
The LoCA Regret: A Consistent Metric to Evaluate
Model-Based Behavior in Reinforcement Learning

— Supplementary Material —

A Tabular Experiments

Here, we discuss some additional settings for the tabular experiments. Full code is available at https:
//github.com/chandar-lab/LoCA. For all tabular experiments, we used ε-greedy exploration
with ε = 0.1. Furthermore, during pretraining and training, we used a maximum episode-length
of 100. For evaluation, we set ε = 0, and ran 10 evaluation episodes. For those 10 episodes, we
counted the fraction of episodes that the agent reached terminal 2 within 40 steps. All experiments
are repeated over 10 independent runs and averaged.

We used a fixed step-size α for all tabular experiments. For the model-based methods (MB-VI,
MB-SU and n-step model), α is used in the update of the (tabular) transition model and reward
function. For Sarsa(λ) and Q-learning, α is used to update the action-value function. For MB-VI and
MB-SU we used α = 0.2. Because the environment is deterministic, higher values of the step-size
would have been possible here. However, we opted for not making the step-size too high, because
we are ultimately interested in the function approximation scenario where large step-sizes are not an
option. For Sarsa(0.95), we used α = 0.05, because for higher step-size values performance became
unstable. The reason for this is that Sarsa(0.95), in contrast to MB-VI and MB-SU, is a multi-step
method. Therefore, there is stochasticity in the update target even in deterministic environments
due to exploration of the behavior policy. For the same reason, we used α = 0.04 for the n-step
models: for higher values the performance of the 5-step model became unstable. While for smaller
values of n, a higher step-size could be used, we used the same step-size for all n-step models to ease
comparison.

The initialization of a method does not affect the LoCA regret, because these effects are removed by
the first pretraining phase (pretraining on task A until convergence). For the default regret, however,
which does not use LoCA pretraining, the initialization of a method can affect performance. And
because the relative gain is based among others on the default regret, the initialization can affect the
relative gain as well. To remove bias from initialization effects from the default regret (and hence, the
relative gain), there are two options: 1) ensuring that all considered methods are initialized similarly;
2) pretraining on a unrelated task from which no useful information can be transferred. For the tabular
methods, we chose the former option. All methods used optimistic initialization. For Sarsa(λ) and
Q-learning, the action-value function was initialized at 4. For the model-based methods, the initial
transition model predicts a terminal state for each state-action pair; the initial reward model predicts
a reward of 4 for each state-action pair.

A.1 On-Policy Model-Based Method

The pseudocode of the tabular, on-policy method used in Section 5.1 is shown in Algorithm 1. The
algorithm maintains estimates P̂n and R̂n of the n-step transition model and n-step reward function:

Pnπ (z|s, a) := P(St+n = z|St = s,At = a, π}
Rnπ(s, a) := E{Rt + γRt+1 + · · ·+ γn−1Rt+n−1|St = s,At = a, π}

These estimates are updated at the end of the episode, using the data gathered during the episode. If
t+ n falls beyond the end of an episode, then Pn(·|St, At) is updated using the terminal state (and
rewards are 0 after the end of an episode). The algorithm also maintains an estimate of the value

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/chandar-lab/LoCA
https://github.com/chandar-lab/LoCA

function, V̂ . We use a conservative update strategy for updating the state-value function, by only
updating the value of the current state. The algorithm does not store a Q-value function, but computes
estimates of the Q-values for the current state on-the-fly using its estimates of P̂n, R̂n and V̂ .

Algorithm 1 tabular n-step model-based method

For all s: V̂ (s)← 0

For all s, a: R̂n(s, a)← 0

For all s, a, z: P̂n(z|s, a)← 0
Loop (over episodes):

t← 0
episode_samples← ∅
obtain initial state S
While S is not terminal, do:

For all actions a:
Q(a)← R̂n(S, a) + γn ∑

z P̂
n(z|S, a) · V̂ (z)

V̂ (S)← (1− α) · V̂ (S) + α ·maxaQ(a)
select action A based on Q(a)
take action A, observe next state S′ and reward R
add (S,A,R)t to episode_samples
S ← S′

t← t+ 1
For all (St, At) in episode_samples

update Pn(·|St, At) using St+n

update Rn(St, At) using Rt+1 + γRt+2 + . . .+ γn−1Rt+n

B Mountain Car Experiments

In this section, we describe the implementation details of Mountain Car experiments.

B.1 Environment

We used a modified version of the classic mountain car environment for our experiments. In particular,
we added another terminal state, T2, that corresponds to the car being at the bottom of the hill with a
velocity close to zero ([(x− 0.52)2 + (10v)2] < R2). In our experiments, we chose R = 0.07. Since
we found MuZero struggling to reach T2, we decided to sample the initial state for both MuZero
and Sarsa(λ) from a mixture of two uniform distributions. With the probability p, the initial state is
sampled from the whole state space (x ∼ [−1.2, 0.5] and v ∼ [−0.07, 0.07]) and with probability
1 − p, it is sampled from a smaller box around T2 (x ∼ [−1, 0] and v ∼ [−0.03, 0.03]). We set
p = 0.5 for our experiments. Moreover, during evaluation phase, the initial state is sampled from an
area which has almost same distance to each terminal (x ∼ [−0.2,−0.15] and v ∼ [−0.005, 0.005]).

B.2 Sarsa(λ)

We used the common linear representation based on tile-coding, which uses 10 overlapping grid-
tilings, each consisting of 10× 10 tiles (for further details, see [2]). Furthermore, we used λ = 0.9
and a learning rate α = 0.05. Also, we used ε-greedy as the exploration strategy. During the
first pretraining phase (pretraining on task A until convergence), ε has an initial value of 1 that
exponentially decays to 0.01. Note that this ε-decay is simply used to speed up the pretraining phase;
it does not affect the LoCa regret. During the second pretraining phase (local pretraining on task B)
and the training phase, we used a fixed ε of 0.1. And during evaluation, we used ε = 0. Finally, we
let the Sarsa(λ) agent to be trained for 200 k steps, 5 k steps and 40 k steps during phase 1, phase 2
and phase 3, respectively.

B.3 MuZero

For our mountain car experiments, we used the same hyperparameters for MuZero as the ones used
in [1], except those that we mention here. We let the MuZero agent to be trained for 200 k steps, 5 k
steps and 40 k steps during phase 1, phase 2 and phase 3, respectively.

2

B.3.1 Network architectures

The input to the representation network is a two dimensional state of the environment. The size output
of the representation network is 8 which will be used as the input to the prediction network. The input
to the dynamics network is the hidden state produced by the representation network concatenated
with a one-hot representation of the action taken. Dynamics network and prediction network consist
of two fully-connected layers followed by the ReLU activation functions. We used 6 values from -1
to +4 for reward support and value support which are the output of reward prediction network and
value prediction network, respectively. Furthermore, similar to MuZero Reanalyze [1], we used a
target network to have more stable and faster training.

Figure 1: Networks

B.4 Default Regret

As mentioned in Section A, the initialization of a method can affect the default regret and, conse-
quently, the relative gain. Furthermore, because Sarsa(λ) and MuZero have very different internal
representations, it is hard to guarantee that they are initialized in a fair way that does not give an
implicit advantage to either one. For this reason, to compute the default regret, we pretrained both
methods until convergence on a task from which no useful information can be transferred. Pretraining
on the same task until convergence assures methods have the same starting point even if they use
different internal representations and different initialization. The specific pretraining task we picked
was a variation of task A with shuffled action-indices. Specifically, whereas action ‘0’ normally
pushes the cart to the left; in our shuffled version, action 0 is the no-op action. Similarly, action
1—normally the no-op action—pushes the cart to the right, and action 2—normally pushing the cart
to the right—pushes the cart to the left. Note that no useful transition information can be learned
from this form of pretraining, in contrast to LoCA pretraining.

References
[1] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,

Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265,
2019.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

3

	Tabular Experiments
	On-Policy Model-Based Method

	Mountain Car Experiments
	Environment
	Sarsa()
	MuZero
	Network architectures

	Default Regret

