of smoothing factor β. As can be seen from Figure 1, smaller values
of β result in tighter confidence intervals, but slower convergence speed.
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Figure 1: Performance loss computed over 30 runs of the smooth AMPI (8) with sampling of
environment transitions under varying smoothing degree β. Larger values of β induce smaller
variance of performance, and hence, greater stability, at the cost of slower convergence.

Remark. In practice, the smoothing is applied to the value network weights instead of outputs. Our
analysis is still relevant in this case since (randomly initialized) value network with sufficiently large
width and gradient descent training can be well-approximated by a linear model [19] (see Sec. 5.3).

4 Entropy-regularized Approximate Value Iteration

Entropy regularization consists in modifying the standard RL objective to additionally maximize
a per-state (relative) entropy of a policy. Regularized MPI framework summarizes the entropy
regularized algorithms using the notion of regularized Bellman operator [8].

In this work, we focus on the value iteration instance of the regularized MPI, motivated by the
practical algorithms, such as Soft Actor-Critic [1] and Soft Q-learning [3]. As in these algorithms, we
consider the regularized Bellman operator with regularization function given by the negative entropy
and a time-varying regularization parameter.

Entropy regularized Bellman operators Define a strongly convex regularization function Ω :
∆A → R given by a per-state negative entropy a policy

Ω(π(·|s)) = −H(π(·|s)) =
∑
a

π(a|s) log π(a|s).

Similarly to standard Bellman operators (1), we define the entropy regularized Bellman operator [8]
with time-varying regularization parameter αt > 0

T πΩtV := T πV − αtΩ(π), (10)

By Fenchel duality, the optimal entropy regularized Bellman operator is a smooth maximum

TΩtV := max
π∈∆SA

T πΩtV = (Ω∗t (QV (s, ·))s∈S = (αt log
∑
a

exp(QV (s, a)/αt))s∈S ,

and the corresponding optimal policy GΩt(V ) ∈ ∆SA is given by the Boltzmann policy

(πBV (·|s))s∈S = GΩt(V ) := arg max
π∈∆SA

T πΩtV = (∇Ω∗t (QV (s, ·))s∈S ,

that takes the form

πBV (a|s) =
exp(QV (s, a)/αt)∑
a′ exp(QV (s, a′)/αt)

, (11)

where αt > 0 is referred to as temperature parameter.

Regularization gap Our error analysis makes use of the difference between regularized and
standard optimal Bellman operators, called regularization gap.

5



Definition 2 (Regularization gap). For regularization function Ω : ∆A → R, define the regularization
gap Ω∗(AV (s, ·)) at state s ∈ S as follows

Ω∗(AV (s, ·)) := [TΩtV ](s)− [T V ](s)

= Ω∗(QV (s, ·))−maxQV (s, ·) = Ω∗(QV (s, ·)−maxQV (s, ·))

where AV (s, a) := QV (s, a)−maxQV (s, ·) is known as action advantage function or action gap.

In the case of negative entropy regularizer, the regularization gap takes the form of smooth maximum
over the state-action advantages, bounded as follows (see proof in Appendix C)

0 ≤ Ω∗t (AV (s, ·)) := αt log
∑
a

exp(AV (s, a)/αt) ≤ αtH(πBV ). (12)

Regularized value function Basic properties of Bellman operators including the γ-contraction
are preserved in the case of regularized Bellman operators. It is well-known that the regularized
algorithms return a value function different from the optimal value function V ∗ [8]. For time-varying
regularized algorithms, the regularized value function VN := TΩN (TΩN−1

(. . . (TΩ1
V0))) is within a

controllable distance to the optimal value function of the original problem.

Lemma 2 (Regularized value function). Consider time-varying regularization function Ωt(π) :=
αtΩ(π) for αt > 0. Denote the regularized value function after N iterations VN :=
TΩN (TΩN−1

(. . . (TΩ1V0))). Then, VN satisfies

‖VN − V ∗‖∞ ≤
N∑
t=1

γN−t‖Ω∗t (AVt−1
)‖∞ + γN‖V0 − V ∗‖∞. (13)

Entropy-regularized approximate value iteration (reg-AVI) Consider approximate value itera-
tion (AVI) algorithm that is an instance of the AMPI scheme with m = 1

(AVI) Vt+1 ← T Vt + εt+1, (14)

where εt ∈ RS is the error vector of approximate update. AVI can be equivalently represented using
the entropy regularized Bellman operators

(reg-AVI) Vt+1 ← TΩtVt + ε̄t+1, (15)

where ε̄t ∈ RS is the reg-AVI error vector, defined as a transformation of approximation errors

ε̄t+1 := Vt+1−TΩtVt = Vt+1−TΩtVt+(T Vt−T Vt) = Vt+1−T Vt−Ω∗t (AVt) = εt+1−Ω∗t (AVt).
(16)

This equivalence suggests that the error bound for the reg-AVI is the same as for the AVI. This
conclusion has also been obtained by [8] through a different analysis. Despite this equivalence, the
reg-AVI remains beneficial as the regularized Bellman operator preserves the γ-rate of convergence,
whereas the positive errors (overestimation) can be decreased (see Sec. 4.1). This improves the
stability of the algorithm and lowers the risk of divergence.

4.1 Error propagation of the reg-AVI

Proposition 2 (reg-AVI error propagation). For any initial value function V0, consider the entropy-
based reg-AVI scheme (15) with time-varying regularization parameter (αt)t > 0. Then, it holds that

‖VN − V ∗‖∞ ≤ EN +AN + γN‖V0 − V ∗‖∞, (17)

where EN :=
∑N
t=1 γ

N−t‖εt − Ω∗t (AVt−1
)‖∞, AN :=

∑N
t=1 γ

N−t‖Ω∗t (AVt−1
)‖∞, the regulariza-

tion gap Ω∗(AV ) := TΩV − T V and the approximation errors of value update εt := Vt − T Vt−1.

Overestimation errors Consider positive errors εt := Vt − T Vt−1 ≥ 0, known as overestimation
errors in actor-critic and value-based RL algorithms [20, 14, 21, 5]. These errors arise due to
the noisy estimates of state-action values that, through the maximization step, result in a positive
bias. For example, the noise can be induced by the function approximator [20] or can represent an
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environmental noise [14]. Formally, by re-writing the Bellman operator w.r.t. Q-values

εt+1(s, a) = [T Q̂t](s, a)− [T Qt](s, a) = γEs′∼P (·|s,a)[max
a′

Q̂t(s
′, a′)−max

a′
Qt(s

′, a′)]

= γEs′∼P (·|s,a)[Eε̂[max
a′

(Qt(s
′, a′) + ε̂t(s

′, a′))]−max
a′

Qt(s
′, a′)] ≥ 0,

where the last inequality follows from Jensen’s inequality by convexity of maximum function.

The advantage of the bound (17) is that the cumulative error term EN could be made smaller by
appropriately tuning the temperature parameter αt to get the regularization gap Ω∗t (AVt−1) match the
overestimation error εt. In exchange, the AN term remains and results in a different regularized fixed
point.

Robustness to noise By (12), the regularization gap Ω∗t (AV ) is non-negative and controllable.
Thus, it follows from the above error bound that the overestimation errors of AVI can be reduced by
performing the reg-AVI with appropriate scaling of temperature parameter. The reduction is larger
for larger mean and variance of advantage values, i.e. difference of Q-values between the maximizing
action and all other actions. This reduction comes in exchange for convergence to a different value
function, related to the optimal value function by (26). As the γ-rate of convergence of the algorithm
is preserved, together with error reduction, the reg-AVI results in a stabilizing effect in a noisy setting.

Our findings are supported by previous work that reports robustness to stochastic noise of the Soft
Q-learning [3] and related algorithms [9]. Prior work [22] have shown that a related to the regularized
Bellman operator – a softmax operator – can reduce the overestimation bias. Moreover, our result
suggests similarity with advantage learning [23, 24] that amplifies the action advantages of Q-iterates.
In particular, the advantage learning operator reduces the positive (overestimation) errors since the
advantage values are negative

Qt+1(s, a)← [TALQt](s, a) + εt(s, a) = [T Qt](s, a) + εt(s, a) + αAQt(s, a).

Reinforcing the action gap is known to be advantageous in the presence of errors and stochasticity [25],
especially in environments operating at a fine time scale, such as robotic platforms and video games.

Temperature schedule The error bound (17) motivates the time-varying per-state temperature
parameter αt that depends on the size of overestimation errors and the regularization gap. The
appropriate temperature matches the overestimation errors to the stochasticity of the policy. Towards
a dynamic temperature adjustment, one can upper bound the size of overestimation errors using the
variance of Q-values [26, 3.3.2] and approximate the regularization gap using the scaled entropy of
the current policy, see (12).

5 Smooth Regularized Approximate Value Iteration

Motivated by the Soft Actor-Critic algorithm, we analyse an abstract algorithmic scheme that
combines the entropy regularization (Sec. 4) with the value smoothing (Sec. 3). In addition, we study
the function approximation errors induced by the policy and value network as in the Soft Actor-Critic
algorithm (Sec. 5.3).

5.1 Smooth regularized Bellman operators

Definition 3. For a smoothing parameter β ∈ [0, 1) and a regularization parameter α > 0, define
the smooth regularized Bellman operator as applying smoothing to the regularized Bellman operator

T πΩ,β := βT πΩ + (1− β)I. (18)

Similarly to smooth Bellman operator (see Sec. 3.1), smooth regularized Bellman operator is a
contraction mapping with coefficient γ̃ := γβ + (1− β) and satisfies basic properties of Bellman
operators. Closely following Sec. 3.1, one can define the optimal smooth regularized Bellman
operator TΩ,β and corresponding set of greedy policies GΩ,β . The basic properties of optimal operator
TΩ,β follow in the same way as for the evaluation operator.

Smooth regularized value function and smooth reg-AVI For time-varying regularized algo-
rithms, the smooth regularized value function VN := TΩN ,β(TΩN−1,β(. . . (TΩ1,βV ))) is within a
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controllable distance to the optimal value function of the original problem (see proof in Appendix D.1)

‖VN − V ∗‖∞ ≤ β
N∑
t=1

γ̃N−t‖Ω∗t (AVt−1)‖∞ + γ̃N‖V0 − V ∗‖∞.

Based on smooth regularized Bellman operators, we formulate the smooth regularized AVI scheme

(smooth reg-AVI) Vt+1 ← TΩt,βVt + βε̄t+1, (19)

where the errors ε̄t are the regularized AVI errors are defined by (16).

5.2 Error propagation of the smooth reg-AVI

Theorem 1 (Smooth reg-AVI error propagation). For any initial value function V0, consider the
smooth regularized AVI scheme (19) with smoothing parameter β ∈ [0, 1) and time-varying tempera-
ture parameter (αt)t > 0. Denote γ̃ := βγ + (1− β). Then, one has

‖VN − V ∗‖∞ ≤ βẼN + βÃN + γ̃N‖V0 − V ∗‖∞, (20)

where ẼN :=
∑N
t=1 γ̃

N−t‖εt − Ω∗t (AVt−1)‖∞, ÃN :=
∑N
t=1 γ̃

N−t‖Ω∗t (AVt−1)‖∞, the regulariza-
tion gap Ω∗(AV ) := TΩV − T V and the approximation errors of value update εt := Vt − T Vt−1.

This combined bound is beneficial since (a) it downweights terms ẼN and ÃN by a factor of β ∈ (0, 1]
(see Sec. 3.3), and (b) it allows to adjust the temperature parameter αt to match the noise level, making
the term ẼN even smaller (see Sec. 4.1). As a consequence, combining smoothing and regularization
in the Soft Actor-Critic algorithm (a) increases stability of the algorithm provided by the value
smoothing, and (b) reduces the value overestimation with appropriate scaling of regularization.

Besides the overestimation errors considered so far, the errors εt also include the estimation errors
due to the sampled-based Bellman update T̂ and the approximation errors due to the limited capacity
of the function approximator with parameters θ that represents the value function

‖εt+1‖ = ‖Vθt+1 − T̂Ω,βVt‖ ≤ ‖Vθt+1 −TΩ,βVt‖+ ‖TΩ,βVt − T̂Ω,βVt‖ = ‖εat+1‖+ ‖εet+1‖. (21)

Next, we detail the approximation errors εat in the case of neural network function class, utilised
in the large-scale RL setting in general and, in particular, in the Soft Actor-Critic algorithm. We
leave the estimation errors εet+1 out of scope of this work. We show that the use of neural network is
advantageous since the approximation errors vanish, under certain conditions, at increased width of
the network. In contrast, previously studied linear function approximators require providing good
features to achieve small approximation error [27, 9.5].

5.3 Neural network function approximation errors

The Soft Actor-Critic algorithm [1] utilises neural network function approximator to represent
policy and value function. Motivated by this algorithm, we analyse the smooth reg-AVI update (19)
performed by solving a neural network regression problem using gradient descent.

Formally, we consider the value network Vθ : S → R trained with the smooth reg-AVI update

(smooth reg-AVI) θk+1 ← arg min
θ
‖Vθ − TΩk,βVk‖22, Vk+1 ← Vθk+1

(22)

We assume that the optimization of the above problems is performed using the continuous-time
gradient descent. We leave the analysis of its discretized version out of scope of this paper.

Similar to [28], we define recursively a randomly initialized L-layer fully connected neural network
fθ : Rm0 → RmL . Namely, for layer h = 1, . . . , L

f
(h)
θ (x) = θ(h)g(h−1)(x), g(h)(x) =

√
cσ
mh

σ(f
(h)
θ (x)),

where θ(h) ∈ Rmh×mh−1 is a weight matrix of h-layer of size mh, initialized as i.i.d. Gaussians
N (0, 1), σ : R→ R is an element-wise activation function,

√
cσ/mh is a scaling factor that ensures
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that the norm g(h)(x) for each h ∈ [[L]] is approximately preserved at initialization. Assume g(0) = x
and m0 is the size of the input. Finally, we assume that the state space is finite of a size S = |S|.

Smooth reg-AVI update We consider that the value function is approximated using a value neural
network V := Vθ ∈ RS through the minimization problem (22). Note that in practical implementa-
tions the Bellman operator is evaluated using a target value network, e.g. in the Soft Actor-Critic [1].
Thus, the predicted values in (22) are considered fixed w.r.t. the current value network.

Let the minimization of problem (22) be achieved through the continuous-time limit of full-batch
gradient descent on vector of parameters θ, namely

θ̇(t) = −(∇θVθ)T (Vθ − TΩ,βVk)
∣∣
θ=θ(t)

.

In terms of value function, we obtain the following flow dynamics

dVθ
dt

= ∇θVθ θ̇(t) = −(∇θVθ)(∇θVθ)T (Vθ − TΩ,βVk)
∣∣
θ=θ(t)

= −K(t)(Vθ(t) − TΩ,βVk)
∣∣
θ=θ(t)

,

whereK(t) ∈ RS×S is a positive semi-definite matrix defined as (K(t))s,s′ = ∂Vθ(s)
∂θ

T ∂Vθ(s′)
∂θ

∣∣
θ=θ(t)

.

It has been shown in [19] that K(t) = K +O(m−1/2) holds almost surely for large m over random
initializations of the parameters of the neural network Vθ, i.e using neural network with width
minLl=1ml := m, where m −→ ∞, and S/m −→ α ∈ [0, 1). The deterministic limiting kernel
K ∈ RS×S is called the limiting Neural Tangent Kernel (NTK) [28] of the neural network Vθ and is
given by

K(s, s′) = Eθ0∼init

[
∂Vθ(s)

∂θ

T
∂Vθ(s

′)

∂θ

∣∣∣∣
θ=θ0

]
. (23)

The limiting NTK is defined over the state space where the gradient of the output of a randomly
initialized value network with respect to its weights plays the role of (non-linear) features. Below, we
show that the limiting NTK characterizes the approximation errors of a wide value network.
Theorem 2 (Linear convergence of value network errors). For notational simplicity, let us denote
the value network V (t) := Vθ

∣∣
θ=θ(t)

with sufficiently large width and the Bellman update bk+1 :=

TΩ,βVk. Then, if the limiting NTK of the neural net Vθ is positive definite, i.e its smallest eigenvalue
is positive λmin(K) > 0, then the following contraction holds almost surely over all initializations
θ(0) of the neural network

|uTj (V (t)− bk+1)| ≤ exp(−λmin(K)t)|uTj (V (0)− bk+1)|, ∀t ≥ 0, j ∈ [[S]],

where u1, . . . , uS are the eigenvectors of K. In particular, the process V (t) converges (in any norm)
to bk+1 almost surely over random initializations of Vθ at linear rate e−λmin(K).

Corollary 1 (Value network errors of the smooth reg-AVI). Under conditions of Theorem 2, the
neural network approximation error of problem (22) optimized by gradient descent is upper bounded
by

‖εak+1‖ = ‖Vθk+1
− TΩ,βVk‖

a.s.
= O(e−λmin(K)T ),

where K is the limiting NTK of the value network Vθ and T is the number of gradient descent steps.

Previously established bounds on approximation errors require computing the VC-dimension of a
function class [13]. Our analysis is different in that it uses the limiting NTK to characterize the
approximation errors of a wide neural network trained using gradient descent.

6 Concluding remarks

We have shown the implications of key components of the state-of-the-art RL algorithms, such as
value smoothing, entropy regularization and neural network approximators, on convergence of actor-
critic and value-based RL algorithms. We carried the error propagation analysis of abstract algorithms
implementing entropy regularization and value smoothing using approximate dynamic-programming
framework, and provided explicit bounds on the error to optimality.

9



Broader impact

This research benefits the RL researchers and practitioners running large-scale RL applications.
It improves theoretical understanding of the state-of-the-art techniques from error propagation
perspective. This is helpful in algorithm design for a particular application. Our analysis builds on
the top of approximate dynamic-programming framework and might not cover all the implications of
the above-mentioned techniques.
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